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Abstract

Human action recognition in the dark is a significant

task with various applications, e.g., night surveillance and

self-driving at night. However, the lack of video datasets

for human actions in the dark hinders its development.

Recently, a public dataset ARID has been introduced to

stimulate progress for the task of human action recogni-

tion in dark videos. Currently, there are multiple mod-

els that perform well for action recognition in videos shot

under normal illumination. However, research shows that

these methods may not be effective in recognizing actions

in dark videos. In this paper, we construct a novel neural

network architecture: DarkLight Networks, which involves

(i) a dual-pathway structure where both dark videos and

its brightened counterpart are utilized for effective video

representation; and (ii) a self-attention mechanism, which

fuses and extracts corresponding and complementary fea-

tures from the two pathways. Our approach achieves state-

of-the-art results on ARID. Code is available at: https:

//github.com/Ticuby/Darklight-Pytorch

1. Introduction

Action recognition (AR) in the presence of dark lighting

conditions is a challenging task in computer vision. So far,

there is still a lack of relevant research work. Though there

has a rise of research interest with the video process tasks

in the dark environment, e.g. [3, 13], such research focused

more on enhancing the visibility of dark videos.

The lack of research for action recognition in dark videos

may be attributed to the following two reasons: (i) the lack

of sufficient datasets for such an exploration, (ii) ineffective

data enhancement methods which cause unexpected data

destruction, resulting in a lower classification accuracy. As

stated in [33], distinct characteristics of real dark videos

cannot be replicated by synthetic dark videos. In other
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Figure 1. From top to bottom: (a) Sampled frames from HMDB51,

where videos are shot under normal illumination, sample from

HMDB51; (b) optical flow extracted from (a); (c) sampled frames

from ARID, where videos are shot under low illumination; (d) op-

tical flow extracted from (c); (e) enhanced frames of (c), the en-

hancement is performed with Gamma Intensity Correction (GIC);

and (f) optical flow extracted from (e).

words, it is irrational to transform large numbers of avail-

able videos into dark videos for training. It also empirically

demonstrated that current frame enhancements which could

improve dark video frames visually may not bring consis-

tent improvements for action recognition accuracies of dark

videos.

Over the past decade, the task of action recognition has

received considerable attention from the vision commu-

nity owing to the flourish of applications relating to the vi-

sual domain such as surveillance [34, 15] and smart homes

[21, 16]. Most current works for action recognition can be

generally classified into two kinds of architectures or frame-

works, namely (1) 3D Convolutional Neural Networks

(CNN) [12, 29, 23], and (2) two-stream [26, 31, 24]. Meth-

ods with two-stream architecture have shown to outperform



3D-CNNs thanks to their ability in utilizing complemen-

tary features extracted parallel with each other. However,

conventional two-stream methods usually involve computa-

tion or estimation of optical flow, which needs high com-

putational power and large storage resources. In addition,

optical flow is useful only when the change of pixel values

are rather significant across adjacent frames, which however

does not hold for dark videos. As shown in Figure 1, it can

be observed that the optical flow extracted from dark videos

is unclear visually, and contains little information. Even

for frame-enhanced videos, e.g., through Gamma Intensity

Correction (GIC) (Figure 1(e)), the optical flow extracted

is still of inferior quality compared to that extracted from

normal illuminated videos, such as videos from HMDB51.

Therefore, instead of using optical flow, we introduce a

novel dual-pathway structure for feature extraction. The

structure includes two pathways, namely Dark pathway and

Light pathway, where each pathway has an input and a fea-

ture extractor. The Dark pathway is fed with original input

frames, but the input of the Light pathway is pre-processed

with a traditional image brightening algorithm, which hypo-

thetically can provide complementary features for the Dark

pathway in video representation.

Recently, self-attention has been introduced as an ef-

fective module for feature extraction, and has been suc-

cessfully applied in multiple tasks, e.g., machine transla-

tion [30] and image classification [5]. A self-attention mod-

ule computes the response at a position in a sequence by

attending to all position and taking their weighted average

in an embedding space. Inspired by the success of self-

attention models, multiple works apply it in video action

recognition, which can be classified into two forms. One is

purely based on the self-attention mechanism [1], the other

combines 3D-CNN network with the self-attention blocks

[7, 14, 8, 20]. Until now works which completely depen-

dent on self-attention mechanism performance have been

inferior to that of CNN in action recognition. Nevertheless,

hybrid architectures [14, 8] that combine CNN and atten-

tion have recently exhibited competitive results. Inspired

by [14], we utilize a self-attention block to fuse features

from the two pathways.

