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Abstract

The depth of deep convolution neural network and self-

attention mechanism is widely used for the single image

super-resolution (SISR) task. Nevertheless, we observed

that the deeper network was more hard to train and the self-

attention mechanism is computationally consuming. Resid-

ual learning has been widely recognized as a common ap-

proach to improve network performance for deep learn-

ing, but most existing methods did not make the best of

the learning ability of deep CNN, thus hindering the ability

of representative CNN. In order to tackle these problems,

we introduce a deep learning network namely expectation-

maximization attention cross residual network (EACRN) to

tackle the super-resolution task. Particularly, we propose

a cross residual in cross residual (CRICR) structure that

makes up very deep networks consisting of multiple cross

residual groups (CRG) with global residual skip connec-

tions. Every cross residual group (CRG) consists of some

cross residual blocks with cross short skip connections. At

the same time, CRICR allows network focused on capturing

high-frequency patterns by connecting rich low-frequency

patterns to be bypassed and several short skip connections.

In addition, we introduce various convolution kernel size so

that adaptive capture the image pattern in different scales,

which make these features get the more efficacious image

information through interacting with each other. The intro-

duced Expectation-Maximization Attention (EMA) module

is robust to the variance of input and is also friendly in

memory and computation. Extensive experiments demon-

strate our EACRN obtains superior performance and visual

effect relative to the most advanced algorithm.

1. Introduction

super-resolution is a basic task in computer vision, es-

pecially single-image super-resolution (SISR), which has

∗Corresponding authors.

attracted a lot of interest from researchers. The target of

SISR is that produce clear and high-resolution (HR) im-

ages, given blurry and low-resolution (LR) images. How-

ever, SISR is an ill-posed problem because converting low-

resolution images to super-resolution images exists multiple

solutions. To tackle this inverse problem, numerous learn-

ing method based on big data is widely applied to the learn-

ing the mapping from LR images to HR images.

Recently, deep neural networks (DNN) [25, 24, 23, 8]

have shown this way can improve significant performance

for single image resolution problems. Dong et al. proposed

SRCNN [6] in 2014, which is first use CNN to SISR is-

sues. SRCNN is an efficient network that can learn an end

to end mapping from LR to HR images and achieve satisfac-

tory performance. Since then, many studies have proposed a

large number of CNN models [14, 7, 26, 15, 17, 27, 21, 39]

focused on learning the mapping from low-quality images

and high-quality images and finding the locally optimal so-

lution. EDSR [21] is the champion in the NTIRE2017 Chal-

lenge. It is based on SRResNet [18] and enhances the repre-

sentational capacity of neural networks by not using batch

normalization layer and construct wider and deeper network

structures. The great improvements on EDSR have demon-

strated the depth of neural network is significant for sin-

gle image super-resolution problems. These models have

reached excellent performance in the SISR problem for

SSIM [33] and PSNR. However, to the best of our knowl-

edge, these models tend to simply stack residual blocks to

build more complicated connections and network architec-

ture, which means that the training model needs more time,

tricks, and resources. Whether the deeper network makes

further contributions to SISR and how to build a deeper net-

work remains to be explored.

In order to seek some problems in traditional models, we

reproduce some typical models such as SRCNN [6], EDSR

[21], SRResNet [18], MSRN [19], RCAN [39], and SAN

[5]. In the reproduce experiments, we found that most tra-

ditional algorithms exist some problems. Firstly, the change

of the subtle network architecture are sensitive to most mod-
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els and some models are hard to obtain the performance

of the paper since without network training techniques and

configuration, such as data normalization, gradient trunca-

tion, and weight initialization, which means the improve-

ment of performance not always due to the changes in the

model, but rather some unknown training techniques. Sec-

ondly, most methods improve the performance of the net-

work by blindly increase the depth of the network but ig-

nore making full use of the high-frequency information and

original low-resolution image of features. With the network

deeper, the computation of the network is larger and gradi-

ent information gradually disappears since the transmission

process. It is critical to make the best use of this high-

frequency information for reconstructing super-resolution

images. Most existing SR models simply stacking blocks

and add residual skip connections to improve performance

for reconstructing more clear images. super-resolution task

is an ill-pose problem. It should be noted that simple lin-

ear mapping does not work very well. In order to capture

long-range dependencies, several works develop the non-

local block [32]. However, the operation of the non-local

block needs to generate a large attention map, which will

lead to high computation complexity and occupies a huge

number of GPU memory. Although most SR models stack-

ing more and more blocks to enhance the nonlinear map-

ping for higher performance, this not only made the net-

work cumbersome but also may not achieve the desired ef-

fect. How to build a complex network and make full use

of the learning ability of the network is important for the

model to reconstruct super-resolution images.

