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Abstract

A major limitation to most state-of-the-art visual local-

ization methods is their ineptitude to make use of ubiquitous

signs and directions that are typically intuitive to humans.

Localization methods can greatly benefit from a system ca-

pable of reasoning about a variety of cues beyond low-level

features, such as street signs, store names, building directo-

ries, room numbers, etc.

In this work, we tackle the problem of text detection in

the wild, an essential step towards achieving text-based lo-

calization and mapping. While current state-of-the-art text

detection methods employ ad-hoc solutions with complex

multi-stage components to solve the problem, we propose a

Transformer-based architecture inherently capable of deal-

ing with multi-oriented texts in images. A central contribu-

tion to our work is the introduction of a loss function tai-

lored to the rotated text detection problem that leverages

a rotated version of a generalized intersection over union

score to properly capture the rotated text regions.

We evaluate our proposed model qualitatively and quan-

titatively on several challenging datasets namely, IC-

DAR15, ICDAR17, and MSRA-TD500, and show that it out-

performs current state-of-the-art methods in text detection

in the wild.

1. Introduction

Visual localization has played an essential role in recent

advancements of several technologies such as augmented

reality, self-driving cars and autonomous robotic naviga-

tion. However, most localization methods rely on low-level

information (corners, edges, etc.) that does not necessarily

correlate to topologically meaningful map representations

[1]. Humans on the other hand, are capable of navigating

an unexplored environment by simply following directions

from signs and texts that low level features cannot capture.

This is where text detection in the wild can play an impor-

tant role as it enables image-based localization methods to

reason about the ubiquitous navigation labels surrounding

them to navigate through unexplored environments.

However, texts can have several fonts, different colors,

can appear on various surfaces, in different locations in the

image, and with a wide range of orientations and scales

[2, 3]. For example, they can appear anywhere from build-

ing names, store fronts, street signs, to shopping mall signs,

etc. Therefore, reliable and consistent text detection is of

utmost importance.

At its core, text detection is the process of localizing a

word or a sentence in a given image. To that end, several re-

cent scene text detection methods [4–10] have utilized deep

convolutional neural networks (DCNNs) as feature extrac-

tors [11–14], and solved for text detection by casting it as

an object detection problem. Despite achieving promising

results on various challenging datasets [15–17], their per-

formance is still lacking in several key challenging scenar-

ios, including and not limited to in-plane-rotations, multi-

oriented and multi-resolution text, complex fonts, special

characters, perspective distortion, occlusions, shadows, il-

lumination artifacts, and image blurriness [3, 18]. We at-

tribute these shortcomings to the ad-hoc multi-layered ap-

proaches most of these methods have deployed in an at-

tempt to model the wide range of variation texts can have

in the wild.

As such, we propose to account for these variations

within our model, by leveraging the power of Transformer

[19], which is a recent deep learning architecture that learns

how to encode and decode data by looking not only back-

ward but also forward to extract relevant information from a

whole sequence. This new approach allows models to solve

for complex tasks, such as machine translation [19], speech

recognition [20], and recently, object detection [21, 22] and

scene text recognition [23, 24].

To the best of our knowledge, this is the first time a

Transformer is introduced for scene text detection. Unlike

the baseline Transformer-based method in [21, 22] that only

generates rectangular bounding boxes for detected objects,

and therefore, it is not designed for handling arbitrary shape

detection; we propose a new architecture that is able to de-

tect multi-oriented text. Our contributions are as follows:



1. We improve the detection performance by using the

Transformer [21] architecture, and by leveraging a dif-

ferentiable loss function that accepts text instances’ ar-

bitrary shapes.

2. We propose using a rotated text representation that can

better represent multi-oriented text regions.

3. We validate the performance of the proposed method

by conducting several quantitative and qualitative ex-

periments on challenging scenarios, and show that the

proposed method outperforms the state-of-the-art on

three public benchmark datasets, namely, ICDAR15

[16], ICDAR17 [17], and MSRA-TD500 [15].

