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Abstract

The depth of deep convolution neural network and self-
attention mechanism is widely used for the single image
super-resolution (SISR) task. Nevertheless, we observed
that the deeper network was more hard to train and the self-
attention mechanism is computationally consuming. Resid-
ual learning has been widely recognized as a common ap-
proach to improve network performance for deep learn-
ing, but most existing methods did not make the best of
the learning ability of deep CNN, thus hindering the ability
of representative CNN. In order to tackle these problems,
we introduce a deep learning network namely expectation-
maximization attention cross residual network (EACRN) to
tackle the super-resolution task. Particularly, we propose
a cross residual in cross residual (CRICR) structure that
makes up very deep networks consisting of multiple cross
residual groups (CRG) with global residual skip connec-
tions. Every cross residual group (CRG) consists of some
cross residual blocks with cross short skip connections. At
the same time, CRICR allows network focused on capturing
high-frequency patterns by connecting rich low-frequency
patterns to be bypassed and several short skip connections.
In addition, we introduce various convolution kernel size so
that adaptive capture the image pattern in different scales,
which make these features get the more efficacious image
information through interacting with each other. The intro-
duced Expectation-Maximization Attention (EMA) module
is robust to the variance of input and is also friendly in
memory and computation. Extensive experiments demon-
strate our EACRN obtains superior performance and visual
effect relative to the most advanced algorithm.

1. Introduction

super-resolution is a basic task in computer vision, es-
pecially single-image super-resolution (SISR), which has
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attracted a lot of interest from researchers. The target of
SISR is that produce clear and high-resolution (HR) im-
ages, given blurry and low-resolution (LR) images. How-
ever, SISR is an ill-posed problem because converting low-
resolution images to super-resolution images exists multiple
solutions. To tackle this inverse problem, numerous learn-
ing method based on big data is widely applied to the learn-
ing the mapping from LR images to HR images.

Recently, deep neural networks (DNN) [25, 24, 23, 8]
have shown this way can improve significant performance
for single image resolution problems. Dong et al. proposed
SRCNN [6] in 2014, which is first use CNN to SISR is-
sues. SRCNN is an efficient network that can learn an end
to end mapping from LR to HR images and achieve satisfac-
tory performance. Since then, many studies have proposed a
large number of CNN models [14, 7, 26, 15, 17, 27, 21, 39]
focused on learning the mapping from low-quality images
and high-quality images and finding the locally optimal so-
lution. EDSR [21] is the champion in the NTIRE2017 Chal-
lenge. It is based on SRResNet [ 18] and enhances the repre-
sentational capacity of neural networks by not using batch
normalization layer and construct wider and deeper network
structures. The great improvements on EDSR have demon-
strated the depth of neural network is significant for sin-
gle image super-resolution problems. These models have
reached excellent performance in the SISR problem for
SSIM [33] and PSNR. However, to the best of our knowl-
edge, these models tend to simply stack residual blocks to
build more complicated connections and network architec-
ture, which means that the training model needs more time,
tricks, and resources. Whether the deeper network makes
further contributions to SISR and how to build a deeper net-
work remains to be explored.

In order to seek some problems in traditional models, we
reproduce some typical models such as SRCNN [6], EDSR
[21], SRResNet [18], MSRN [19], RCAN [39], and SAN
[5]. In the reproduce experiments, we found that most tra-
ditional algorithms exist some problems. Firstly, the change
of the subtle network architecture are sensitive to most mod-



els and some models are hard to obtain the performance
of the paper since without network training techniques and
configuration, such as data normalization, gradient trunca-
tion, and weight initialization, which means the improve-
ment of performance not always due to the changes in the
model, but rather some unknown training techniques. Sec-
ondly, most methods improve the performance of the net-
work by blindly increase the depth of the network but ig-
nore making full use of the high-frequency information and
original low-resolution image of features. With the network
deeper, the computation of the network is larger and gradi-
ent information gradually disappears since the transmission
process. It is critical to make the best use of this high-
frequency information for reconstructing super-resolution
images. Most existing SR models simply stacking blocks
and add residual skip connections to improve performance
for reconstructing more clear images. super-resolution task
is an ill-pose problem. It should be noted that simple lin-
ear mapping does not work very well. In order to capture
long-range dependencies, several works develop the non-
local block [32]. However, the operation of the non-local
block needs to generate a large attention map, which will
lead to high computation complexity and occupies a huge
number of GPU memory. Although most SR models stack-
ing more and more blocks to enhance the nonlinear map-
ping for higher performance, this not only made the net-
work cumbersome but also may not achieve the desired ef-
fect. How to build a complex network and make full use
of the learning ability of the network is important for the
model to reconstruct super-resolution images.

