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Abstract

To our knowledge, the fastest 3D object detector on Li-

DAR data works at 42.03 point clouds-per-second on high-

end machines and 6.15 point clouds-per-second on embed-

ded boards. We propose a deep 3D object detector with

higher detection accuracy running at 84.46 point clouds-

per-second on high-end machines and 10.91 point clouds-

per-second on computing boards that is 2 and 1.77 times

faster compared to fastest published network. We achieve

considerably higher processing rate without reducing the

complexity of the network but by designing a more efficient

decoder. Our extensive and practical experiments reveal

that the detection accuracy of our proposed network is com-

parable to the best-performed method using practical met-

rics but it is 3.36 times faster. Besides, we carefully analyze

the model and indicate that negligible error in two regres-

sion outputs contributes to the reduction in the average pre-

cision. Overall, considering the accuracy and speed, our

proposed network is highly practical to be executed on em-

bedded boards for ADAS applications.

1. Introduction

There is still a long road ahead to make driverless cars af-

fordable and safely usable worldwide. Regardless, the num-

ber of active vehicles in the world grows constantly every

day. Hence, improving the safety of modern cars is crucial

to reduce the number of car accidents and injuries. With the

advent of cost-effective LiDAR sensors, there is a growing

demand for integrating LiDARs on cars (eg. on bumpers)

to perform various tasks such as detecting vulnerable road

users and cars. In contrast to autonomous vehicles, regular

cars are usually equipped with low-end embedded systems

with limited computational power. To make this technol-

ogy affordable for a wide range of users, processing LiDAR

point clouds has to be done on low-end embedded systems.

This requires methods that are accurate and computation-

ally highly efficient.

Raw LiDAR point clouds do not form a grid, and points

Figure 1. Speed vs. average precision for different methods.

are not uniformly distributed in the cloud. For this reason,

most state-of-the-art 3D detection networks apply quan-

tization techniques and convert raw point clouds to 3D

grids. For instance, VoxelNet [23], SA-SSD [5] and SEC-

OND [20] create a 3D grid of voxels where each voxel may

contain zero or more points. Likewise, PointPillars [7] cre-

ates a 3D grid of voxels in which each voxel covers the en-

tire vertical axis and contains up to 100 3D points. These

kinds of voxel are called pillars.

Even though SA-SSD has outperformed other methods

on the KITTI dataset [4], it has major practical drawbacks.

Specifically, first layers in the network apply 3D sparse con-

volutions that makes its execution time dependant on the

density of the point cloud. If a car uses multiple LiDAR

sensors or a LiDAR sensor with 128 channels, the time-to-

completion of this method will increase several times due to

processing denser point clouds. Likewise, the pillar repre-

sentation in PointPillars is limited by the number of pillars

and the number points in each pillar. Moreover, pillars are

only generated from the points that are within the field-of-

view (FOV) of the camera. Although 12K pillars [7] suf-

fice to cover the data inside FOV adequately on KITTI, it

will become less accurate on larger FOVs and denser point

clouds. PointPillars is the fastest published 3D object detec-

tor where it can process 40 point clouds-per-second (pps)

on a high-end GPU. Despite that, both of the above meth-

ods will potentially fail to detect objects using embedded

systems in real-time on denser and larger point clouds.

We argue that the processing time of 3D detection net-

works must be independent of the density of the point cloud



to increase its scalability. PIXOR [22] and PIXOR++[21]

have previously used 3D occupancy grids that are faster to

compute compared to voxels and pillars. The main advan-

tage of these methods is that they are independent of the

density of the point cloud, but compared to PointPillars and

SA-SSD, their performances are significantly lower.