2. Related Work

Text detection methods can be broadly categorized into

two main groups:

1. First, segmentation-based methods [7, 8, 25–27]

mainly use Mask-RCNN [14] as a backbone to pro-

duce a segmentation mask. They also consist of ad-

ditional segmentation heads alongside the detection

bounding box. Although these methods [7, 8, 25–27]

offer high-precision detection when text is horizon-

tal, they usually require multiple post-processing steps

to infer the produced segmentation mask and predict

precisely oriented bounding boxes [10]. Furthermore,

their complicated architectures usually require high in-

ference time due to the refinement of region proposal

and label generation for arbitrary oriented text predic-

tion.

2. On the other hand, region-based methods [4, 5, 9,

10, 18, 28–30] often predict candidate bounding box

directly for the target region of interest. Unlike

segmentation-based methods, region-based methods

are more straight-forward and efficient for predict-

ing the target region. However, applying the stan-

dard object detection frameworks directly for detect-

ing arbitrarily-oriented text may cause redundant back-

ground noise, and unnecessary overlap [9]. Thus, for

more accurate detection, many methods adopted ro-

tated bounding boxes approach to better represent ori-

ented text as in [4–6, 9, 10].

Particularly, EAST [4] presented a fast text detector that

makes dense predictions which are then processed using

locality-aware non-maximum suppression (NMS) to detect

multi-oriented texts in an image. Later, TextBoxes++ [5]

improved the rectangular detection architecture by using

a long convolution kernel, increasing the number of re-

gion proposals, and replacing the rectangle bounding boxes

of text with rotated boxes in order to detect arbitrarily-

oriented text. In [9], Deng et al. introduced a mechanism

called STELA for learning anchors and making the two-

stage framework of Faster-RCNN into a one-stage detec-

tor to make the final oriented text detection more efficient.

Recently, Wang et al. proposed RYOLO [10] that incorpo-

rated angle information of rotated boxes and feature maps

of different scales to extend the standard YOLO framework

for detecting rotated text. Although some of the mentioned

methods [9, 10] achieved state-of-the-art performance on

several benchmark datasets, they require a complicated ar-

chitecture with multiple stages of post-processing like NMS

and rotating anchor design.

3. Methodology

Our main goal is to address the challenges of multi-

oriented scene text detection by proposing a modified

Transformer-based architecture [21]. Transformers [19] are

attention-based deep-learning architectures that can scan

through each element of a sequence using a self-attention

module, and provide an update by aggregating informa-

tion from the whole sequence. When compared to previ-

ous deep-learning approaches, Transformers can better cap-

ture the global dependencies among the input and output se-

quences with the help of an attention mechanism [31]. Dur-

ing training, the encoder’s multi-head self-attention layer

learns how to separate individual words in the scene im-

age by performing the global computations, whereas the de-

coder learns how to attend to different characters in words

by using different learnable vectors (also referred to as ob-

ject queries). This is a very important feature since when

properly trained, the last layer of the decoder is capable of

directly predicting the targets’ location without the need for

multiple post-processing steps, as mentioned in Section 2,

which are typically required by other architectures [4, 5, 7–

10, 32].

3.1. Architecture

The overall architecture of the proposed text detection

scheme is shown in Figure 1. During the encoding phase,

the ith training color image Ii ∈ R
H0×W0×3 is first pro-

cessed to extract its features. While there are several ways

of extracting features from an image such as RCNN [33],

YOLO [13] etc., we choose a ResNet [34] as CNN back-

bone because of its parameter efficiency and its ability in

handling the vanishing gradient problem. The CNN pro-

duces a corresponding lower resolution feature map Fi ∈
R

H×W×c, where c indicates the number of channels, H =
H0/η, and W = W0/η with η being the downsampling

factor. In order to reduce the computational cost of the en-

coding stage, the number of channels within the feature map

Fi, are reduced using a 1× 1 convolutional layer, resulting

in F ′
i ∈ R

H×W×d, where d < c.
As in [19], we also make use of 2D positional encod-

ing maps P ∈ R
H×W×d, which are added to F ′

i such that
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Figure 1. Block diagram of the proposed text-detection scheme using Transformer. Unlike the framework in [21], the proposed framework

aims to represent text regions utilizing quadrilateral-based predictions instead of the classical rectangular-based predictions used in [21].

F ′′
i = F ′

i + P . The positional encoded map F ′′
i , allows

the multi-head self-attention layer to better capture the 2D

spatial information. Since, the encoder in the Transformer

only accepts a set of vectors as input, the d channels of F ′′
i

are vectorized and stacked to form one feature matrix Ei of

the form:

Ei =











ei,1
ei,2

...

ei,d











∈ R
d×HW , (1)

with the vector ei,j = Mat2Vec(F
′′

i (:, :, j)) ∈ 1 × HW ,

and Mat2Vec is a matrix to vector converter.