To practically resolve the above problems, we rethink
the attention mechanism from the view of the expectation-
maximization (EM) algorithm [20] and introduce a novel
deep learning namely expectation-maximization attention
cross residual network (EACRN) to tackle single image
super-resolution problem. Besides, we proposed a compli-
cated base module namely multi-scale cross residual block
to construct the building architecture for EACRN. In order
to stable the training of the deep network, we proposed a
standard deep learning architecture namely cross residual in
cross residual (CRICR) structure, the cross residual group
(CRG), and global residual skip connection (RSC) build ba-
sic architecture to guide residual learning and gradient in-
formation flow. For each CRG module, stacking multiple
cross residual blocks (CRB) with local cross residual skip
connection (LCRSC) is a nuclear structure. Global and lo-
cal cross-residual skip connections, as well as shortcuts in
the cross-residual block (CRB), are used to obtain rich low-
frequency information through these identification-based
skip connections, thus simplifying the flow of information.

2. Related Work

We roughly divided the SISR task into three main stages.
Like linear and bicubic interpolation, these early methods
based on sampling theory run very fast, but do not recovery
textures and details. The goal of the improved work is to
create complex mappings for converting low-quality images
to high-quality images. These algorithms rely on embedded
techniques from neighbors to sparse coding.

2.1. Traditional Method

Single image super-resolution is an unsteadiness inverse
problem since super-resolution images can have multiple
solutions for high-resolution images. Some traditional
super-resolution methods attempt to constrain the solution
space with prior information such as neighbor embedding
[4], [3], anchored neighborhood regression [30] and sparse
coding [36], [35], [34]. In the assumption of [18], low-
dimensional non-linear manifolds have a similar local ge-
ometry between low-resolution images and high-resolution
image pattern space. When the sample is large enough,
the weight calculated by the LR feature domain is used
to reconstruct the patch of the HR feature domain to the
weighted average of local neighbors. With the assumption
of the low-resolution image patches shares the same sparse
representation with corresponding high-resolution image
patches counterparts, Yang et al. [36], [35] proposed an ef-
ficient method to resolve the super-resolution task. The im-
proved work such as [10], [9] uses the prior self-similarity
that clear image patches in natural images. Huang et al. [12]
proposed the SelfExSR. This method makes use of geo-
metric changes to expand the internal image patches search
space. Although SelfExSR does not require a training pro-
cess, is time-consuming because involves the internal image
patches search process.

2.2. Deep Neural Network for Image Super-
Resolution

Dong et al. [6] did the pioneering work that proposed
SRCNN for SISR and obtained outstanding performance
against traditional methods. SRCNN has been further en-
hanced in VDSR [14] and DRCN [15]. These algorithms
first interpolate low-resolution image input into the desired
size, which greatly augments the computational effort and
inevitably loses some detail. Extracting features from low-
quality images and increasing resolution at the end of the
network is a better method for the deep neural network. In
order to speed up the training and testing speed of SRCNN,
a faster network structure FSRCNN [7] is proposed. Ledig
et al. [18] proposed ResNet with a generative adversarial
network (GAN) and perceptual loss [13] for realistic SR
[11]. Nevertheless, most of these algorithms have limited
network learning ability, which has limited the representa-
tion ability of the network.



2.3. Feature Extraction Block for Image Super-
Resolution

Nowadays, many researchers concentrate on feature ex-
traction blocks. Kim et al. proposed a residual skip connec-
tion structure in 2016 to speed up the training of networks so
that they obtain better results. After that, Huang et al. pro-
posed a dense block. The residual blocks and dense blocks
use a fix-sized convolution kernel, and the dense blocks
have dense skip connections so which increases the com-
puting complexity. In 2018 Li et al. [19] proposed MSRN
to capture different scale image features, which introduces
different convolution kernels sizes to adaptively extract fea-
tures in different scales. Although MSRN uses multi-scale
convolutional kernels to capture representations, it fails to
make full use of the learning ability of the network. To ad-
dress these shortcomings, we come up with a cross residual
block.

