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Abstract

In this paper, a image processing method called VRHI is
developed to enhance single hazy images. More specifical-
ly, inspired by visual characteristics of haze, a haze densi-
ty estimation model is designed to predict the haze distri-
bution. According to this recognized haze distribution, a
quadtree based recursive strategy is subsequently proposed
to locate the atmospheric light. Finally, by combining a
global-wise adjusting mechanism and atmospheric scatter-
ing model, the haze cover in an image can be easily exclud-
ed using the estimated parameters. It is worth mentioning
that VRHI is based on whole image to search the unknown
parameters, thereby avoiding some unfavorable phenome-
na, e.g., over-enhancement and color distortion. Extensive
experiments on real-world images and well-known dehaz-
ing datasets show that VRHI outperforms state-of-the-art
techniques in robustness and effectiveness.

1. Introduction

Due to particles suspended in the air, haze is a common
atmospheric phenomenon in daily life. In such condition,
the light of the objects would be scattered and absorbed
by these particles, which makes the captured images suffer
from low visibility and poor contrast. Unfortunately, such
low-quality images can not provide the enough information
many vision applications to perform subsequent high-level
processing [19, 43]. Therefore, a simple and effective image
haze removal is becoming an increasingly desirable tech-
nique for both computational photography and computer vi-
sion systems.

Recently, significant progress has been achieved in im-
age dehazing field. Numerous emerging image haze re-
moval techniques can be mainly classified into two groups:
prior-wise methods and learning-wise ones.

Prior-wise methods: The core idea of this type of
method is to achieve haze removal by imposing some po-
tential priors on atmospheric scattering model (ASM). For
example, Tan [48] realized haze removal by compensating
the contrast loss for hazy images. In [15], dark channel
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prior (DCP) based dehazing approach was proposed by He
et al., which reveals at least one channel in natural haze-
free patches exists some pixels whose intensities are simi-
lar to zero. Using a color attenuation prior, a linear model
on the scene depth was designed by Zhu et al. to estimate
the transmission of hazy images in [56]. Likewise, based
on the fact that a haze-free image is composed of repeat-
ed patches [ 1] or approximated colors [2], [3] , some non-
local recovery strategies were developed to obtain a promis-
ing recovery performance. Besides, some other approaches
also utilized the prior knowledge to achieve the purpose of
haze removal.

Learning-wise methods: With the sharp development
of machine learning, data-driven manner has attracted sig-
nificant attention and great success on haze removal has
been reached over the past few years. Their core idea is to
build the models or networks by learning the latent features
from some well-known datasets and then utilize the trained
models to remove the haze cover in an image. Depend-
ing on the difference of using deep network, learning-wise
methods can be further classified into convolutional neural
network (CNN) based and generative adversarial network
(GAN) based approaches.

CNN-based Approach: Benefitting from the capability
of convolutional neural network (CNN) to extract the fea-
tures, several CNN-based dehazing methods [6, 26, 47, 32,

, 28,49, 54, 40, 12, 45, 8, 44] have been proposed re-
cently. For example, a CNN-based system used to estimate
transmission map was designed by Cai et al. [6]. Ren et
al. [41] created a multi-scale network by learning effec-
tive features to achieve a more accurate transmission map.
In [26], all-in-one dehazing network (AOD-Net) was pro-
posed to directly obtain the dehazed image from a hazy im-
age via a light-weight CNN. A ranking CNN network was
developed in [47] by making an extension of the structure
of CNN to make sure that the statistical properties of hazy
images can be captured simultaneously. According to some
potential priors, Liu et al. [32] established an iteration al-
gorithm using deep CNNs. To obtain a better performance,
a trainable CNN named GridDehazeNet [3 | ] was proposed,
which is composed of preprocessing, backbone, and post-



Figure 1. Haze map calculated by Eq. (4) on different hazy images.

processing modules.