The standard encoder of Transformer with N = 6 layers

[19] is then used to generate the ith encoded feature matrix

Êi ∈ R
d×HW . This encoder also includes a multi-head

self-attention and FFN layers. The multi-head self-attention

mechanism in Transformer’s encoder allows the model to

handle the scale differences in text instances [22].

In the decoding phase, as in [21] the encoded feature

matrix Êi, along with a fixed set of learnable embeddings,

called object queries Q ∈ R
Nq×HW , are passed through a

Transformer decoder of M = 6 layers, where Nq denotes

the maximum number of text instance queries that can ap-

pear in each input image, and Q = [q⊤1 , . . . , q
⊤
Nq

]⊤ such that

the kth vector qk is of size 1 × HW . The decoded set of

feature vectors Q̂ ∈ R
Nq×HW is then fed into the FFN lay-

ers, which consists of a three layer perceptron with a ReLU

activation function plus a d-dimensional hidden layer, and

a linear projection layer to predict the bounding box and

class label for each query. Finally, a bipartite matching [35]

is used at the end to predict the loss between the predicted

and ground-truth text instances.

3.2. Rotated Scene Text Representation

Rectangular bounding boxes [36] (shown in Figure 2-a),

of the form b′ = [x, y, w, h]⊤, are considered the simplest

representation of a localized horizontal text region, where

(x, y) are the center point coordinates, and w and h are the

box’s width and height, respectively. Unfortunately, this

representation falls short when dealing with irregular text

regions [3] as (a) it limits the ability of a given detector to

distinguish between overlapped or nearby text regions, and

(b) it includes many irrelevant background areas that can

affect the detector’s loss function during training, and can

generate noisy regions that might hinder subsequent analy-

sis, i.e., text recognition.

To address these limitations, several works [4–6, 9, 10,

18, 28–30, 37] have used a rotated bounding box represen-

tation as shown in Figure 2-b. In this work, we also adopt a



(a) Rectangle bounding box (b) Rotated Rectangle bounding box

Figure 2. Illustrations of different techniques for representing

bounding boxes for scene text detection.

rotated rectangular-bounding boxes representation that em-

beds the box orientation angle, θ, within the box description

as:

b = [x, y, w, h, cos(θ), sin(θ)]⊤ (2)

where θ ∈ [−90◦, 90◦).

3.3. Loss Function

To allow the Transformer architecture to predict the ori-

entation of a text region, we propose a loss function tailored

to the task at hand.

Unlike [21], which uses a generic Generalized Inter-

section over Union (GIoU) with ℓ1-regression [38] (shown

in Figure 3-a), we propose a rotated-box-based GIoU loss

(shown in Figure 3-b), along with a Smooth-ln regression

based loss to properly handle rotated texts as follows.

Let b̂i and bj denote the ith predicted and jth ground

truth bounding boxes, respectively, then we define our loss

function as:

Lr
box(b̂i, bj) = λ1L

r
reg(b̂i, bj) + λ2L

r
GIoU(b̂i, bj) (3)

where λ1 and λ2 ∈ R are hyper-parameters, and Lr
reg(·)

and Lr
GIoU(·) are the rotated box based loss functions that

will be introduced in (4) and (5), respectively.

Smooth-ln based Regression Loss: It is used in comput-

ing Lr
reg(.) from (3) as it was found to be more efficient in

arbitrary scene text detection than the Smooth-ℓ1 loss [39],

and is also capable of resisting more outliers, and adjusting

the regressive steps [40]. As such, our adopted regression

loss is defined as:

Lr
reg(b̂i, bj) = (|∆bij |+ 1) ln(|∆bij |+ 1)− |∆bij | (4)

where ∆bij = b̂i− bj and | · | denotes the absolute operator.
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Figure 3. Examples of the intersection (highlighted in orange) and

convex hull (highlighted in grey) computation for horizontal boxes

(a) and (c), and for rotated boxes (b) and (d). Note that computing

the area of intersection between two rotated bounding boxes can

be more complex than the horizontal case.