To practically resolve the above problems, we rethink

the attention mechanism from the view of the expectation-

maximization (EM) algorithm [20] and introduce a novel

deep learning namely expectation-maximization attention

cross residual network (EACRN) to tackle single image

super-resolution problem. Besides, we proposed a compli-

cated base module namely multi-scale cross residual block

to construct the building architecture for EACRN. In order

to stable the training of the deep network, we proposed a

standard deep learning architecture namely cross residual in

cross residual (CRICR) structure, the cross residual group

(CRG), and global residual skip connection (RSC) build ba-

sic architecture to guide residual learning and gradient in-

formation flow. For each CRG module, stacking multiple

cross residual blocks (CRB) with local cross residual skip

connection (LCRSC) is a nuclear structure. Global and lo-

cal cross-residual skip connections, as well as shortcuts in

the cross-residual block (CRB), are used to obtain rich low-

frequency information through these identification-based

skip connections, thus simplifying the flow of information.

2. Related Work

We roughly divided the SISR task into three main stages.

Like linear and bicubic interpolation, these early methods

based on sampling theory run very fast, but do not recovery

textures and details. The goal of the improved work is to

create complex mappings for converting low-quality images

to high-quality images. These algorithms rely on embedded

techniques from neighbors to sparse coding.

2.1. Traditional Method

Single image super-resolution is an unsteadiness inverse

problem since super-resolution images can have multiple

solutions for high-resolution images. Some traditional

super-resolution methods attempt to constrain the solution

space with prior information such as neighbor embedding

[4], [3], anchored neighborhood regression [30] and sparse

coding [36], [35], [34]. In the assumption of [18], low-

dimensional non-linear manifolds have a similar local ge-

ometry between low-resolution images and high-resolution

image pattern space. When the sample is large enough,

the weight calculated by the LR feature domain is used

to reconstruct the patch of the HR feature domain to the

weighted average of local neighbors. With the assumption

of the low-resolution image patches shares the same sparse

representation with corresponding high-resolution image

patches counterparts, Yang et al. [36], [35] proposed an ef-

ficient method to resolve the super-resolution task. The im-

proved work such as [10], [9] uses the prior self-similarity

that clear image patches in natural images. Huang et al. [12]

proposed the SelfExSR. This method makes use of geo-

metric changes to expand the internal image patches search

space. Although SelfExSR does not require a training pro-

cess, is time-consuming because involves the internal image

patches search process.

2.2. Deep Neural Network for Image Super­
Resolution

Dong et al. [6] did the pioneering work that proposed

SRCNN for SISR and obtained outstanding performance

against traditional methods. SRCNN has been further en-

hanced in VDSR [14] and DRCN [15]. These algorithms

first interpolate low-resolution image input into the desired

size, which greatly augments the computational effort and

inevitably loses some detail. Extracting features from low-

quality images and increasing resolution at the end of the

network is a better method for the deep neural network. In

order to speed up the training and testing speed of SRCNN,

a faster network structure FSRCNN [7] is proposed. Ledig

et al. [18] proposed ResNet with a generative adversarial

network (GAN) and perceptual loss [13] for realistic SR

[11]. Nevertheless, most of these algorithms have limited

network learning ability, which has limited the representa-

tion ability of the network.
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2.3. Feature Extraction Block for Image Super­
Resolution

Nowadays, many researchers concentrate on feature ex-

traction blocks. Kim et al. proposed a residual skip connec-

tion structure in 2016 to speed up the training of networks so

that they obtain better results. After that, Huang et al. pro-

posed a dense block. The residual blocks and dense blocks

use a fix-sized convolution kernel, and the dense blocks

have dense skip connections so which increases the com-

puting complexity. In 2018 Li et al. [19] proposed MSRN

to capture different scale image features, which introduces

different convolution kernels sizes to adaptively extract fea-

tures in different scales. Although MSRN uses multi-scale

convolutional kernels to capture representations, it fails to

make full use of the learning ability of the network. To ad-

dress these shortcomings, we come up with a cross residual

block.