Contribution: In this paper, we propose a fast 3D de-

tection network that utilizes 3D occupancy grids to encode

point clouds, but not only it is accurate, it is also the fastest

published 3D detection network. More importantly, we do

not improve the execution time by reducing the expressive

power of the neural network. Instead, we utilize an input en-

coding that is multiple times faster to compute and transfer,

and propose a more computationally efficient decoder for

the detection network. Our main gain in the execution time

is primarily due to these three factors and not by designing

a smaller network. Furthermore, we show that the perfor-

mance of our network is comparable to more computational

approaches when we evaluate them using a practical thresh-

old for IoU. As we will explain in our experiments, the dif-

ferences of predictions whose IoU are more than 0.7, and

the ones whose IoU are in [0.5, 0.7] are negligible in prac-

tical applications. Last but not least, we assess our model

extensively from different perspectives and carefully ana-

lyze the error and demonstrate that the central source of the

error in most models boils down to two factors, and improv-

ing these two factors will improve the results.

We start by explaining the state-of-the-art in Section 2.

The proposed network and fast input representation will be

explained in Section 3, and we will analyze the performance

of our method in Section 4. Finally, Section 5 concludes the

paper and provides a guideline for future work.

2. Related Work

From point clouds: MV3D [2] and AVOD [6] generate

range-view (RV) and bird’s eye view (BEV) projections that

encode point cloud density, height and intensity. PIXOR

[22] voxelizes the input using a 3D binary occupancy grid

where a cell is one if it contains at least one point. Vox-

elNet [23] and SECOND [20] divide the space into a grid

of voxels in which each voxel contains the same number of

points and apply a mini PointNet [14] called Voxel Feature

Encoding layer to each voxel and map them into a higher di-

mension. Next, they apply a set of 2D and 3D convolutions

to classify and regress 3D bounding boxes. PointPillars [7]

improves the runtime of [20] by removing the 3D convo-

lutions, using a smaller PointNet encoder and a single bin

along the height axis in its voxel representation. Similarly,

Patch Refinement [8] stacks two networks where the second

network refines predictions by fusing the information from

the first network with higher resolution voxels. As it turns

out, this method is not computationally efficient since it re-

quires encoding and processing two different voxel-based

representations. SA-SSD [5] surpassed other methods by

utilizing a smaller grid size and 3D sparse convolutions.

Point-based 3D object detectors work on points rather

than 3D girds. Point-RCNN [15] classifies all the points as

foreground or background. Next, it crops foreground area

along with corresponding features to classify and refine 3D

bounding boxes. Fast Point R-CNN[3] replaces the pro-

posal generation stage with a faster VoxelRPN that resem-

bles [23] and [12] adopts a sampling strategy for proposing

candidate regions. In general, two-stage object detection

networks may have better performance, while single-stage

detectors offer higher frame rates. Currently, the single-

stage network PointPillars [7] reports the shortest runtime

at 16ms on a high-end machine.

Multimodal 3D object detection: Several attempts

have been made to fuse point cloud and images. [10, 19, 9]

run two concurrent streams for each modality and perform

a late-fusion at the feature level. [13, 18] use PointNet to

regress boxes on point cloud crops generated from 2D im-

age proposals. PointPainting [17] also uses a sequential ap-

proach of decorating points with a class vector that is com-

puted using an image-only semantic segmentation network.

Discussion: Two-stage detection networks are not com-

putationally efficient and cannot detect 3D objects in real-

time on embedded devices. Besides, any method that de-

pends on the density of the point cloud will not scale well

with newer LiDAR sensors. Last but not least, networks that

rely on 3D convolutions are unlikely to satisfy both our re-

quirements that are computational efficiency and accuracy.

3. Proposed Method

We achieve the highest processing rate for 3D object de-

tection reported to date by using a highly efficient input rep-

resentation and flexible but fast network.