Overall, our contributions are: (i) We introduce Dark-

Light networks (Section 3) including two pathways for

learning complementary features and a self-attention block

for fusing the features. (ii) We show that the proposed

method achieves state-of-the-art results on ARID (Sec-

tion 4). (iii) We prove that using a self-attention block to

fuse and extract features can obtain a higher accuracy (Sec-

tion 4).

2. Related Works

3D-CNNs for Action Recognition In 3D convolution, fil-

ters are designed in a 3D fashion, where channels and tem-

poral information are represented in different dimensions.

The first 3D-CNN for AR is C3D [28]. Subsequently, net-

works such as 3D-ResNet [10] and 3D-ResNext [11] are

deeper and larger 3D-CNN. More recently, R(2+1)D [29]

architecture is proposed to decompose 3D spatio-temporal

convolutions into spatial and temporal convolutions, which

further improves the effectiveness of video feature extrac-

tion.

Two-stream Methods for Action Recognition Videos

contain a wide range of information with different modali-

ties. The diverse modalities have been made use of by many

research work, which includes depth information [25], RGB

information [18], skeleton information [17], and optical

flow information[24]. Two-stream methods utilize the di-

versity of information in videos, creating two or even more

pathways for parallel feature extraction, resulting in video

features containing rich modalities of information. Among

the different modalities, optical flow information has been

used widely for two-stream methods [26, 31, 24], as optical

flow information is widely recognized as an effective com-

plementary towards RGB information. However, modali-

ties apart from RGB information would be obtained easily.

Depth information needs to be obtained from a special sen-

sor, while both skeleton and optical flow require high com-

putation cost and large storage. In this work, two-stream ar-

chitecture is also adopted with the goal of obtaining comple-

mentary features to the RGB features, which may contain

inadequate information. To achieve this, we observe that

frame-enhanced videos, which are visually clearer, ought to

contain more information with regards to the action. There-

fore, such frame-enhanced videos are utilized for our two-

stream architecture.

Self-attention Mechanism The primary work which in-

troduces self-attention as an exclusive building block for

video understanding is [1]. The network is built from

the standard Transformer architecture adapted temporal at-

tention and spatial attention separately within each block.

However, models based solely on the self-attention mech-

anism require excessive amount of training data. Instead,

more recent methods tend to integrate self-attention into

feature extractors, e.g., in [20] each frame is characterized

by a 2D spatial network, and then use a temporal attention-

based encoder to gain a classified (CLS) token for classi-

fication. The work [14] adopts BERT [4] to replace the

conventional temporal global average pooling layer at the

end of 3D-CNN for using better temporal information. In-

spired by previous works with self-attention, we employ

self-attention as an effective module for fusing the features

obtained by the two pathways.



Figure 2. The architecture of DarkLight Network. The input is a sequence of dark frames for the first pathway, denoted as the Dark pathway.

The dark video input is simultaneously enhanced through Gamma Intense Correction (GIC), forming the input for the second pathway,

denoted as the Light pathway. Taken them into a weight-shared CNN feature extractor, feature vectors are extracted separately to input a

self-attention blocks in parallel to fuse and extract more useful spatio-temporal features. Finally, the result is obtain from the output Ycls

in self-attention blocks.

3. Method

In this section, the proposed method, DarkLight net-

works, will be introduced. The overall framework, as show

in Figure 2, is based on two pathways: the Dark pathway

and the Light pathway. The input of the Dark pathway is

a sequence of dimmed frames and Light pathway is raw

frames applying GIC. After a weight shared CNN feature

extractor, the feature vector is extracted separately and in-

putted in parallel to a self-attention module. Finally, the re-

sult is obtained from the output Ycls in self-attention blocks.

In Section 3.1, we present how to construct the Light path-

way, and how to obtain features from dual-pathway. In Sec-

tion 3.2, we explain the principles of self-attention blocks

and their effects in this work.

3.1. DarkLight Pathways

There are many image enhancement methods, including

traditional Histogram Equalization (HE) [27], Gamma In-

tensity Correction (GIC) LIME [9], BIMEF [35] and deep

learning KinD [36]. Although neural network performs

well in visualization, they destroy the distribution of data,

which is awful for video understanding. A simple and ef-

fective conventional GIC technique is adopted to brighten

dimmed frames, derived by Equation 1.

GIC(p) = pmax(
p

pmax

)
1

γ (1)

where p is the value of a pixel with the range of [0, 255],
pmax is the maximum intensity of the input and γ indicates

Figure 3. (a) A frame in ARID and its histogram. (b) Apply GIC,

gamma = 3, in the frame of (a) and its histogram.

the degree of luminance increase. When γ > 1, the overall

gray value of the image will become larger, as exhibition in

Figure 3.