2.4. Attention Model for Image Super-Resolution

Attention is important for various tasks such as machine
translation, visual question answering, and video classifica-
tion. The self-attention methods [31] calculate the context
coding at one position by a weighted summation of embed-
dings at all positions in sentences. Zhang et al. introduced
the residual channel attention in RCAN [39], but they did
not employ the self-attention method. Dai et al. introduced
the non-local block [32] in SAN [5] to capture the long-
range dependencies, but it’s expensive on the GPU.

Our network is motivated by the success of attention in
the above works. We rethink the attention mechanism from
the view of the EM algorithm and compute the attention
map in an iterative manner as the EM algorithm. At the
same time, a cross residual skip connection is applied be-
tween different batches. In addition, we introduced local
residual skip connection to ease training difficulty, which
combined with multi-scale extractor so the features pattern
can be reused and shared with each other. A more detailed
description will be given in section 3.1.

3. Proposed Method

In this section, we describe in detail each main compo-
nent of our come up with EACRN for SISR. As seen in
Fig.1, EACRN is made up of four parts: a shallow feature
extraction module, several cross residual groups (CRG), an
upsampling layer, and a reconstruction layer.

3.1. Shallow Feature Extraction

In SISR problem, the HR image I r degenerates an LR
image I r by downsampling and blurring. the degraded LR
image I i can be represented as

ILRZDB(ILR)-‘FTL (1)

where D and B represent the downsampling and blurring
operations, respectively, and n denote the additive noise in
the degradation operations. Let us denote the I, r and IR
as the observed I input and the estimated [ p output of
our EACRN.

We use a 3 x 3 convolution layer to capture the shallow
pattern from the original low-quality image in the feature
extraction module. The shallow feature x; through the first
convolutional layer can be represented as

Fo=Hi(ILRr) ()

where H1(-) denotes the first feature extraction operation.
x1 is served as the input of the following state and used for
further feature extraction.

3.2. Cross Residual in Cross Residual Structure

Now we introduce our come up with CRICR architecture
in Fig. 1. The CRICR architecture includes G cross resid-
ual groups (CRG) with long skip connection (LSC). Every
CRG consists of B cross residual blocks (RCAB) with cross
short skip connection (CSSC). Our cross residual in cross
residual structure can train the deeper model to capture the
high-frequency pattern and learn the complex mapping be-
tween blurry low-quality images and clear high-quality im-
ages for the single image super-resolution task with high
performance.

Stacking several blocks and LSC has been demonstrated
to construct the deeper network in [21] In computer vision
recognition, Stacking multiple residual blocks to construct
a very deep network suffer from hardly improve perfor-
mance again and training difficulty. Inspired by the previ-
ous method EDSR [21], we introduce cross residual group
(CRQG) as a foundational structure for models. We can for-
mulate a CRG in the g-th group as

Fg:Hg(Fgfl):Hg(Hgfl("'Hl(FO)"'))) (3)

where H, represents the operation of g-th CRG. F;_; and
F, denote the input and output for g-th CRG. We find sim-
ply stacking multiple CRGs would not always to obtain bet-
ter performance. In order to fix this problem, we introduce
the long skip connection in CRICR for stabilizing the flow
of gradient information and ease the training. LSC can im-
prove performance with cross residual learning via

Fpr = Fy+WrscFa = Fo+WirscHy(Hg—1(--- Hi(Fp) - - -

“)

where W g¢ is the weight matrix set to the convolution

layer at the tail of CRICR. For simplicity, we omit the bias

term. LSC can not only stabilize the training and slow down

the flow of gradient information across CRGs but only make
CRICR capture more residual information.
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Figure 1. Network architecture of our expectation-maximization attention cross residual network (EACRN)

Since the LR inputs and functions contain a wealth of
information, and the SR network aims to reconstruct more
useful information. Identity-based skip connections can by-
pass a large number of low-frequency information. In order
to further towards residual learning, we stacked four cross
residual blocks in each CRG. The four cross residual blocks
(CRBs) in the g-th RG may be represented as

Fya=Hga(Fy1) (5)
Fyo=Hya(Fy 1) (6)
Fys=Hys(Fya) (7
Fya=Hya(Fy2) ®)

Fg = Wconv([Fg,l + Fg,4a Fg,2 + Fg,BD (9)

where F;_, and F|; ; are the input of the g-/-th CRG and
output of the b-th CRB in g-th CRG.[-] means the concat
feature fusion operation, and the W,,,,, denote the weight
of convolution layer.

