
A. Differential Privacy Analysis
We analyze the differential privacy of our proposed

methods, adopting the same definition as [34] for differ-
ential privacy in randomized mechanisms. We show that
our proposed method satisfies (0, �) differential privacy or
(0, �)-DP for short.

Definition A.1 ((✏, �)-DP ). A randomized mechanism M :
X ! R with domain X and range R satisfies (✏, �)-DP if

for all measurable sets S ⇢ R and for any two adjacent

databases C and C
0
2 X ,

P (M(C) 2 S)  e✏P (M(C0) 2 S) + �

Since we focus on the client level perspective, the
databases C and C

0 here are the sets of clients, which dif-
fer on one client only, c and c0, i.e.,

C = c [ C0,

C
0 = c0 [ C0. (4)

Here, we denote the distributions of the datasets D and
D0 of the two client sets C and C

0 as PD(X) and PD0(X).
Assume both clients start training their models, on their lo-
cal datasets, starting from the same initial parameter W , e.g.
the global model. If their datasets having different distri-
butions, both clients will obtain two different models after
local training, which have different parameter distributions.
We denote the two parameter distributions as PC(W ) and
PC0(W ). For simplicity, we assume the model training is a
stochastic process estimating the following posterior distri-
bution according to the Bayes’ rule,

P (W |X) / P (X|W )P0(W ),

where P0(W ) is the prior distribution of W . Since each
client trains on the same model architecture, the likelihood
model P (W |X) will be the same for all clients. It is
also reasonable to use the same prior distribution for every
client.

Assumption A.1. The total variation distance (TV)

between the distributions of any two different augmented

client datasets are less than �: TV (PD(X), PD0(X))  �.

To verify the assumption A.1, we denote the distribu-
tion of generated data as G, and the i-th client’s dataset
is the union of the generated data and the raw data, and
the distribution of this combined dataset is denoted as Pi.
According to the definition of TV distance and its trian-
gle inequality, given an arbitrary �, we can always gener-
ate large enough samples such that TV (G,Pi) is smaller
than �/2. Thus for any two clients, we have TV (Pj , Pi) 
TV (Pj , G)+TV (Pi, G)  �/2+�/2 = �. As a result, the

assumption A.1 is reasonable. With the above assumption,
we use the data processing inequality stated in Lemma A.1
to derive the TV distance between PC(W ) and PC0(W ).

Lemma A.1. (Theorem 6.2 in [2]) Consider a channel that

produces Y given X based on the law PY |X (illustrated in

Figure 6). If PY is the distribution of Y when X is gen-

erated by PX and QY is the distribution of Y when X is

generated by QX , then for any f -divergence Df (·k·),

Df (PY kQY )  Df (PXkQX)

Figure 6: Data processing inequality

Theorem A.2. Federated learning with zero-shot data aug-

mentation satisfies the differential privacy (0, �)-DP.

Proof. Since the total variation distance is an instance of
f -divergence [2], applying Lemma A.1, we obtain

TV (PC(W ), PC0(W ))  TV (PD(X), PD0(X))  �.

In federated learning, we perform model aggregation, de-
noted as Wagg, as

Wagg =
1

n
W +

n� 1

n
W0

where W0 is the parameter aggregated on the set of other
clients C0 (as defined in Eq. 4) and n is the number of clients
in C. We denote the two different distributions of Wagg in
the two models as PC(Wagg) and PC0(Wagg). Similarly, we
can also use the Lemma A.1 to derive that,

TV (PC(Wagg), PC0(Wagg))  TV (PC(W ), PC0(W ))  �

Based on the definition of total variation distance, we have

sup
S⇢R

|PC(Wagg 2 S)� PC0(Wagg 2 S)|  �

Define the stochastic mechanism M as the projection from
the client set to any model parameter Wagg 2 R. Then
the distribution of M(C) and M(C0) are the distributions of
Wagg and W 0

agg, respectively. Hence, for any S ⇢ R:

P (M(C) 2 S)  P (M(C0) 2 S) + � ,

which finishes the proof that Fed-ZDA satisfies (0, �)-DP.