Given the input dark video as a sequence of clips, de-

noted by I ∈ R
3×T0×H×W , where number 3 indicates the

RGB channels, T0 is the number of video frames, H,W
are the height and width. By GIC, pixels of each input

frame are computed by Equation 1, resulting in IGIC ∈
R

3×T0×H×W . Subsequently, both I and IGIC are sepa-

rately inputted to the weight-shared CNN feature extractor.

From the features extractor, we get two feature vectors con-

taining the complete spatio-temporal information from the



Figure 4. F1 . . . Fm denote the features of input. X1 . . . Xm

are the encoding vectors of features, and Xcls is an adding extra

learnable classification token. The area of blue is the basic block

in self-attention, including Multi-Head and MLP, which will be re-

peated in the stack. In addition, LayerNorm is omitted for brevity.

Dark and Light ways, following by Equation 2,3. Next, both

of them input to self-attention blocks in parallel, the purpose

of which is to fuse and extract beneficial features from two

pathways.

FDark = f(I) (2)

FLight = f(IGIC) (3)

Here f() refers to CNN-based feature extractor. FDark,

FLight separately mean the features extracted from the path-

ways Dark and Light.

3.2. Selfattention Blocks

A seminal work applying self-attention mechanism is the

Non-local Neural Networks [31] in video classification. A

self-attention module computes the response at a position

in a sequence by attending to all position and taking their

weighted average in an embedding space. Inspired by [14],

which studies how to remove temporal global average pool-

ing with BERT, we take the self-attention blocks, as shown

in Figure 4, to select more helpful spatio-temporal features

from two pathways for action recognition.

After extracting features from two flows, we obtain

FDark and FLight, the shape of both is D×m where m can

be regarded as the dimensionality of temporal and D rep-

resents the number of short-term characteristics of adjacent

frames, to put them into the self-attention mechanism. First

of all, the input features are added to a learnable positional

embedding to encode each feature, following by Equation 4:

Xi = Fi + eipos (i = 1, 2, · · · ,m) (4)

Where Xi denotes the encoding vector, which contains lo-

cation information, and eipos is a learnable positional em-

bedding where epos ∈ R
D×m. In addition, a learn-

able CLS token is also considered in the encoding as X0,

X ∈ R
D×(m+1). There are L encoding blocks in the self-

attention, and each block l, query/key/value vector is com-

puted from the output of the last block, as follows Equa-

tion 5,6,7:

q
(l,h)
i = W

(l,h)
Q L(X l−1

i ) ∈ R
d (5)

k
(l,h)
i = W

(l,h)
k L(X l−1

i ) ∈ R
d (6)

v
(l,h)
i = W (l,h)

v L(X l−1
i ) ∈ R

d (7)

Where L is LayerNorm, h = 1, . . . , H is the index of mul-

tiple attention heads, and Wq ,Wk,Wv are all the weight ma-

trices, and the latent dimensionality d = D/H .

Self-attention weights are computed via dot-product,

given by Equation 8,

α(l,h) = softmax(
q
(l,h)
i√
d

T

k
(l,h)
i ) (i = 0, . . . ,m) (8)

and encoding X l
i at block l is obtained by the weighted sum

of value vectors using α from each attention head, as fol-

lows Equations 9,10,11.

s
(l,h)
i =

m
∑

0

α
(l,h)
i v

(l,h)
i (9)

X
′(l)
i = Wo









s
(l,1)
i
...

s
(l,H)
i









+X
(l−1)
i (10)

X
(l)
i = MLP (L(X

′(l)
i )) +X

′(l)
i (11)

The classification token Ycls obtained from the final

block, goes through a FC layer and argmax function to re-

turn the final forecast result, as follow Equation 12:

Result = Argmax(FC(Ycls)) (12)



Figure 5. The experiment for selecting the value of the hyper-

parameter γ in DarkLight networks.

4. Experiments

4.1. Experimental Details

We conduct experiments on the first benchmark datasets

for AR in the dark: ARID [33], which consists of 3,784

video clips in 11 action categories with lower brightness

and contrast than other AR video datasets. We report the

average Top-1 and Top-5 accuracies of three splits.