Rotated Box based GIoU Loss: As it was shown in [21],

the GIoU loss has a significant impact on the detection per-

formance. In our model, the GIoU loss between the ith pre-

dicted and jth ground truth boxes, b̂i and bj respectively, is

computed as:

Lr
giou(b̂i, bj) = 1− GIoU(b̂i, bj). (5)

However, unlike [38] that uses a rectangular bounding box

representation for the GIoU loss computation, we use a ro-

tated bounding box representation that better fits text re-

gions. The GIoU for two arbitrarily rotated boxes b̂i, bj ⊆
S ∈ R

n is defined as:

GIoU(b̂i, bj) =IoU(b̂i, bj)−
Area(C\(b̂i∪bj))

Area(C) (6)

with IoU(b̂i, bj) =
Area(b̂i ∩ bj)

Area(b̂i ∪ bj)
, (7)

and C denotes the smallest convex hull area that encloses

both boxes b̂i and bj , and Area(·) is the area of a set. As

illustrated in orange in Figure 3-b, the overlapping region of

two rotated boxes constructs a polygon (p). In the next sec-

tion, we will describe how we compute the different terms

of Equations (5), (6) and (7).

3.4. Implementation Details

Computing the term Area(b̂i ∪ bj) in (6) and (7): In or-

der to calculate the area of an arbitrarily rotated box, b, we

first obtain the corners of the box using its centered repre-

sentation, i.e., b = [x, y, w, h, cos(θ), sin(θ)]⊤, as follows



[41]:

x1 =x+
−wc0 + hs0

2γ
, y1 =y +

−ws0 − hc0
2γ

,

x2 =x+
wc0 + hs0

2γ
, y2 =y +

ws0 − hc0
2γ

,

x3 =x+
wc0 − hs0

2γ
, y3 =y +

ws0 + hc0
2γ

,

x4 =x+
−wc0 − hs0

2γ
, y4 =y +

−ws0 + hc0
2γ

. (8)

where {(xi, yi), i = 1, ..., 4} are the coordinates of the

box corners in counterclockwise direction (Figure 3), γ =
√

c20 + s20, and c0 and s0 are cos (θ) and sin (θ), respec-

tively. Now, the area of a box can be computed as follows:

Area(b) =
√

(x2 − x1)2 + (y2 − y1)2×
√

(x2 − x3)2 + (y2 − y3)2 (9)

By using (9) and (11), the area of the union for two

arbitrarily-rotated bounding boxes, i.e., the ith predicted

and jth ground truth bounding boxes, can be computed by

substituting in the following expression:

Area(b̂i ∪ bj) = Area(b̂i) +Area(bj)−Area(b̂i ∩ bj)
(10)

Computing the term Area(b̂i ∩ bj) in (7): We first de-

termine the corners of two rotated boxes (b̂i, bj) using (8),

and start with one rotated box (b̂i) as the candidate inter-

section polygon. Then, we apply the method of sequen-

tial cutting [41] for calculating the intersection between an

edge in the first candidate box b̂i, i.e., the first line equa-

tion αiu + βiv + τi = 0, with any edge in the second

box under comparison bj , i.e., the second line equation

αju+βjv+ τj = 0, by solving to obtain the coordinates of

the lines intersection (u, v), where αi, βi, τi and αj , βj , τj
are the coefficients of the lines equations that can be ob-

tained independently using the lines corners in (8). We re-

peat the above process until no more edges remain and we

come up with the candidate intersection polygon.

Finally, by using the vertices of resulted intersection

polygon p = b̂i ∩ bj , its area can be calculated as follow

[42]:

Area(p) =

∣

∣

∣

∑n
k=1 ukvmod(k+1,n)−vkumod(k+1,n)

2

∣

∣

∣

(11)

where |·| denotes the absolute operator, and mod(a, b) rep-

resents the modulo operator that obtains the remainder of

dividing a by b, and (uk, vk) are the coordinates of the kth

vertex in the intersection polygon p.

Using (10) and (11), the IoU in (7) for two arbitrarily-

rotated bounding boxes can now be obtained.