2.4. Attention Model for Image Super­Resolution

Attention is important for various tasks such as machine

translation, visual question answering, and video classifica-

tion. The self-attention methods [31] calculate the context

coding at one position by a weighted summation of embed-

dings at all positions in sentences. Zhang et al. introduced

the residual channel attention in RCAN [39], but they did

not employ the self-attention method. Dai et al. introduced

the non-local block [32] in SAN [5] to capture the long-

range dependencies, but it’s expensive on the GPU.

Our network is motivated by the success of attention in

the above works. We rethink the attention mechanism from

the view of the EM algorithm and compute the attention

map in an iterative manner as the EM algorithm. At the

same time, a cross residual skip connection is applied be-

tween different batches. In addition, we introduced local

residual skip connection to ease training difficulty, which

combined with multi-scale extractor so the features pattern

can be reused and shared with each other. A more detailed

description will be given in section 3.1.

3. Proposed Method

In this section, we describe in detail each main compo-

nent of our come up with EACRN for SISR. As seen in

Fig.1, EACRN is made up of four parts: a shallow feature

extraction module, several cross residual groups (CRG), an

upsampling layer, and a reconstruction layer.

3.1. Shallow Feature Extraction

In SISR problem, the HR image IHR degenerates an LR

image ILR by downsampling and blurring. the degraded LR

image ILR can be represented as

ILR = DB(ILR) + n (1)

where D and B represent the downsampling and blurring

operations, respectively, and n denote the additive noise in

the degradation operations. Let us denote the ILR and IHR

as the observed ILR input and the estimated IHR output of

our EACRN.

We use a 3 × 3 convolution layer to capture the shallow

pattern from the original low-quality image in the feature

extraction module. The shallow feature x1 through the first

convolutional layer can be represented as

F0 = H1(ILR) (2)

where H1(·) denotes the first feature extraction operation.

x1 is served as the input of the following state and used for

further feature extraction.

3.2. Cross Residual in Cross Residual Structure

Now we introduce our come up with CRICR architecture

in Fig. 1. The CRICR architecture includes G cross resid-

ual groups (CRG) with long skip connection (LSC). Every

CRG consists of B cross residual blocks (RCAB) with cross

short skip connection (CSSC). Our cross residual in cross

residual structure can train the deeper model to capture the

high-frequency pattern and learn the complex mapping be-

tween blurry low-quality images and clear high-quality im-

ages for the single image super-resolution task with high

performance.

Stacking several blocks and LSC has been demonstrated

to construct the deeper network in [21] In computer vision

recognition, Stacking multiple residual blocks to construct

a very deep network suffer from hardly improve perfor-

mance again and training difficulty. Inspired by the previ-

ous method EDSR [21], we introduce cross residual group

(CRG) as a foundational structure for models. We can for-

mulate a CRG in the g-th group as

Fg = Hg(Fg−1) = Hg(Hg−1(· · ·H1(F0) · · · ))) (3)

where Hg represents the operation of g-th CRG. Fg−1 and

Fg denote the input and output for g-th CRG. We find sim-

ply stacking multiple CRGs would not always to obtain bet-

ter performance. In order to fix this problem, we introduce

the long skip connection in CRICR for stabilizing the flow

of gradient information and ease the training. LSC can im-

prove performance with cross residual learning via

FDF = F0+WLSCFG = F0+WLSCHg(Hg−1(· · ·H1(F0) · · · )))
(4)

where WLSC is the weight matrix set to the convolution

layer at the tail of CRICR. For simplicity, we omit the bias

term. LSC can not only stabilize the training and slow down

the flow of gradient information across CRGs but only make

CRICR capture more residual information.
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Figure 1. Network architecture of our expectation-maximization attention cross residual network (EACRN)

Since the LR inputs and functions contain a wealth of

information, and the SR network aims to reconstruct more

useful information. Identity-based skip connections can by-

pass a large number of low-frequency information. In order

to further towards residual learning, we stacked four cross

residual blocks in each CRG. The four cross residual blocks

(CRBs) in the g-th RG may be represented as

Fg,1 = Hg,1(Fg−1) (5)

Fg,2 = Hg,2(Fg−1) (6)

Fg,3 = Hg,3(Fg,1) (7)

Fg,4 = Hg,4(Fg,2) (8)

Fg = Wconv([Fg,1 + Fg,4, Fg,2 + Fg,3]) (9)

where Fg−1 and Fg,b are the input of the g-1-th CRG and

output of the b-th CRB in g-th CRG.[·] means the concat

feature fusion operation, and the Wconv denote the weight

of convolution layer.