3.3. Cross Residual Block

In order to enhance non-linear mapping for super-
resolution reconstruction, we propose cross residual block
(CRB). We will elaborate on this structure. As shown in
Fig.2, in the head of our CRB we set two branches oper-
ated by two 5 convolution layers to largely extract feature,
and then we use a multi-scale convolution layer to learn
adaptively extracting features. Therefore, the gradient flow
information between two bypasses allows detecting image
patterns at different scales. We also adopt cross residual
learning for our CRB. Since single image super-resolution
is an ill-posed problem existing multiple solutions, cross
residual skip connection not only enhance the non-linear
mapping but also constrains linear condition.

3.4. Expectation-Maximization Attention Module

In order to capture long-range dependencies, we propose
an expectation-maximization attention module (EMA). We

will elaborate on this structure. As shown in Fig.3, Our pro-
posed EMA consists of three operations, including respon-
sibility estimation (Ag), likelihood maximization (Ajy),
and data re-estimation (Ag). Briefly, given the input X €
RN*C and the initial bases ue RX*¢ Ap estimates the la-
tent variables Z € RV * X 5o it functions as the E step in the
EM algorithm. A, uses the estimation to update the bases
u, which works as the M step. Then, with the converged u
and Z, Ap reconstructs the original X as Y and outputs it.

3.5. Loss Function

According to [21], it may not be possible to use L2 loss
restoring sharp edges since L2 loss will result in excessive
smoothing. For image SR, the L1 loss function provides
better convergence than the L2 loss function. We found
that using the L1 training network obtains better perfor-
mance in PSNR and visually. The quality is lost compared
to L1. So we use L1 loss instead of L2. Given the training
data sets {Ir, Izr}", where the N denotes the number
of the datasets, ground truth HR patch Iy, and the low-
resolution LR patch Iy g, the loss function with the param-
eter set © is

N
1
L(©) = ~ E [ Tar — Isgr| (10)
i—1

4. Experiments
4.1. Datasets

In this work, we use DIV2K datasets as training datasets
and choose 800 training images from them. [29]. Data
augmentation performs on training images for our models,
which are randomly rotated and flipped horizontally. SET5
[2], SET14 [37], BSDS100 [1], and URBAN100 [12] were
chosen as benchmark datasets for testing and we compare
our models with several advanced methods: . The PSNR
and the SSIM as performance indicators for all models.



RS

Cn-1

\

— 5 =

N Cn

RelU

iz

e
| R |

Figure 2. The structure of cross residual block (CRB).

B A

Base U

Attention Map

Figure 3. The structure of expectation-maximization module (EMA).

4.2. Implementation Details

In our EACRN, we set the CRG number as 10. In the
CRICR structure, each CRB and convolutional layer have
64 filters with the stride of 1, in addition to the upsampling
layer and the reconstruction layer. The upsampling layer
in our advanced module is sub-pixel convolution [26]. The
reconstruction layer is a three-channel of stride 1 of con-
volution layer to reconstruct the HR image. As for some
convolution layers, we use the ReLU function [22] as the
activation function.

For the training phase, the original low-resolution im-
ages are RGB color space and all channel is processed.
Low-resolution image patches are obtained through down-
sampling the high-resolution image patches adopting Mat-
lab function bicubic interpolation. We randomly sample
16 high-resolution image patches with the size of 192 x
192 without overlapping in each training batch. In order to
demonstrate our method can easily insert any deep learning
model as a basic module and improve performance, we did
not use the complex weight initial method. We implement
EACRN to optimize the models using Adam [ 1 6] method as
an optimizer with the PyTorch package. We set the momen-
tum parameter as 0.9 and initialize the learning rate as le-4

Table 1. Effects of different modules with cross residual learning.
We report the best PSNR and SSIM values on Set5 images.

Method Cross residual learning

CRG v v
CRB v v
EMA v v
PSNR | 31.23 | 3145 | 31.87 | 32.16 | 32.23

and decreased by half for every 200 epochs. The training
of a single EACRN model can roughly take 7 days with a
GTX 1080Ti GPU.

4.3. Ablation Study

In this subsection, we analyze the effects of the cross
residual learning in our CRG and CRB. We now perform
analyses on the proposed cross residual learning for CRG
and CRB in detalil, i.e., the cross residual group (CRG) with
cross residual learning and cross residual block with cross
residual learning and the no cross-learning from the above
two components. We design five networks that set the same
numbers of feed-forward features in CRB and the same
numbers of CRG to build the standard model. The model



Table 2. Quantitative comparisons of state-of-the-art methods.