Computing the variable C in (6): For computing the con-

vex hull of boxes, the areas highlighted by grey in Figure

3-c and Figure 3-d, we implemented the Andrew’s mono-

tone chain algorithm [43]. In this algorithm, after calcu-

lating the corner points of two rotated boxes using (8), we

sort first the 8 points of two rotated boxes. Next, we go

through the points and add each point to the hull. Always af-

ter adding a point to the hull, we make sure that the last line

of two points in the hull does not make a counter-clockwise

turn. We then repeatedly remove the second last two point

from the hull, and concatenate the lower and upper hulls that

gives the convex hull polygon [44]. At the end, we calculate

the area of the obtained polygon using (11).

4. Experimental Results

As in [21], we use ResNet-50 as a backbone feature

extractor. The whole network with 6 encoders and 6 de-

coders is trained with a batch size of 2 on four NVIDIA

V100 16GB GPUs with AdamW [45] optimizer. Different

from [21], we use 300 object queries instead of 100 and

replace the original prediction head with our proposed ro-

tated bounding box prediction. We first train the proposed

network for ∼ 50 epochs on a combination of 10k images

of VISD [46] and 10k images of Unreal-Text [47] synthetic

datasets and then fine-tune for ∼ 200 epochs on each of the

real datasets [15–17]. We apply a standard data augmenta-

tion for the training images, which involves randomly resiz-

ing between 480 and 1033, horizontal flipping, and normal-

izing.

4.1. Datasets

We evaluate our method on three public benchmark

datasets that contain images of different locations like street

views, traffic signs, shopping mall billboards, etc. These

datasets also include multi-oriented text instances, which

are described as follows:

ICDAR15: This dataset [16] contains 1000 images for

training and 500 images for testing. The annotations of this

dataset are at the word-level represented using quadrilateral

boxes at the word level. This dataset is more challenging

in orientation, illumination variation, and complex back-

ground of text instances than ICDAR13 [48]. Most of the

images in this dataset are from indoor environments. The

annotations of this dataset are represented using quadrilat-

eral boxes, where the ground-truth annotations are in the

four corner vertices format that each annotation box can be

expressed as g = [x1, y1, x2, y2, x3, y3, x4, y4]
⊤. For fine-

tuning of our proposed network on this dataset, we convert

the bounding boxes of this dataset from quadrilateral boxes

into rotated boxes format by using the mapping function Φ
as:

g
Φ

7−→ b (12)



Table 1. Quantitative comparison among some of the recent text detection methods on ICDAR15 [16], ICDAR17 [17] and MSRA-TD500

[15] datasets using precision (P), recall (R) and F-measure, where bold and underline denote best and second best performances respectively,

and “–” refer to Non Available data.

Method
ICDAR15 ICDAR17 MSRA-TD500

P R F-measure P R F-measure P R F-measure

ROTDC [18] – – – – – – 87.00% 63.00% 74.00%

RRPN [6] 84.00% 77.00% 80.00% – – – 82.00% 69.00% 75.00%

D2MO [28] 82.00% 80.00% 81.00% – – – 77.00% 70.00% 74.00%

EAST [4] 83.30% 78.30% 80.70% – – – 87.30% 67.40% 76.10%

TextBoxess++ [5] 82.20% 76.40% 79.20% – – – – – –

RRD [29] 85.60% 79.00% 82.20% – – – 87.00% 73.00% 79.00%

FOTS [37] 85.60% 79.80% 82.80% 80.90% 57.50% 67.20% – – –

MOSTD [30] 87.20% 76.70% 81.70% 83.80% 55.60% 66.80% – – –

PSE-Net [27] 81.50% 79.70% 80.60% 73.77% 68.21% 70.88% – – –

STELA [9] 88.70% 78.60% 83.33% 78.70% 65.50% 71.50% – – –

R-YOLO [10] 87.00% 78.20% 82.30% 78.00% 66.30% 67.50% 90.20% 81.90% 85.80%

Proposed Method 89.83% 78.28% 83.65% 84.75% 63.23% 72.42% 90.92% 83.84% 87.23%

where b is the annotation in rotated bounding box for-

mat (2), and Φ is the cv2.minAreaRect1 function in

OpenCV [49], followed by a conversion that maps the rota-

tion angle θ ∈ [−90◦, 90◦) to match the box representation

definition in (2).