Input encoding: Denoting the ith 3D point in a point

cloud using pi = (xi, yi, zi), our goal is to transform the

point cloud P = {p0, . . . , pi, pN−1} into a regular 3D

grid representation. Assuming that P is bounded within

(xmin, xmax), (ymin, ymax) and (zmin, zmax) along x, y

and z axes respectively, we compute the sparse occupancy

matrix M using the quantization factors (δx, δy, δz). All

points belonging to the same cuboid in the 3D occupancy

grid must have one key in the sparse matrix. To achieve this

goal, we utilize dictionary of keys (DOK) representation to

create M. Concretely, the pi updates M using:

M
[

⌊
xi

δx
⌋, ⌊

yi

δy
⌋, ⌊

zi

δz
⌋
]

= 1 i = 0 . . . N − 1 (1)

where ⌊⌋ is the floor operation and
[

⌊ xi

δx
⌋, ⌊ yi

δy
⌋, ⌊ zi

δz
⌋
]

is the

3D bin index of pi after quantization and is used as the key

for DOK. Instead of using a dictionary, we use a 3D flag

tensor to track indices that are already added to M. To opti-

mize the runtime of this encoding further, we share the flag



Figure 2. Overview of the proposed 3D detection network. The stride of the first convolution layer in each block is 2. Best viewed in color.

tensor across various calls to avoid the memory allocation,

value initialization, and memory deallocation overhead.

Then, the sparse matrix M is used as the input of our

network. It should be noted that 99.88% of cells are empty

(ie. zero) in the dense representation of M. In other words,

the size of M is 0.12% of the dense representation. Thus,

our sparse representation significantly reduces the amount

of data that is transferred from the CPU to the GPU. The

sparse matrix M is scattered into the dense 3D occupancy

grid of size H × W × D on the GPU. In addition to the

computational efficiency of the above representation, it is

relatively invariant to LiDAR scanning errors. Assuming

±3cm scanning error for a point in the LiDAR point cloud,

given sufficiently large quantization factors (δx, δy, δz), the

3D point will potentially fall into the same cell in M if the

scanning is repeated several times which in the sequel will

generate identical M regardless of the scanning error.

Figure 2 shows the architecture of our network to de-

tect 3D objects using the dense 3D occupancy grid. The

encoder of the network is composed of three blocks where

each block contains 3 × 3 convolution layers. The stride

of the first convolution layer in each block is two, and the

stride of the remaining convolutions in the same block is

one. We utilize ReLU as the activation function and place

batch normalization between each convolution and ReLU

activation (a.k.a conv-bn-relu pattern). The decoder starts

with concatenating feature maps obtained at the end of each

block to form the final feature map. To this end, it first ap-

plies a 3×3 convolution with stride 2 to the output of Block

1. Next, it applies a 3 × 3 convolution with stride 1 to the

output of Block 2. Then, it upsamples the output of Block

3 using nearest-neighbor interpolation followed by a 3 × 3
convolution with stride 1. Finally, these three feature maps

are concatenated to form the input of the prediction heads.

During training, we upsample the final feature map using

bilinear upsampling and use the upsampled feature map as

the input to the prediction heads. After training, the bilin-

ear upsampling stage can be discarded, and the prediction

heads can be directly applied to concatenated feature maps.

We will show in the next section that even using the last

upsampling in the inference our proposed method is signif-

icantly faster than the runner-up network (ie. PointPillars).

Similar to [7, 20], our network utilizes one classification

head for computing objectness score, one head for regress-

ing bounding boxes and one direction head for predicting if

the car is heading forward or backward. Whereas the classi-

fication and direction head are binary classifiers, the regres-

sion head computes the offsets (∆x,∆y,∆z), the bounding

box sizes (l, w, h) and the bounding box orientation θ at lo-

cation (x, z) on the regression map where:

∆x =
(x− xg)

√

la
2 + wa

2

∆y =
(1− yg)

ha

∆z =
(z − zg)

√

la
2 + wa

2

h = log
hg

ha

w = log
wg

wa

l = log
lg

la

θ = θg



Here, ha, wa and la denote the average size of the object,

xg , yg , zg , hg , wg , lg and θg show the values of the ground-

truth box. We use weighted cross-entropy Lcls for training

the classification head, the cross-entropy Ldir for training

the direction head, and the weighted smooth L1 loss Lreg

for training the regression head. The total loss is equal to

the weighted sum of these losses.