Our experiments use PyTorch [22]. The input is a se-

quence of frames, whose size is 3 × 64 × 112 × 112. If

the frames of the video clip are less than 64, we take the

method of looping frames. As for the feature extractor,

we adopt ResNeXt-101 [32] and R(2+1)D-34 [29] without

the average temporal pooling at the end. ResNeXt-101 is

constructed by repeating a building block that aggregates a

set of transformations with the same topology. R(2+1)D-

34 decomposes 3D convolution into 2D spatial convolution

and 1D temporal convolution. And they are separately pre-

trained on Kinetics-400 [2] and IG65M [6] to accelerate our

training. Extracted by ResNeXt-101 or R(2+1)D-34, both

the shape of FDark and FLight are 512×8. We set L = 12,

H = 8 on the number of the blocks and the heads in self-

attention architecture, following by [4]. For training, the

ADAMW [19] optimizer with a learning rate 10−5 is uti-

lized.

We conducted experiments on the hyper-parameter γ
from 1 to 6 at intervals of 0.5, and each experiment is car-

ried out 20 epochs, as shown in Figure 5. We observe that

γ = 2 obtain more excellent results. Therefore, in all sub-

sequent experiments, the γ = 2 is set in GIC.

4.2. Results and Comparisons

The results of our method and current competitive 3D-

CNN based model in action recognition are recorded in Ta-

ble 1, most of the data come from [33]. We notice that the

Top-5 accuracy is relatively high in all methods because of

the small number of classes in ARID dataset and our net-

Method Top-1 Top-5

C3D 39.17% 94.17%

3D-ShuffleNet 44.35% 93.44%

3D-SqueezeNet 50.18% 94.17%

3D-ResNet-18 54.68% 96.60%

Pseudo-3D-199 71.93% 98.66%

I3D-Two-stream 73.39% 97.21%

3D-ResNext-101 74.73% 98.54%

DarkLight-ResNeXt-101 87.27% 99.47%

DarkLight-R(2+1)D-34 94.04% 99.87%

Table 1. The Top-1 and Top-5 accuracy results of a few competitive

models and ours.

work achieves the best results on the benchmark datasets.

From Table 1, we find that different CNN-based feature

extractors can work effectively and R(2+1)D-34 is 6.77%

higher than ResNeXt in Top-1 accuracy. More specifically,

comparing I3D-Two-stream architecture [2] using the op-

tical stream and the original frames as the input, we find

that the Top-1 accuracy of our best is increased 20.65%

by the I3D-Two-stream network, which proves not only

the proposed method is powerful but the optical flow may

not be useful for AR in the dark. Meanwhile, in compar-

ison with 3D-ResNet-18 and 3D-ResNet-101, we discover

that the deeper network layers, the higher effect could be

achieved, but the performance of DarkLight-R(2+1)D-34

structure with 34 layers is 19.31% better than the 101 layers

in 3D-ResNet-101. In summary, the comparisons illustrate

DarkLight network is far better than many other excellent

models based on 3D-CNN or two-stream in Top-1 accuracy.

We further perform ablation experiments on DarkLight-

R(2+1)D-34 to explore the role of each part, as shown in Ta-

ble 2. Without a self-attention mechanism, taking the dual-

pathway as the input increases 1.93% from only using the

Dark pathway and 0.83% from only using the Light path-

way in Top-1 accuracy. This shows that the features from

the Dark pathway and Light pathway have consistent and

complementary information. With the self-attention mod-

ule, taking a dual-pathway as input obtains an improvement

of 1.6% by only using the Dark pathway and 1.29% by only

using the Light pathway in Top-1 accuracy. It illustrates

that self-attention blocks can catch more important spatio-

temporal features for AR. In conclusion, applying the dual-

pathway with a self-attention block can achieve the best re-

sult.

5. Conclude

In this work, we propose a new architecture for action

recognition in the dark while avoiding the use of optical

flow. The traditional image process GIC, which improves

the brightness of dimmed images, is taken to form another



Method Top-1 Top-5

R(2+1)D-34-Dark 90.45% 98.11%

R(2+1)D-34-Light 91.55% 99.51%

R(2+1)D-34-DarkLight 92.38% 99.17%

R(2+1)D-34-Dark-SA 92.44% 99.70%

R(2+1)D-34-Light-SA 92.75% 99.51%

R(2+1)D-34-DarkLight-SA 94.04% 99.87%

Table 2. Ablation experiences, where -Dark, -Light, -DarkLight,

means using the corresponding view of Dark, Light or both. -SA

denotes using self-attention mechanism to fuse and select features

from two pathways.

pathway named Light that provides complementary infor-

mation for the Dark pathway. Meantime, a self-attention

mechanism is applied to fuse and select more beneficial spa-

tiotemporal information from dual-pathway, namely Dark

and Light. The experiments indicate the proposed method

is powerful.
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