ICDAR17: It is a large-scale word-level multi-lingual text

dataset [17] comprised of 18000 natural scene images,

sorted into 7200 for training, 1800 for validation and 9000

for testing. Similar to ICDAR15, This dataset also uses

quadrilateral annotations [16], which we convert to our pro-

posed rotated boxes format with the same procedure de-

scribed in the preceeding paragraph. It is noteworthy to

mention that ICDAR17 is more challenging than ICDAR15

due to the varying text instances sizes, and the abundance

of tiny text instances.

MSRA-TD500: This dataset [15] has been explicitly de-

signed for arbitrarily oriented text detection, which has ro-

tated bounding box representation in the text line level.

This dataset contains 200 test and 300 training images

of Chinese and English languages. This dataset’s images

vary from indoor (office and mall) and outdoor (street)

scenes. The bounding boxes in this dataset are annotated

in (′x, ′y, w, h, θ) format, where (′x, ′y) are the coordinates

of the top left corner, w and h are the width and height of

the box, and θ represents the rotation angle. This format is

mapped to the standard rotated box format in (2) by obtain-

ing the center of the box, and the terms cos(θ) and sin(θ).

SVT: The images of the street view text (SVT) dataset [50]

are collected using Google Street View camera. The images

are mainly taken from outdoor locations, and it has a large

number of text instances with low resolution, and some im-

ages are blurry. We only use this dataset for qualitative re-

sults (Section 4.4) due to its annotations are in rectangular

1https://bit.ly/3dCauBm

bounding boxes format that does not offer a fair, objective

measure when used to assess rotated bounding boxes repre-

sentation based methods.

4.2. Evaluation Metrics

For quantitative evaluation, we use the ICDAR15 IoU

Metric [16], which is obtained for the ith ground-truth and

jth detection bounding box as shown in (7), where a thresh-

old of IoU ≥ 0.5 is used for counting a correct detection and

therefore calculating the precision (P ) and recall (R). As in

[4, 7, 8, 25], we also use the F-measure that is a function in

the precision and recall, and it is defined as follow:

F-measure = 2
P ×R

P +R
(13)

4.3. Quantitative Results

In this section, a quantitative comparison for the pro-

posed and existing state-of-the-arts methods in [4–6, 9,

10, 18, 27–30, 37] on three challenging datasets, namely,

ICDAR15 [16], ICDAR17 [17] and MSRA-TD500 [15]

datasets, is presented.

Detection Accuracy: As depicted in Table 1, the proposed

method offers an F-measure of 83.65% on the ICDAR15

dataset, which outperforms all the methods in comparison,

including one-stage [4, 5, 9, 10, 27] and two-stage [6, 30]

text detectors. By considering ICDAR17, which is a larger

and more challenging dataset than ICDAR15, our proposed

method also offers the highest performance in terms of

precision and F-measure, than that offered by FOTS [37],

MOSTD [30], STELA [9] and R-YOLO [10]. This higher

accuracy confirms the advantage of using a Transformer in

focusing on the regions of interest.

For the MSRA-TD500 dataset, which requires predict-

ing line-level instead of word-level text detection, as can
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rotating the original image from 0◦ with different orientation an-

gles. The bounding boxes of detected regions are shown with a

cyan color.

be seen from Table 1 also the proposed method provides

the best detection performance compared to the considered

state-of-the-art methods [4, 6, 10, 18, 28, 29].

We argue that this high performance of the proposed

method is mainly attributed to the attention mechanism that

allows the Transformer architecture to relate among differ-

ent parts of characters of a word or text-line in a given text

image to make the final prediction. In addition, utilizing

the GIoU loss with the rotated box representation offers the

entire architecture a precise detection capability.

Loss Function Ablation: We validate the performance

gain caused by our proposed loss function by comparing

its detection accuracy on ICDAR15 and ICDAR17 datasets

against a baseline model. The baseline model [21] uses

a rectangular box based prediction head which consists of

an ℓ1 bounding box regression loss [39], and a rectangu-

lar GIoU based loss [38]. On the other hand, the proposed

method uses an rotated box based prediction head, consist-

ing of a Smooth-ln loss (4) and a rotated GIoU based loss

(5) as presented in Section 3.3. The results in Table 2 show

that the proposed rotated box based method outperforms the

baseline by a large margin; not to mention that using non-

rotated rectangular boxes for text detection exhibit poor re-

sults on the multi-oriented datasets.