Lcls =
1

N

N
∑

i=1

CE(c′i, ci, wi), Ldir =
1

N

N
∑

i=1

CE(d′i, di)

Lreg =
1

Npos

∑

p∈pos

∑

SmoothL1(r′(p)− r(p))

L = Lcls + αLdir + βLreg + λ||W||2
2

where r(p) = (∆x,∆y,∆z, l, w, h, θ), Npos denotes the

number of positive samples, W shows trainable parameters.

We set α = 0.2, β = 2 in all our experiments. Also, wi = 1
for background and wi = 2 for object samples.

4. Experiments

We evaluate our proposed method on KITTI[4] dataset.

The KITTI dataset contains 7, 481 training samples and

7, 518 testing samples, where labels for test samples are

not provided. Out of the 7, 481 entries, we follow the

commonly used training-validation split [1, 11] containing

3, 712 training samples and 3, 769 validation samples. Fol-

lowing the discussion in [16] that was later adapted by the

official KITTI benchmark, we use 40 samples for comput-

ing the average-precision in all our experiments.

3D Occupancy grid: The point cloud is bounded to

(−40, 40), (−1, 3) and (0, 70.4) along x (left-right), y (up-

down) and z (forward) axes, respectively. Also, the quan-

tization factors (δx, δy, δz) are (0.16, 0.1, 0.16) in all our

experiments. The matrix is transposed such that the y axis

denotes the channels of the matrix. This will generate a

dense occupancy grid of size 500 × 440 × 40. Finally,

(ha, wa, la) in the regression head is fixed to (1.6, 3.9, 1.56)
and (0.6, 1.76, 1.73) for cars and cyclists, respectively.

Training: The network is trained using the Adam optimizer

for 200 epochs with batch size 2, the initial learning rate

2e−4 that is multiplied with 0.8 every 15 epochs and the

regularization coefficient λ = 1e−4.

Augmentation: To mitigate the overfitting problem, we

augment the training data using random sampling, global

rotation and translation, per box rotation and translation,

scaling and flipping [20]. Our random sampling approach

is slightly different as it transforms (rotate+translate) each

newly added sample with a probability. Also, for each point

cloud in the training set, we define 15 different patterns for

adding random samples instead of generating a random pat-

tern at each augmentation step.

Figure 3. A few samples where the IoU between the predicted sam-

ple (magenta) and the ground-truth sample (blue) is in [0.5, 0.7)

4.1. Detection Accuracy

Table 1 compares our network with state-of-the-art on

the validation set using the average precision computed at

IoU threshold 0.7. According to the results, our method is

slightly more accurate and faster than PointPillars. As we

will show, augmentation methods have a significant impact

on the results since KITTI is a small dataset. In particular,

the y value of newly added random samples by the augmen-

tation method must be corrected according to the ground

plane. Without an accurate y value in training samples, the

network will not predict y accurately on validation samples

leading to a drop on 3D evaluation. We hypothesize that the

larger difference in 3D evaluation between our method and

SA-SSD is due to this issue. Despite that, our method al-

ready overfits on the training set with an average precision

close to 100%. That said, it does not suffer from a high bias

and provided with better augmentation methods and more

data, the results will be potentially improved.

Note that Table 1 uses the IoU threshold 0.7 to compute

the average precision. Figure 3 illustrates a few samples

where the IoU between the predicted bounding box and the

ground-truth box is in the interval [0.5, 0.7). These sam-

ples are considered as false-negatives since their IoUs are

less than 0.7. As it turns out, the predicted and ground-truth

boxes are aligned well and these kinds of errors are negli-

gible in ADAS applications. To be more specific, our last

experiments will show that the ±20cm prediction error ac-

counts for 4% and 9% reduction in average-precision of

BEV and 3D metrics. Note that ±20cm error is of low im-

portance for ADAS applications compared to autonomous

vehicles since ADAS are not meant to plan precise motions

or perform complex maneuvers. Therefore, it is more prac-

tical to evaluate the network using the IoU threshold 0.5.