3.3. Cross Residual Block

In order to enhance non-linear mapping for super-

resolution reconstruction, we propose cross residual block

(CRB). We will elaborate on this structure. As shown in

Fig.2, in the head of our CRB we set two branches oper-

ated by two 5 convolution layers to largely extract feature,

and then we use a multi-scale convolution layer to learn

adaptively extracting features. Therefore, the gradient flow

information between two bypasses allows detecting image

patterns at different scales. We also adopt cross residual

learning for our CRB. Since single image super-resolution

is an ill-posed problem existing multiple solutions, cross

residual skip connection not only enhance the non-linear

mapping but also constrains linear condition.

3.4. Expectation­Maximization Attention Module

In order to capture long-range dependencies, we propose

an expectation-maximization attention module (EMA). We

will elaborate on this structure. As shown in Fig.3, Our pro-

posed EMA consists of three operations, including respon-

sibility estimation (AE), likelihood maximization (AM ),

and data re-estimation (AR). Briefly, given the input X ∈
RN×C and the initial bases u∈ RK×C , AE estimates the la-

tent variables Z ∈ RN×K , so it functions as the E step in the

EM algorithm. AM uses the estimation to update the bases

u, which works as the M step. Then, with the converged u

and Z, AR reconstructs the original X as Y and outputs it.

3.5. Loss Function

According to [21], it may not be possible to use L2 loss

restoring sharp edges since L2 loss will result in excessive

smoothing. For image SR, the L1 loss function provides

better convergence than the L2 loss function. We found

that using the L1 training network obtains better perfor-

mance in PSNR and visually. The quality is lost compared

to L1. So we use L1 loss instead of L2. Given the training

data sets {ILR, IHR}
N , where the N denotes the number

of the datasets, ground truth HR patch IHR, and the low-

resolution LR patch ILR, the loss function with the param-

eter set Θ is

L(Θ) =
1

N

N∑

i=1

||IHR − ISR||1 (10)

4. Experiments

4.1. Datasets

In this work, we use DIV2K datasets as training datasets

and choose 800 training images from them. [29]. Data

augmentation performs on training images for our models,

which are randomly rotated and flipped horizontally. SET5

[2], SET14 [37], BSDS100 [1], and URBAN100 [12] were

chosen as benchmark datasets for testing and we compare

our models with several advanced methods: . The PSNR

and the SSIM as performance indicators for all models.
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Figure 3. The structure of expectation-maximization module (EMA).

4.2. Implementation Details

In our EACRN, we set the CRG number as 10. In the

CRICR structure, each CRB and convolutional layer have

64 filters with the stride of 1, in addition to the upsampling

layer and the reconstruction layer. The upsampling layer

in our advanced module is sub-pixel convolution [26]. The

reconstruction layer is a three-channel of stride 1 of con-

volution layer to reconstruct the HR image. As for some

convolution layers, we use the ReLU function [22] as the

activation function.

For the training phase, the original low-resolution im-

ages are RGB color space and all channel is processed.

Low-resolution image patches are obtained through down-

sampling the high-resolution image patches adopting Mat-

lab function bicubic interpolation. We randomly sample

16 high-resolution image patches with the size of 192 ×
192 without overlapping in each training batch. In order to

demonstrate our method can easily insert any deep learning

model as a basic module and improve performance, we did

not use the complex weight initial method. We implement

EACRN to optimize the models using Adam [16] method as

an optimizer with the PyTorch package. We set the momen-

tum parameter as 0.9 and initialize the learning rate as 1e-4

Table 1. Effects of different modules with cross residual learning.

We report the best PSNR and SSIM values on Set5 images.

Method Cross residual learning

CRG X X

CRB X X

EMA X X

PSNR 31.23 31.45 31.87 32.16 32.23

and decreased by half for every 200 epochs. The training

of a single EACRN model can roughly take 7 days with a

GTX 1080Ti GPU.