Computational Speed: Using a single NVIDIA RTX 2070

(8GB GPU), our proposed model clocks at an average of 10

FPS inference speed. This speed is higher than some of the

segmentation-based [7, 25, 27] and two-stage detectors [6],

that require multiple stages of post-processing and regional

proposal [3]. Nevertheless, some one-stage detectors e.g.

STELA [9] and R-YOLO [10] are capable of performing

inference at higher speeds when compared to Transformer-

based architectures [3, 31] at the cost of a slightly reduced

accuracy.

4.4. Qualitative Results

Robustness to Rotated Text: We also experimented with

rotated images at four angles (−40◦, 0◦, 40◦, 80◦) and eval-

uating the proposed method’s robustness to different text

Table 2. Effect of using prediction head with a loss function that

is based on a rectangular (baseline method [21]) or rotated (pro-

posed method) box representation, where the ICDAR15 [16] and

ICDAR17 [17] datasets are used, and P, R and F denote precision,

recall and F-measure.

Method
ICDAR15 ICDAR17

P R F P R F

Baseline 69.77% 69.23% 69.50% 67.46% 66.00% 66.72%

Proposed 89.83% 78.28% 83.65% 84.75% 63.23% 72.42%

orientations. Figure 4 illustrates some qualitative samples

from this experiment. As it can be seen, the proposed

method can detect text instances of various orientations ac-

curately.

Challenging Conditions: Figure 5 illustrates the pro-

posed method’s detection results for several challenging

cases from ICDAR15, ICDAR17, MSRA-TD500 and SVT

datasets. As it can be seen, the proposed method per-

forms well on the first three datasets that include challeng-

ing fonts, illumination variation, in-plane rotation, and low

contrast text instances. To show the generalization capa-

bility of our proposed method, we also experimented with

using our ICDAR17 fine-tuned model on a different dataset,

namely, the SVT dataset. It can be seen from Figure 5 that

the proposed model is able to handle low resolution and ro-

tated texts without requiring any extra fine-tuning, thereby

confirming the Transformer’s attention modules capability

to reason about feature maps in different scales. While our

proposed method is designed for detecting multi-orient text,

it can be seen from Figure 5 that it is also capable of detect-

ing curved text instances. For example, from this figure, the

proposed method detected the curved line-text in the second

image of MSRA-TD500 with one bounding box, and it also

detected the three curved words in the first image of SVT

with three separate boxes.

Figure 6 shows some failure cases of the proposed

method. For instance, Figure 6-a characterizes failure cases

caused by large perspective distortions, and similar text font

color to the background, leading to some missed detections.

Also Figure 6-b shows the effect of large separation be-

tween the word’s characters on the detection; causing our

model to only detect a subset of the whole word.

For complex fonts as shown in Figure 6-c, the proposed

method also fails to detect the text. We attribute this missing

detection to the scarcity of such fonts in the training data.

Despite the severe illumination changes and small text in-

stances shown in Figure 6-d, our proposed model was able

to detect most instances and only missed a few. The missed

detections are mainly caused by the Transformer’s reduced

performance when detecting text of low-resolution [21, 22].

These challenging examples indicate that there is still

a room to improve the proposed scheme’s performance by

tackling the challenges of complex fonts, illumination vari-

ations, low-resolution text and geometric distortions.
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Figure 5. Sample qualitative results of the proposed method on some challenging examples from ICDAR15, ICDAR17, MSRA-TD500

and SVT datasets. PO: Partial Occlusion, DF: Difficult Fonts, IV: Illumination Variation, IB: Image Blurriness, LR: Low Resolution, PD:

Perspective Distortion, OT: Oriented Text, and CT: Curved Text.
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Figure 6. Qualitative results of failed cases. Yellow and green bounding boxes show the correct detection and missed ground truths,

respectively. HPD: High Perspective distortion, CS: Character space, DF: Difficult font, LR: Low Resolution, IV: Illumination Variation.

5. Conclusion

We have presented a Transformer-based architecture for

multi-oriented text detection in the wild. Extensive exper-

iments on three challenging datasets have solidified the vi-

ability of our approach as it outperforms state-of-the-art

methods, including recent rotated-bounding-box-based text

detectors, in terms of precision and F-measure, while main-

taining a favorable recall. Achieving these results would not

have been possible without the proposed rotated bounding

box representation and its associated loss function, tailored

to the multi-oriented text detection problem.
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