Table 2 compares the same methods using this IoU thresh-

old and shows that the gap between our method and SA-

SSD reduces substantially on all three metrics using the IoU

threshold 0.5 while our method is 336% faster.

Even though the average precision is a commonly used

metric for evaluating object detection methods, it might not

be the vital metric for evaluating object detectors in prac-

tical applications. Practical applications use a fixed con-

fidence threshold for making predictions. Consequently,

a more practical metric for comparing two methods is to

find their best performed confidence threshold and compare

them using only one pair of precision-recall or F1 score at

this threshold. The KITTI evaluation kit computes average



2D (car) BEV (car) 3D (car)

Method FPS easy moderate hard easy moderate hard easy moderate hard

PointPillars [7] 42 94.46 90.30 87.94 91.49 87.21 85.83 86.00 75.66 72.57

SECOND 20 95.63 94.17 91.77 92.41 88.55 87.64 90.54 81.60 78.59

PointRCNN [3] 10 98.72 92.52 90.0 91.39 88.28 86.31 86.65 79.30 77.26

Part-A2 12.5 97.88 93.76 91.76 92.87 89.98 88.34 92.07 82.86 81.93

PV-RCNN 12.5 98.23 94.40 92.25 92.95 90.28 88.50 91.94 84.25 82.41

SA-SSD [5] 25 99.16 95.98 93.45 96.50 92.62 90.08 92.89 84.16 81.26

RAD (Ours) 84 96.24 91.94 89.34 94.86 88.21 85.70 88.70 75.80 72.65
Table 1. Average precision (@IoU 0.7) of our network compared to other methods on the validation set.

2D (car) BEV (car) 3D (car)

Method easy moderate hard easy moderate hard easy moderate hard

PointPillars 94.94 94.01 93.40 94.81 93.78 93.12 94.79 93.40 92.33

SECOND 95.79 95.14 94.65 95.68 94.84 94.24 95.66 94.74 94.05

PointRCNN 99.01 95.16 92.72 95.91 94.95 92.80 95.89 94.83 92.68

Part-A2 98.07 95.81 94.41 97.80 93.95 93.90 97.78 93.87 93.74

PV-RCNN 98.45 96.57 96.63 98.22 94.56 94.41 98.21 94.50 94.30

SA-SSD 99.37 96.51 93.97 99.24 96.25 93.70 99.23 96.19 93.64

RAD (Ours) 96.56 94.93 92.57 96.38 94.49 93.86 96.35 94.25 91.95
Table 2. Average precision (@IoU 0.5) of our network compared to other methods on the validation set.

precision for three different categories including easy, mod-

erate and hard. Denoting the F1 score at threshold t for cate-

gory c ∈ {easy(e),moderate(m), hard(h)} with F1ct , we

compute the mean F1 score F1t =
1

3
(F1et + F1mt + F1ht )

and the threshold with the maximum F1t is selected as the

best-performed threshold. We computed the maximum F1t
for each metric at the IoU thresholds 0.7 and 0.5. According

to Table 3, the detection accuracy of highly computational

methods such as SA-SSD is close to considerably faster

methods such as PointPillars and our network. The results

in this table suggest that there is not a huge difference be-

tween our realtime method and other highly computational

methods in terms of best performed F1 score.

Detecting vulnerable road users (VRUs) such as cyclists

is important to increase the safety of all road users. We

trained our network on cyclists in the KITTI dataset. To

this end, the network is trained after fixing the stride of

the first convolution layer in the first block to 1. Table 4

shows the results on the validation set. It is worth men-

tioning that other methods have not reported results on Cy-

clists. Concretely, our method outperforms PointPillars in

detecting cyclists. Nonetheless, the training set for VRUs is

small in the KITTI dataset, and the network overfits on the

dataset quickly. For this reason, the model generalizes less

on VRUs compared to cars in the KITTI dataset.

