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Abstract

Deep convolutional neural networks for semantic seg-

mentation achieve outstanding accuracy, however they also

have a couple of major drawbacks: first, they do not gen-

eralize well to distributions slightly different from the one

of the training data; second, they require a huge amount of

labeled data for their optimization. In this paper, we intro-

duce feature-level space-shaping regularization strategies

to reduce the domain discrepancy in semantic segmentation.

In particular, for this purpose we jointly enforce a clustering

objective, a perpendicularity constraint and a norm align-

ment goal on the feature vectors corresponding to source

and target samples. Additionally, we propose a novel mea-

sure able to capture the relative efficacy of an adaptation

strategy compared to supervised training. We verify the ef-

fectiveness of such methods in the autonomous driving set-

ting achieving state-of-the-art results in multiple synthetic-

to-real road scenes benchmarks.

1. Introduction

Semantic segmentation is a key tool to address challeng-

ing scene understanding problems, like those connected to

autonomous driving. Reliable solutions have started to ap-

pear with the rise of deep learning: most state-of-the-art ap-

proaches exploit Convolutional Neural Networks (CNNs)

with an encoder-decoder architecture, starting from the pi-

oneering FCN work [21] up to recent highly performing

schemes like PSPNet [53] and DeepLab [4–6]. These archi-

tectures typically exploit CNNs originally designed for im-

age classification as feature extractors, removing their tail-

ing fully-connected layers and adding a decoding network

to generate full-size segmentation maps. The outstanding

results of these models come at the cost of an expensive

training process requiring massive amounts of labeled data.
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In spite of this, their generalization properties are not al-

ways satisfactory. When applied on domains similar but not

identical to the training one, the models suffer from signifi-

cant accuracy degradation: the so-called domain shift issue.

To alleviate this problem, many Unsupervised Domain

Adaptation (UDA) solutions have been proposed, exploiting

unlabeled samples from the target domain to aid the gener-

alization aptitude of the network. The adaptation can be per-

formed at different stages of the network, i.e., at the input,

feature or output level [40]. Deep networks typically solve

complex tasks by building some compact latent representa-

tions of the inputs, which are representative of the classifier

output. These internal representations are extremely mean-

ingful for the subsequent decision process [1, 13]; never-

theless current UDA approaches for semantic segmentation

hardly operate at this level due to the high dimensionality

of the latent space. We propose a novel strategy working

at the less-explored feature level: our aim is to reduce the

performance discrepancy by employing latent-space shap-

ing objectives between source and target domains.

First of all, a clustering-based objective forces the fea-

ture vectors of each class to be closer to the corresponding

prototype centroids. While based on source supervision for

prototype estimation, its action is delivered to both source

and target representations to achieve class-conditional do-

main alignment. Then, an additional component enforces

the perpendicularity of class prototypes, thus assembling

features into well-distanced class clusters and, at the same

time, promoting disjoint activation sets between semantic

categories. Finally, we account for the fact that, as no-

ticed in [52], feature vectors computed from target domain

samples tend to have smaller norms than source domain

ones. This latter claim is due to domain-specific features,

which the network relies on to solve the source-supervised

classification. Yet, those features may be missing in the

target domain and, therefore, may lead to a weakened re-

sponse of neuron activations in target latent representations.

To address this issue, we introduce a regularization objec-

tive that promotes uniform vector norms across source and

target representations, while jointly inducing progressively



increased norm values. Furthermore, the inter-class norm

alignment has shown to remove distribution biases towards

the most frequent classes, whose higher classification con-

fidence is typically accompanied by bigger feature norms.

Since the proposed techniques require to set a strong re-

lationship between predicted segmentation maps and fea-

ture representations, we additionally develop a novel strat-

egy to propagate semantic information from the labels to the

lower resolution feature space.

2. Related Works

Unsupervised Domain Adaptation is a challenging set-

ting in domain adaptation where only unlabeled samples

from the target domain are used. The goal is to limit the

performance degradation due to the distribution discrepancy

between source and target data (i.e., the domain shift [38]),

with no supervision in the target domain.

Early techniques focused on whole-image classification

[3, 28, 36, 47], while, recently, the domain adaptation field

has witnessed a rapid increase in interest, resulting in a mul-

titude of different approaches for various tasks. From a gen-

eral point of view, we can identify three major categories of

works [40], according to the network location in which they

act, namely: input-level, feature-level and output-level.