4.3. Ablation Study

In this subsection, we analyze the effects of the cross

residual learning in our CRG and CRB. We now perform

analyses on the proposed cross residual learning for CRG

and CRB in detail, i.e., the cross residual group (CRG) with

cross residual learning and cross residual block with cross

residual learning and the no cross-learning from the above

two components. We design five networks that set the same

numbers of feed-forward features in CRB and the same

numbers of CRG to build the standard model. The model
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Table 2. Quantitative comparisons of state-of-the-art methods.

Method Scale Set5 Set14 BSD100 Urban100 Manga109

Bicubic 2 33.66/.9299 30.24/.8688 SSIM 26.88/.8403 30.80/.9339

SRCNN 2 36.66/.9542 32.45/.9067 31.36/.8879 29.50/.8946 35.60/.9663

VDSR 2 37.53/.9590 33.05/.9130 31.90/.8960 30.77/.9140 37.22/.9750

LapSRN 2 37.52/.9591 33.08/.9130 31.08/.8950 30.41/.9101 37.27/.9740

MemNet 2 37.78/.9597 33.28/.9142 32.08/.8978 31.31/.9195 37.72/.9740

EDSR 2 38.11/.9602 33.92/.9195 32.32/.9013 32.93/.9351 39.10/.9773

SRMD 2 37.79/.9601 33.32/.9159 32.05/.8985 31.33/.9204 38.07/.9761

DBPN 2 38.09/.9600 33.85/.9190 32.27/.9000 32.55/.9324 38.89/.9775

RDN 2 38.24/.9614 34.01/.9212 32.34/.9017 32.89/.9353 39.18/.9780

RCAN 2 38.27/.9614 34.11/.9216 32.41/.9026 33.34/.9384 39.43/.9786

SAN 2 38.31/.9620 34.07/.9213 32.42/.9028 33.10/.9370 39.32/.9792

EACRN 2 38.42/.9632 34.17/.9233 32.47/.9038 33.12/.9350 39.42/.9893

Bicubic 3 39.32/.9792 27.55/.7742 27.21/.7385 24.46/.7349 26.95/.8556

SRCNN 3 32.75/.9090 29.30/.8215 28.41/.7863 26.24/.7989 30.48/.9117

VDSR 3 33.67/.9210 29.78/.8320 28.83/.7990 27.14/.8290 32.01/.9340

LapSRN 3 33.82/.9227 29.87/.8320 28.82/.7980 27.07/.8280 32.21/.9350

MemNet 3 34.09/.9248 30.01/.8350 28.96/.8001 27.56/.8376 32.51/.9369

EDSR 3 34.65/.9280 3.52/ .8462 29.25/.8093 28.80/.8653 34.17/.9476

SRMD 3 34.12/.9254 30.04/.8382 28.97/.8025 27.57/.8398 33.00/.9403

RDN 3 34.71/.9296 30.57/.8468 29.26/.8093 28.80/.8653 34.13/.9484

RCAN 3 34.74/.9299 30.64/.8481 29.32/.8111 29.08/.8702 34.43/.9498

SAN 3 34.75/.9300 30.59/.8476 29.33/.8112 28.93/.8671 34.30/.9494

EACRN 3 34.85/.9321 30.63/.8576 29.54/.8121 28.99/.8771 34.41/.9497

Bicubic 4 28.42/.8104 26.00/.7027 25.96/.6675 23.14/.6577 24.89/.7866

SRCNN 4 30.48/.8628 27.50/.7513 26.90/.7101 24.52/.7221 27.58/.8555

VDSR 4 31.35/.8830 28.02/.7680 27.29/.0726 25.18/.7540 28.83/.8870

LapSRN 4 31.54/.8850 28.19/.7720 27.32/.7270 25.21/.7560 29.09/.8900

MemNet 4 31.74/.8893 28.26/.7723 27.40/.7281 25.50/.7630 29.42/.8942

EDSR 4 32.46/.8968 28.80/.7876 27.71/.7420 26.64/.8033 31.02/.9148

SRMD 4 31.96/.8925 28.35/.7787 27.49/.7337 25.68/.7731 30.09/.9024

DBPN 4 32.47/.8980 28.82/.7860 27.72/.7400 26.38/.7946 30.91/.9137

RDN 4 32.47/.8990 28.81/.7871 27.72/.7419 26.61/.8028 31.00/.9151

RCAN 4 32.62/.9001 28.86/.7888 27.76/.7435 26.82/.8087 31.21/.9172

SAN 4 32.64/.9003 28.92/.7888 27.78/.7436 26.79/.8068 31.18/.9169

EACRN 4 32.67/.90021 28.95/.7894 27.81/.7456 26.87/.8087 31.23/.9188

MBASE is obtained by removing CRG , CRB, and EMA

that is based on the basic EACRN, which be made up of

the standard framework. The performance (PSNR = 31.23

dB) of M BASE is bad that is caused by the hard of train-
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Figure 4. Visual comparison for 4× SR with BI model on benchmark dataset.