Method | Scale Set5 Setl4 BSD100 Urban100 Mangal09
Bicubic 2 33.66/.9299 | 30.24/.8688 SSIM 26.88/.8403 | 30.80/.9339
SRCNN 2 36.66/.9542 | 32.45/.9067 | 31.36/.8879 | 29.50/.8946 | 35.60/.9663
VDSR 2 37.53/.9590 | 33.05/.9130 | 31.90/.8960 | 30.77/.9140 | 37.22/.9750
LapSRN 2 37.52/.9591 | 33.08/.9130 | 31.08/.8950 | 30.41/.9101 | 37.27/.9740
MemNet 2 37.78/.9597 | 33.28/.9142 | 32.08/.8978 | 31.31/.9195 | 37.72/.9740
EDSR 2 38.11/.9602 | 33.92/.9195 | 32.32/.9013 | 32.93/.9351 | 39.10/.9773
SRMD 2 37.79/.9601 | 33.32/.9159 | 32.05/.8985 | 31.33/.9204 | 38.07/.9761
DBPN 2 38.09/.9600 | 33.85/.9190 | 32.27/.9000 | 32.55/.9324 | 38.89/.9775
RDN 2 38.24/.9614 | 34.01/.9212 | 32.34/.9017 | 32.89/.9353 | 39.18/.9780
RCAN 2 38.27/.9614 | 34.11/.9216 | 32.41/.9026 | 33.34/.9384 | 39.43/.9786
SAN 2 38.31/.9620 | 34.07/.9213 | 32.42/.9028 | 33.10/.9370 | 39.32/.9792
EACRN 2 38.42/.9632 | 34.17/.9233 | 32.47/.9038 | 33.12/.9350 | 39.42/.9893
Bicubic 3 39.32/.9792 | 27.55/.7742 | 27.21/.7385 | 24.46/.7349 | 26.95/.8556
SRCNN 3 32.75/.9090 | 29.30/.8215 | 28.41/.7863 | 26.24/.7989 | 30.48/.9117
VDSR 3 33.67/.9210 | 29.78/.8320 | 28.83/.7990 | 27.14/.8290 | 32.01/.9340
LapSRN 3 33.82/.9227 | 29.87/.8320 | 28.82/.7980 | 27.07/.8280 | 32.21/.9350
MemNet 3 34.09/.9248 | 30.01/.8350 | 28.96/.8001 | 27.56/.8376 | 32.51/.9369
EDSR 3 34.65/.9280 | 3.52/.8462 | 29.25/.8093 | 28.80/.8653 | 34.17/.9476
SRMD 3 34.12/.9254 | 30.04/.8382 | 28.97/.8025 | 27.57/.8398 | 33.00/.9403
RDN 3 34.71/.9296 | 30.57/.8468 | 29.26/.8093 | 28.80/.8653 | 34.13/.9484
RCAN 3 34.74/.9299 | 30.64/.8481 | 29.32/.8111 | 29.08/.8702 | 34.43/.9498
SAN 3 34.75/.9300 | 30.59/.8476 | 29.33/.8112 | 28.93/.8671 | 34.30/.9494
EACRN 3 34.85/.9321 | 30.63/.8576 | 29.54/.8121 | 28.99/.8771 | 34.41/.9497
Bicubic 4 28.42/.8104 | 26.00/.7027 | 25.96/.6675 | 23.14/.6577 | 24.89/.7866
SRCNN 4 30.48/.8628 | 27.50/.7513 | 26.90/.7101 | 24.52/.7221 | 27.58/.8555
VDSR 4 31.35/.8830 | 28.02/.7680 | 27.29/.0726 | 25.18/.7540 | 28.83/.8870
LapSRN 4 31.54/.8850 | 28.19/.7720 | 27.32/.7270 | 25.21/.7560 | 29.09/.8900
MemNet 4 31.74/.8893 | 28.26/.7723 | 27.40/.7281 | 25.50/.7630 | 29.42/.8942
EDSR 4 32.46/.8968 | 28.80/.7876 | 27.71/.7420 | 26.64/.8033 | 31.02/.9148
SRMD 4 31.96/.8925 | 28.35/.7787 | 27.49/.7337 | 25.68/.7731 | 30.09/.9024
DBPN 4 32.47/.8980 | 28.82/.7860 | 27.72/.7400 | 26.38/.7946 | 30.91/.9137
RDN 4 32.47/.8990 | 28.81/.7871 | 27.72/.7419 | 26.61/.8028 | 31.00/.9151
RCAN 4 32.62/.9001 | 28.86/.7888 | 27.76/.7435 | 26.82/.8087 | 31.21/.9172
SAN 4 32.64/.9003 | 28.92/.7888 | 27.78/.7436 | 26.79/.8068 | 31.18/.9169
EACRN 4 32.67/.90021 | 28.95/.7894 | 27.81/.7456 | 26.87/.8087 | 31.23/.9188