Usually, adaptation at the input level aims to reduce the do-

main shift by acting directly on input images and trying to

match source and target visual appearance (i.e., low level

feature distribution), typically using generative adversarial

schemes [8, 15, 16, 26, 30, 41]. At the output level, self-

training concepts [54, 55] have been explored, where tar-

get network predictions in the form of pseudo-labels guide

the learning process in a self-supervised manner. Alterna-

tively, some works introduce entropy minimization tech-

niques [7, 48], which force the network to be more confi-

dent in the segmentation of target samples, thus mimick-

ing the behavior shown in the source domain. Other ap-

proaches [2, 24, 37] further exploit an adversarial discrimi-

nator to reduce the perceived discrepancy between segmen-

tation maps produced by source and target domains.

A different line of works operates at the feature level, e.g.,

by enforcing the extraction of more discriminative fea-

tures. For example, some works resort to dropout regu-

larization [18, 27, 34] (either channel-wise or point-wise)

to push decision boundaries away from high density re-

gions, while others opt for domain adversarial feature align-

ment [12, 35, 44, 45] either by acting on them directly or by

training the network on reconstructed images.

Latent Space Regularization is a family of techniques

that can be used to reduce the domain shift and have

been applied in many semantic segmentation tasks such as

UDA [17, 39], continual learning [25] and few-shot learn-

ing [11, 49]. In general, strategies belonging to this class

make use of additional constraints imposed on the feature

vectors, effectively reducing the extent of space each of

them can occupy. Such reduction has shown to promote

more overlap between the source and target distributions,

thus reducing the domain shift [42]. In UDA, these tech-

niques are generally applied in class-conditional manner,

hence relying on the exclusive supervision of source sam-

ples. However, it is reasonable to assume that their effect

is reflected also on target samples. These techniques have

been exploited in various ways. Different kinds of auto-

matic feature clustering by embedding variations of the K-

Means algorithm in the training procedure have been pro-

posed [17, 20, 39, 50]. In [42] the authors further refine this

idea by proposing an explicit clustering objective between

feature vectors and the appropriate class prototypes. An-

other work [9] proposes feature-level orthogonality as an

alternative for the standard cross-entropy optimization ob-

jective in image classification, trying to reduce the num-

ber of redundant features extracted by a CNN. Approaches

closer to our strategy are [29], where orthogonal class pro-

totypes are used as a medium through which classification

is performed in an unsupervised domain adaptation setting,

and [51], where an orthogonality constraint over the proto-

types is exploited.

3. Problem Setup

In this section we detail our setup. Formally, we denote

the input image space as X ⊂R
H×W×3 and the associated

output label space as Y⊂CH×W , where H and W represent

the spatial dimensions and C the set of classes. Given a first

training set T s = {(Xs
n,Y

s
n)}

Ns

n=1, where labeled samples

(Xs
n,Y

s
n) ∈ X s × Ys originate from a supervised source

domain, together with a second set of unlabeled input sam-

ples T t = {Xt
n}

Nt

n=1, from a target domain (Xt
n ∈ X t),

our goal is to transfer knowledge on the segmentation task

learned on the source domain to the unsupervised target do-

main (i.e., without any label on the target set). Superscripts

s and t specify the domain: source and target, respectively.

We assume that the segmentation network S = D ◦ E

is based on an encoder-decoder architecture (as most recent

approaches for semantic segmentation), i.e., made by the

concatenation of two logical blocks: the encoder network

E, consisting of the feature extractor, and a decoder net-

work D, which is the actual classifier producing the seg-

mentation map. Moreover, we call the features extracted

from a generic input image X as E(X) = F ∈ R
H′×W ′×K
0+ ,

where K denotes the number of channels and H ′ ×W ′ de-

notes the low-dimensional latent spatial resolution. Given

the structure of encoder-decoder convolutional segmenta-

tion networks, we can assume that each class is mapped to

a reference representation in the latent space, that should be

as invariant as possible to the domain shift. The techniques

that will be introduced in Section 4 try to enforce this by

comparing the extracted features with some prototypes for



the various classes. In the rest of this section we show how

to associate feature vectors to semantic classes and how to

compute the prototypes.

Histogram-Aware Downsampling. Since the spatial in-

formation of an image is mostly preserved while its content

travels through an encoder-decoder network, we can infer

a strict relationship between any feature vector and the se-

mantic labeling of the corresponding image region.

Therefore, the first step of the extraction process is to

identify a way to propagate the labeling information to la-

tent representations (decimation), preserving the semantic

content of the image region (window) associated to each

feature vector. Otherwise, the generation of erroneous as-

sociations would significantly impair the estimation objec-

tive. For this task, we design a non-linear pooling function:

instead of computing a simple subsampling (e.g., nearest

neighbor), we compute a frequency histogram over the la-

bels of all the pixels in each window. Such histograms are

then used to select appropriate classification labels for the

downsampled windows, producing feature-level label maps

{Is,tn }
Ns,t

n=1. Specifically, the choice is made by selecting the

label corresponding to the frequency peak in each window,

if such peak is distinctive enough, i.e., if any other peak

is smaller than Th times the biggest one (in a similar fash-

ion to the orientation assignment step in the SIFT feature

extractor [22]). Empirically, we set Th = 0.5. A key fea-

ture of this technique is its ability to introduce void-class

samples when a considered window cannot be assigned to

a unique class, i.e., it contains mixed classification labels.