Table 3. Specifications comparison with RCAN.

Algorithm Feature extraction Filters Parameters Updates

RCAN 10 blocks 64 16M 4 ×105

EACRN 10 blocks 64 15.4M 1 ×103

ing and inefficient flow of gradient information. It demon-

strates that stacking several basic convolution layers does

not obtain better performance. Then, we add cross resid-

ual learning to the CRG and CRB of M BASE to produce

M CRG and M CRB. The results demonstrate each struc-

ture can improve the performance of M BASE. The main

reason is largely due to that cross skip connection allows

more abundant low-frequency information from the LR im-

ages to be bypassed. The combination of CRB, CRG, and

EMA will improve performance than it. When we both use

cross residual learning in CRG, CRB, and EMA, the perfor-

mance can be further improved.

4.4. Comparisons with State­of­the­art Methods

We choose many state-of-the-art SR models to compare

with our model, including Bicubic, SRCNN [6], VDSR

[14], LapSRN [17], MemNet[28], EDSR [21], SRMD [38],

DBPN[13], RDN[40], RCAN[39], and SAN[5]. All the

object quantitative results for different scale factors are re-

ported in Table 2. Compared with other algorithms, our

EACRN performs better results on all the datasets on var-

ious scaling factors. This is mainly because both of them

cross residual learning to learn feature interdependencies

so which prompts the network to focus on more informa-

tive features. Compared with MSRN, our EACRN ob-

tains better results for datasets (e.g., such as Set5, Set14,

and BSD100) with rich texture information, while obtain-

ing a little worse results for datasets(e.g., Urban100 and

Manga109) with rich repeated edge information. It is well

known that textures have more complex statistical proper-

ties and are high-order patterns, while edges are first-order

patterns that can be extracted by a step operator. Therefore,

our EACRN based on cross residual learning to excavate

second-order feature statistics works better on images with

more high-order information (such as texture).

For the purpose of proving the subjective effect of our

proposed model, we also show the scaling results for the dif-

ferent methods for visual comparisons on the Urban100 and
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Set14 data sets for 4 × SR in Figure 3. From this, we can

see that many compared SR models do not accurately re-

construct the texture and suffer from severe fuzzy artifacts.

In contrast, our EACRN gets clearer results and can recover

more high-frequency details such as high contrast and sharp

edges. Taking ”img 005” as an example, most compari-

son methods output severe fuzzy artifacts. The traditional

algorithms bicubic, SRCNN even lost the main structure.

Our EACRN can restore the main outline and restore more

image detail. Compared with the ground truth, EACRN

achieves more faithful results, reconstructs more image de-

tails and EACRN has sharper results. These observations

verify the superiority of EACRN with more powerful repre-

sentational ability. Although it is difficult to recovery high-

frequency information due to limited information available

in low-resolution image input (scaling factor 4 and 8), our

EACRN can also make the best use of the limited low-

quality information through cross skip connections for more

powerful feature expressions so that produce finer results.

5. Conclusions

In this paper, we introduce a new attention mechanism,

namely the expectation-maximization attention (EMA),

and present a deep expectation-maximization attention

expectation-maximization attention cross residual network

(EACRN) to tackle the image SR problem. The experi-

ments have demonstrated EMA is robust to the variance

of input. In particular, the cross residual in cross residual

architecture allows EACRN to capture structural informa-

tion by embedding cross skip connection operations into

the network. At the same time, CRG allows a large num-

ber of low-frequency information in the LR image to be by-

passed by the cross skip connection. For feature correlation,

we propose CRB to learn the interdependence of features

to achieve a more discriminative representation. Extensive

experiments on SR through the BI model demonstrate our

EACRN obtain superior performance against some state-of-

the-art models in terms of quantitative and visual results.
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