GAN-based Approach: In addition to CNN, generative
adversarial network (GAN) has also been successfully em-
ployed in image dehazing [39, 13, 33, 29, 11, 10, 37, 35,
46, 18, 4, 55, 29]. Typically, some GAN-based architec-
tures [39, 13, 33] have been directly constructed to obtain
image-to-image mapping. RI-GAN [10] proposed by Dud-
hane et al. extended GAN to obtain an accurate transmis-
sion estimation. In [46], DHGAN, which is able to capture
more global features from the training datasets, was created
to improve image dehazing result. In [37], a heterogeneous
GAN and a conditional GAN was proposed to restore hazy
images and enhance textual details.

Different from current available algorithms, we propose
a hazy image restoration technique called VRHI to simulta-
neously dehaze and diminish the negative effects of adverse
atmospheric conditions. It mainly contains the following
three contributions:

o We devise a haze distribution estimation model demon-
strated as an exponential form, where several dimension-
s are considered to make a more accurate estimation.
Through series of experiments, the obtained results were
verified to align with human intuition.

e We employ a recursive quadtree strategy to locate the
atmospheric light. To achieve a more reliable result, a nor-
malization post-process is utilized to optimize the rough at-
mospheric light.

o Relying on the designed haze density model, the initial
transmission is derived on a pixel-by-pixel basis and further
optimized via a global-wise strategy.

2. Background

The dehazing technique proposed in this work is al-
so based on the well-known atmospheric scattering model
(ASM). Formally, this model can be expressed as:

I(z,y) = A-p(z,y) - t(z,y) + A- (1= t(z,y), (1)

where I indicates the input hazy image, A is the global
atmospheric light that can be used to restore the color tone
as well as adjusting the brightness of scene radiance, p is the
expected restored image, and ¢ is the medium transmission.
‘When the atmospheric particle distribution is homogeneous,
the transmission ¢ can be detailed by

t(a,y) = e Pl )

where d is the distance between the target scene and the
camera, (3 is the scattering coefficient. As can be concluded
from Eq. ( 1), haze removal of using ASM is naturally an
ill-posed problem due to two unknown parameters in ASM,
i.e., atmospheric light A and transmission ¢.

3. Proposed VRHI

In this section, a simple but effective ASM-based image
processing technique named VRHI is developed to enhance
single hazy images. It can simultaneously dehaze and di-
minish the negative effects of adverse atmospheric condi-
tions. Only three modules are included in VRHI, which are
hazy density model, atmospheric light location, and global
transmission estimation.

3.1. Haze Density Model

In general, the haze density is positively correlated with
the minimum channel and the difference between minimum
and maximum channel [38]. After repeating experiments,
we observe that exponential function can well grasp this re-
lationship as:

D(a:,y) _ Imin(l'a y) . elmaz(w,y)—lmm(wyy), 3)

where D is the haze distribution of a hazy image,
Imin(xv y) = mince{r,g,b}lc(xa y)’ and Imam(xv y) =
Mazce gy 1°(z,y). Note that another fact, i.e., haze usu-
ally makes a pixel brighter, is also needed to be considered
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Figure 2. Atmospheric light estimation process.

in Eq. ( 3). Therefore, we make a more accurate expression
for haze density D, i.e.,

D(l', y) = Inin ('r’ y) . elm,aw (zyy)_I'mnin(z-,y)""l_(wwy)’ (4)

where I(z,y) = Iiw(w’y)”y(g’y)ﬂb(m’y). Several examples

of the calculated haze density map are shown in Fig. 1.
It can be illustrated from this figure that the obtained haze
density maps are very consistent with the objective laws of
real-world.