4.2. Latency on Embedded Boards

PointPillars is the fastest reported network until now. We

computed the time-to-completion (TTC) of our model and

PointPillars on a high-end machine and an embedded com-

puting board. The high-end machine is equipped with a

Core-i7 CPU and a GTX 2080Ti graphics card while the

embedded board is a Jetson AGX Xavier with an 8-core

ARM processor and 512-core Volta GPU. It is worth men-

tioning that we have not optimized our model using Ten-

sorRT to make a fair comparison with PointPillars. The in-

ference procedure is broken down into encoding, forward

pass, and post-processing, and the latency of each stage is

measured. Table 5 shows the results on the high-end work-

station and the Jetson with various power models. Whereas

PointPillars processes 6.15 point clouds per second (pps) on

Jetson Xavier, our method processes 10.91 pps that is 177%
improvement in runtime on embedded boards. Furthermore,

our method processes 84.46 pps on the high-end machine

that is 200% increase compared to PointPillars with the pro-

cessing speed of 42.03 pps. Compared to SA-SSD with the

processing speed of 25 pps on a similar machine (Table 1 in

[5]), our network processes 336% point clouds per second

with practically comparable accuracy. Note that the TTCs

in this table reflect the average latency of each method. In

practice, the latency of NMS varies depending on the num-

ber of objects in the scene. As the sample video in sup-

plementary material indicates, the speed of our network in-

creases to more than 90 pps when there are less than 5 ob-

jects and it reduces to 80 pps when there are more than 10

objects in the scene.

The dramatic increase in processing speed is due to the

efficient input encoding and decoder. Specifically, we up-

sample the encoder by a factor of two in the decoder in-

stead of four that makes the output stride of our network



IoU 0.7 (car) IoU 0.5 (car)

Method 2D BEV 3D 2D BEV 3D

SA-SSD 92.72 90.34 85.38 94.11 93.59 93.37

Point-RCNN 90.80 88.13 82.99 92.23 91.74 91.58

PointPillars 89.30 87.24 79.38 91.86 91.37 91.07

Our 89.66 87.32 78.79 92.26 91.88 91.38
Table 3. Maximum F1t computed for each metric.

2D (cyclist) BEV (cyclist) 3D (cyclist)

Method easy moderate hard easy moderate hard easy moderate hard

PointPillars 87.11 67.58 63.62 85.51 65.22 61.10 83.72 61.57 57.57

Our 90.20 71.27 68.23 86.39 65.53 61.79 83.95 62.03 58.28
Table 4. Average precision (@IoU 0.5) of our network compared to PointPillars on the validation set for cyclists

Device
Point Pillars (ms) Our method (ms)

Enc. Net. Post pps Enc. Net. Post pps

Jetson (Max-N) 3.71 139.73 19.05 6.15 0.62 83.20 7.85 10.91

Jeston (15W) 6.45 248.41 29.37 3.51 1.31 162.01 10.74 5.75

Jetson (30W-All) 5.44 195.06 27.60 4.38 1.32 122.83 10.34 7.43

Corei7+RTX 2080Ti 3.08 15.69 5.02 42.03 0.48 9.79 1.57 84.46
Table 5. Comparing the latency of our propose method with PointPillars on Jetson Xavier using different power settings and a RTX-2080Ti

machine. The pps stands for point clouds per second.

four. This reduces the spatial size of feature maps and the

latency of the convolution operations. Positive labels in the

final feature map occupy a small region and downsampling

them four times, reduces the number of positive samples

significantly and make the training difficult. To alleviate

this problem, the last feature map is upsampled right before

the prediction head by factor of two to increase the num-

ber of positive examples and facilitates training. During in-

ference, upsampling before prediction heads is not essential

and can be removed from the network. We do not reduce the

width or depth of the network, meaning that the complex-

ity of the network remains the same. Instead, upsampling

layers are rearranged to generate spatially smaller feature

maps and reduce computational complexity. To the best of

our knowledge, the proposed method is the fastest 3D de-

tection network reported on the KITTI dataset.