M BASE is obtained by removing CRG , CRB, and EMA
that is based on the basic EACRN, which be made up of

the standard framework. The performance (PSNR = 31.23
dB) of M_BASE is bad that is caused by the hard of train-
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Figure 4. Visual comparison for 4x SR with BI model on benchmark dataset.
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Table 3. Specifications comparison with RCAN.

Algorithm  Feature extraction Filters Parameters Updates
RCAN 10 blocks 64 16M 4 x10°
EACRN 10 blocks 64 15.4M 1 x103

ing and inefficient flow of gradient information. It demon-
strates that stacking several basic convolution layers does
not obtain better performance. Then, we add cross resid-
ual learning to the CRG and CRB of M_BASE to produce
M_CRG and M_CRB. The results demonstrate each struc-
ture can improve the performance of M_BASE. The main
reason is largely due to that cross skip connection allows
more abundant low-frequency information from the LR im-
ages to be bypassed. The combination of CRB, CRG, and
EMA will improve performance than it. When we both use
cross residual learning in CRG, CRB, and EMA, the perfor-
mance can be further improved.

4.4. Comparisons with State-of-the-art Methods

We choose many state-of-the-art SR models to compare
with our model, including Bicubic, SRCNN [6], VDSR
[14], LapSRN [17], MemNet[28], EDSR [21], SRMD [38],
DBPN[13], RDN[40], RCAN[39], and SAN[5]. All the
object quantitative results for different scale factors are re-

ported in Table 2. Compared with other algorithms, our
EACRN performs better results on all the datasets on var-
ious scaling factors. This is mainly because both of them
cross residual learning to learn feature interdependencies
so which prompts the network to focus on more informa-
tive features. Compared with MSRN, our EACRN ob-
tains better results for datasets (e.g., such as Set5, Setl4,
and BSD100) with rich texture information, while obtain-
ing a little worse results for datasets(e.g., Urban100 and
Mangal09) with rich repeated edge information. It is well
known that textures have more complex statistical proper-
ties and are high-order patterns, while edges are first-order
patterns that can be extracted by a step operator. Therefore,
our EACRN based on cross residual learning to excavate
second-order feature statistics works better on images with
more high-order information (such as texture).

For the purpose of proving the subjective effect of our
proposed model, we also show the scaling results for the dif-
ferent methods for visual comparisons on the Urban100 and



Set14 data sets for 4 x SR in Figure 3. From this, we can
see that many compared SR models do not accurately re-
construct the texture and suffer from severe fuzzy artifacts.
In contrast, our EACRN gets clearer results and can recover
more high-frequency details such as high contrast and sharp
edges. Taking ”img_005" as an example, most compari-
son methods output severe fuzzy artifacts. The traditional
algorithms bicubic, SRCNN even lost the main structure.
Our EACRN can restore the main outline and restore more
image detail. Compared with the ground truth, EACRN
achieves more faithful results, reconstructs more image de-
tails and EACRN has sharper results. These observations
verify the superiority of EACRN with more powerful repre-
sentational ability. Although it is difficult to recovery high-
frequency information due to limited information available
in low-resolution image input (scaling factor 4 and 8), our
EACRN can also make the best use of the limited low-
quality information through cross skip connections for more
powerful feature expressions so that produce finer results.

5. Conclusions

In this paper, we introduce a new attention mechanism,
namely the expectation-maximization attention (EMA),
and present a deep expectation-maximization attention
expectation-maximization attention cross residual network
(EACRN) to tackle the image SR problem. The experi-
ments have demonstrated EMA is robust to the variance
of input. In particular, the cross residual in cross residual
architecture allows EACRN to capture structural informa-
tion by embedding cross skip connection operations into
the network. At the same time, CRG allows a large num-
ber of low-frequency information in the LR image to be by-
passed by the cross skip connection. For feature correlation,
we propose CRB to learn the interdependence of features
to achieve a more discriminative representation. Extensive
experiments on SR through the BI model demonstrate our
EACRN obtain superior performance against some state-of-
the-art models in terms of quantitative and visual results.
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