3.2. Atmospheric Light Location

Relying on the previously estimated distribution, a re-
cursive quad-tree atmospheric light estimation strategy is
provided. Unlike the existing quad-tree location approaches
[36], our strategy is to adaptively select a pixel point instead
of fixing center of an image as the split center. Formally,
based on the fact that the atmospheric light is more likely to
be in upper part of an image, in each splitting operation, the
location of quarter point is selected by

1 y—1 1

1
Loc,, Loc,) = (=-M,+—=-N,, —— - M,+—-N,), (5

where v = 3 is centrifugation parameter, M and N in-
dicates the top left vertex and the bottom right vertex of
the current partitioned region respectively, whose coordi-
nates are (M, M,) and (N, Ny), (Loc,, Loc,) is the co-
ordinate of the quarter point. The first partitioned region
is the whole initial image, whose (M, M) is (0,0) and
(N, Ny) is (w, h), where w and h is the width and height
of an image. The location of the quarter point will deter-
mine the boundaries of four new partitioned regions. The
average value of the final partitioned region in each channel
will be regarded as A¢

rough*

This strategy is feasible for most hazy images, unfortu-
nately, it will lose efficacy in addressing images with slight
color distortion, since the A,y 4, obtained from a local re-
gion may fail to match the whole image. To this end, we
calculate the average pixel value of 5%, 10%, 20%, 40%
brightest pixels (i.e., Ago, A19%, A%, Asgy) and use
them to balance

A A A A A
A= rough + Asy + i0%+ 20% T 40%7 )

9

where A ¢ is the final estimated result atmospheric light. For
clarity, the whole process of atmospheric light estimation is
illustrated as Fig. 2.

3.3. Global Transmission Estimation

Inspired by [38], we assume that there is an inverse cor-
relation between haze density and transmission map. Ac-
cordingly, the transmission ¢ is modeled as:

t((L’,y) :1—f'D((L‘,’y), N

where f is a fitting coefficient used to preserve a certain
amount of haze in recovery result. Note that the haze in the
upper part of hazy input is bound to be denser than that in
the lower part, thus we introduce a coefficient ) into the Eq.
(7) to revise the expression:

y_ ¥

2

where h is the height of input image. Substituting Eqs. ( 7)
( 8) and the estimated Ay into Eq. ( 1), the scene albedo
can be restored as
p(z,y) = oI, A,D,z,y)
B I¢(z,y) — A€
A= e Fr2 (F - () + 1) Dlwy))

Az, y) =e h +2-(

+1,
®
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Figure 3. Accuracy for atmospheric light

where ¢(+) is an abbreviation of Eq. (9). Note that only f is
unknown parameter in above equation, thus we can search
the f by imposing a prior on it, whose procedure can be
detailed as

[ =argmin{¥(¢(I,A,D,z,y))},

where U(-) is a function used to maximize the contrast of
an input. Once f has been determined, the dehazed result
can be easily obtained using Eq. ( 9).

(10)

4. Experiment

In this section, a series of experiments were conducted
to test the dehazing performance of VRHI. All the experi-
ments were implemented in MATLAB2020a on a PC with
an Intel(R) Core (TM) i5-8265U CPU @ 1.6GHz 8.00 GB
RAM. The hazy images used in the experiments were se-
lected from real-world or publicly available datasets.

4.1. Accuracy for Atmospheric Light

Different from other atmospheric light estimation algo-
rithms, the proposed VRHI recursively adjusts A based on
the whole image instead of obtaining A from a single pix-
el, thereby getting a more promising estimation result. To
prove it, we selected three representative images to compare
our searched atmospheric light and the results obtained by
other state-of-the-art techniques, including DCP [15], BC-
CR [34], IPR [1]. The experimental results together with
corresponding ground truth results are illustrated in Fig. 3.
It is can be observed from the results that VRHI is capable
of estimating the most accurate A compared to others.

4.2. Robustness Test

A reliable dehazing methods should has the ability to
process hazy images with different environments. There-
fore, we selected images with different haze concentration,

varying degrees of color confusion, different scene back-
grounds, and various levels of brightness disorder, to test
the robustness of VRHI, as shown in Fig. 4. It can be
found from this figure that VRHI is able to get rid of neg-
ative visual effects, e.g., color distortion and poor contrast,
and restore the details of the image fully. Moreover, the es-
timated transmission map is also verified to align with our
intuition.