4.3. Ablation Study

Quantization factor: Quantization factor of the occupancy

grid plays an important role in latency and accuracy of the

network. Table 6 reports the results of our network using

different quntization factors. The results indicate that AP

on all metrics reduces slightly using cuboid of 12cm. Ad-

ditionally, it reduces the processing speed to 53 pps since

it generates spatially larger input grids. In contrast, increas-

ing the quantization factor to 20cm increases the processing

speed to 103 pps and reduces AP notably on hard cases.

Augmentation: Table 7 shows how augmentation affects

the performance. Specifically, we divided augmentation

methods to two categories. The First category includes the

method for adding random samples to point clouds and the

second category contains all other augmentation techniques

such as rotation, translation, flipping and scaling. The re-

sults show that AP on all metrics reduces substantially with-

out any augmentation. Moreover, augmenting the data by

only adding random samples has a higher impact on the

results compared to only applying augmentations from the

second category. This is partially due to the fact that the

KITTI is a small dataset and this augmentation techniques

help the network to generalize better on unseen samples.

4.4. Error Analysis

We showed that evaluating the network using the IoU

threshold 0.5 increases the average precision notably com-

pared to the IoU threshold 0.7. This suggests that the main

source of the accuracy drop at higher IoUs is related to pre-

diction errors in the regression head. To study this more

carefully, we evaluated our network at different IoU thresh-

olds. Table 8 presents the results. The average precision on

moderate and hard classes increases substantially in BEV

and 3D metrics by setting the IoU threshold to 0.65. Ac-

cording to IoU thresholds 0.65 and 0.60, while the increase

in the average precision is negligible on the easy class, the

average precision increase in hard and moderate classes is

still remarkable. In general, the point density in hard and

moderate classes is lower than easy class. This means the

regression head may not generate highly tight bounding

boxes for sparse regions in point clouds (more in supple-

mentary materials). Figure 4 shows a few examples where

the IoU of the predicted box with the ground-truth (blue) is



2D (car) BEV (car) 3D (car)

QF PPS easy moderate hard easy moderate hard easy moderate hard

16cm 84 96.24 91.94 89.34 94.86 88.21 85.70 88.70 75.80 72.65

12cm 53 95.86 90.97 87.97 91.97 87.24 85.10 86.35 74.88 72.30

20cm 103 95.56 88.94 88.23 93.78 86.14 84.43 84.74 73.54 69.54
Table 6. The effect of quantization factor on the performance.

2D (car) BEV (car) 3D (car)

Method easy moderate hard easy moderate hard easy moderate hard

w augmentation 96.24 91.94 89.34 94.86 88.21 85.70 88.70 75.80 72.65

w/o augmentation 91.53 77.92 75.84 85.54 75.11 71.64 69.84 57.46 54.93

w/o random samples 93.88 86.85 85.02 92.34 83.04 81.53 77.22 65.73 64.51

w/o transformations 95.45 86.24 83.07 91.47 82.09 79.20 83.01 69.36 64.71
Table 7. The effect of augmentation on the performance.

2D (car) BEV (car) 3D (car)

IoU Threshold easy moderate hard easy moderate hard easy moderate hard

IoU 0.70 96.24 91.94 89.34 94.86 88.21 85.70 88.70 75.80 72.65

IoU 0.65 96.40 92.55 91.94 95.86 91.66 90.89 94.03 84.88 82.13

IoU 0.60 96.45 94.40 92.30 96.22 94.03 91.85 95.83 90.74 88.45

IoU 0.55 96.52 94.83 92.48 96.37 94.41 92.10 96.23 92.14 91.40

IoU 0.50 96.56 94.93 92.57 96.38 94.49 93.86 96.35 94.25 91.95
Table 8. Average precision of the network at different IoU thresholds.

either in [0.7, 1] (green) or in [0.65, 0.7) (magenta).

We selected all the 3D boxes whose IoUs with the

ground-truth box is in [0.65, 0.7) and computed the signed

difference between regression outputs and the ground-truth.

The above procedure was repeated for the range [0.5, 0.7).
Then, the histograms of differences for each output were

calculated. Figure 5 illustrates stacked histogram for each

of the intervals. We did not include the histogram of θ dif-

ferences because of the page limit (available in the supple-

mentary material). In general, θ differences are mainly dis-

tributed around zero and slightly around π and −π, which

shows that the yaw regression is accurate. According to

these figures, the offset errors for x and y values are mainly

bounded between −25cm and 25cm while the offset error

for z has wider support and it is bounded between −70cm
and 70cm. Likewise, whereas width and height errors are

bounded between −20cm and 20cm, the length difference

is distributed between −1.5m and 1.0m.

There are 522 instances of car in the validation set whose

IoUs are in [0.65, 0.7). To study which outputs have the

highest contribution to the average precision reduction, we

replaced the predicted values of 522 3D bounding boxes

with the ground truth values and computed the average pre-

cision. Table 9 illustrates the results. The complete table

is available in the supplementary material. According to 3D

metric, x and z (8th row) have the most significant contribu-

tion to the error since small error in these two quantities will

reduce the IoU between predicted and ground-truth boxes.

Specifically, replacing predicted x (2ndrow) values with ac-

tual values increase AP on 3D hard class by more than 4%,

showing that the ±25cm error (according to the histogram)

in x values will affect the average precision. The same argu-

ment holds for z (4th row) values as replacing them with ac-

tual values improves AP about 4% on 3D hard cases, prov-

ing that ±70cm error in z values contributes to the average

precision reduction considerably. Finally, replacing both l

and z values (9th row) with the ground-truth will have a

profound impact on average precision proving that training

a network with more accurate and stable l and z heads will

increase AP substantially.

5. Conclusion

In this paper, we proposed a neural network for detect-

ing 3D objects from LiDAR point clouds. Our method im-

proves the processing speed of the fastest published net-

work (to date) by 200% and 177% on high-end machines

and embedded computing boards, respectively. It is also

336% faster than the method with the highest detection ac-

curacy reported on the KITTI dataset. More importantly,

the remarkable speed gain was achieved while keeping the

network complexity high. Specifically, our network utilizes

an effective input encoding technique and uses a computa-

tionally efficient but highly flexible decoder. Moreover, we

assessed our model using practical metrics and indicated

that the results of the proposed network are comparable to

the most accurate published model. Besides, our extensive



Figure 4. A few samples where the IoU of the predicted box is in [0.65, 0.7) (magenta), [0.7, 0.1] (green).

Figure 5. Histograms of differences for each output computed using all the 3D boxes whose IoU with the ground-truth box is in [0.65, 0.7).

2D (car) BEV (car) 3D (car)

Replaced quantity easy moderate hard easy moderate hard easy moderate hard

original 96.24 91.94 89.34 94.86 88.21 85.70 88.70 75.80 72.65

x 96.27 92.25 91.32 95.57 90.76 88.40 90.77 81.26 76.70

y 96.38 94.42 92.06 94.89 88.25 85.74 91.27 82.20 79.62

z 96.16 91.93 89.35 95.40 90.46 88.43 90.10 79.09 76.50

w 96.28 92.03 89.42 95.09 88.40 85.91 89.71 77.97 73.51

h 98.15 91.85 90.83 96.95 90.36 87.83 87.94 76.78 72.45

l 96.24 91.91 89.37 95.04 88.65 87.86 90.08 78.58 74.06

xz 96.18 92.26 91.47 96.13 91.90 91.39 94.13 85.26 82.56

zl 96.26 91.96 89.43 96.21 92.23 91.64 95.05 88.10 85.15

xzy 98.37 94.69 94.01 96.15 93.44 91.41 95.36 90.67 88.27

xzl 96.33 92.39 91.79 96.31 94.44 93.82 95.77 91.58 89.02
Table 9. Contribution of each regression output to the average precision reduction.

analysis showed that ±25cm error in ∆x values and ±1m
in ∆l values contribute to the reduction in the average preci-

sion notably. Overall, considering the accuracy and speed,

our proposed network is highly practical to be utilized in

ADAS applications on embedded computing boards.
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