4.3. Qualitative Comparison on Real-world Images

In this subsection, the five real-world images with dif-
ferent haze levels were picked up to facilitate the compari-
son between VRHI and state-of-the-art techniques, includ-
ing EPDN [39], MSBDN [9], DEFADE [7], MSCNN [41],
NLD [2]. The selected five images and the recovered im-
ages of different techniques are demonstrated in Fig. 5.

It is observed from Fig. 5(b) that EPDN can unveil the
contour of the object in the bright regions, but the dark re-
gions seem to be over-saturated. In Fig. 5(c), although MS-
BDN is able to avoid the problem of over-saturation to some
extent, haze will still be found in the recovery results, and
the entire image tends to be brighter. DEFADE is able to
identify bright areas and enhance the details of most of the
hazy samples. Unfortunately, as shown in Fig. 5(d), due
to some inherent disadvantages of multi-scale fusion, DE-
FADE may lose its utility when processing the dark areas of
the image. MSCNN is able to achieve satisfactory dehazing
performance for some mist images. However, when pro-
cessing the dense haze image in Fig. 5(e), MSCNN cannot
provide an ideal restored haze-free image. It is attributed
to the fact that the performance of learning-wise algorithms
is usually limited by the intrinsic drawbacks of artificially
synthesized images. As shown in Fig. 5(f), NLD obtains
visually satisfactory results for most given images. Unfor-
tunately, the restored image tends to become darker due to
the limitation of the used prior. Compared with these meth-
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Figure 4. Robustness test of VRHI on different hazy images. (a): Hazy Images. (b): Transmission Maps. (c):Results Enhanced by Proposed

VRHI.
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Figure 5. Qualitative comparison between the proposed VRHI and the state-of-the-art techniques on challenging real-world images. (a):
Hazy images. (b): EPDN. (c): MSBDN. (d): DEFADE. (e): MSCNN. (f): NLD. (g): VRHI.

ods, VRHI can restore details and improve image quality.
As displayed in Fig. 5(g), the images restored by VRHI
have no over-saturation, over-enhancement or halo effects,
and the recovered color remains natural and the blur areas
are enhanced clearly.

Apart from the real-world images, we also used one
of most representative synthetic datasets, namely Synthetic
Objective Testing Set (SOTS) [27], to test the performance

of our VRHI and state-of-the-art dehazing techniques. The
synthetic images and the restored results are illustrated in
Fig. 6. It can be observed in Fig. 6(b) that dehazed result-
s by EPDN is darker than the ground-truth in some cases.
The dehazed images by MSBDN is similar to the ground
truth, however, some images in Fig. 6(c) tends to be haze
residue. As demonstrated in Fig. 6(d), DEFADE can im-
prove the visual perception quality to some extent, however,
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it will supersaturate the details in dark regions. As shown
Fig. 6(e), MSCNN is able to produce the haze-free results
when dealing with some mist images, while it fails to un-
cover the details for the scenes with dense haze. From Fig.
6(f), we can observe that NLD suffers from color distortion
and lacks the ability to deal with the scenes with gray white
colors trend. In comparison, VRHI shows the best dehazing
performance, while avoiding any visually negative effects
as demonstrated in Fig. 6(g).

5. Conclusion

In this paper, a haze density model is designed to esti-
mate the haze distribution of an image. Based on this model
and atmospheric scattering model, a hazy image restoration
method called VRHI is developed. Unlike other dehazing
techniques, a novel strategy of using whole image is uti-
lized to estimate the transmission map and recursively re-
fine the atmospheric light, which enables VRHI to avoid
negative visual effects, e.g., color distortion and detail over-
enhancement. Moreover, without any refining process or
training process, high-quality restored images can be ob-
tained from the proposed VRHI. A series of experimental
results verify VRHI has the capability for robust utilization
and accurate restoration, which outperforms most state-of-
the-art techniques.

MSCNN NLD VRHI Ground Truth

(h)
Figure 6. Qualitative comparison between the proposed VRHI and the state-of-the-art techniques on challenging synthetic images. (a):
Hazy images. (b): EPDN. (c): MSBDN. (d): DEFADE. (e): MSCNN. (f): NLD. (g): VRHI. (h): Ground truth.
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