This procedure can be naturally extended to pseudo-labels

(i.e., network-generated segmentation maps) via a confi-

dence measure over the maps that preserves only reliable

predictions. In our case, such measure is computed effi-

ciently by average pooling over the map of output probabil-

ity peaks and used to mask the raw low-resolution pseudo-

labels, i.e., we select only confident labeling with average

probability value greater than Tp = 0.5, empirically.

Prototype Extraction. Once computed, the feature-

level label maps {Is,tn }
Ns,t

n=1 can be used to extract the set

Fc of feature vectors belonging to a generic class c ∈ C in

a training batch B:

Fs,t
c =

{

Fs,t
n [h,w] ∈ R

K
0+ | Is,tn [h,w] = c, ∀n ∈ B

}

, (1)

where [h,w] denote all possible spatial locations over a fea-

ture map, i.e., 0 ≤ h < H ′ and 0 ≤ w < W ′. Exploiting

this definition, we can identify the set of all feature vectors

in batch B as the union Fs,t = (
∪

c F
s,t
c ) ∪ Fs,t

v where

Fs,t
v are the sets of void-class samples. The class-wise sets

are then used to estimate the per-batch class prototypes on

labeled source data by simply computing their centroids:

pc[i] =
1

|Fs
c |

∑

f∈Fs
c

f [i] ∀i, 1 ≤ i ≤ K. (2)

Finally, to reduce estimation noise and obtain more stable

and reliable prototypes, we apply exponential smoothing:

p̂c = ηp̂′
c + (1− η)pc. (3)

Where p̂c and p̂′
c are the estimates of class c prototype re-

spectively at current and previous optimization steps. We

initialized p̂c = 0 and empirically set η = 0.8. This strat-

egy allows us to keep track of classes that are not present

in the current batch of source samples (in this case we set

η = 1 to propagate the previous estimate), aiding signifi-

cantly in the unsupervised target tasks.

4. Method

In this section, we provide a detailed description of our

approach, which is based on the idea of aiding the standard

cross-entropy loss with additional components to enforce

the regularization of the latent space. While the source

supervised cross-entropy provides task discriminativeness

to the model, the additional objectives jointly imposed on

source and target representations drive towards feature-level

domain invariance, ultimately reducing domain bias. In par-

ticular, we add three feature-space shaping constraints to the

standard source-supervised cross-entropy loss Ls
CE , whose

combined effect can be mathematically expressed by:

L = Ls
CE + λC · Ls,t

C + λP · Ls
P + λN · Ls,t

N . (4)

Here, LC is the clustering loss on latent representations

(Sec. 4.1), LP is the perpendicularity of class prototypes

loss (Sec. 4.2) and LN is the norm alignment and enhance-

ment loss (Sec. 4.3). For ease of notation, Eq. 4 reports each

loss term once (the s, t superscript here indicates the sum of

source and target loss instances). For an improved perfor-

mance and to show that our approach can be applied on top

of existing methods, we also extended our objective with

the entropy minimization strategy proposed in [7], leading

to L+ = L+ λEM · LEM .

An overview of the complete approach is reported in Fig. 1.

4.1. Clustering of Latent Representations

The domain shift between source and target data is re-

flected into a discrepancy in distribution of latent represen-

tations from separate domains. Moreover, as the lack of tar-

get supervision inherently leads to a bias towards the source

domain, it is very likely for the classifier to trace decision

boundaries tight around source embeddings, regardless of

the disposition of unlabeled target instances.

Thus, the misalignment of class-conditional feature

statistic inevitably leads the model towards incorrect clas-

sification over target representations, in turn degrading the

segmentation accuracy on the target domain. To cope with

this issue, we start by introducing a clustering objective over
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Figure 1: Visual summary of our strategy and of the effect of its application on the feature space vectors. The three proposed

space shaping constraint are from left to right: Class Clustering (4.1), Prototypes Perpendicularity (4.2), Norm Alignment

and Enhancement (4.3). Furthermore we apply also entropy minimization [7].

the latent space, in order to achieve class-conditional align-

ment of feature distribution. By exploiting the prototypes

introduced in Sec. 3 and forcing source and target feature

vectors to tightly assemble around them, we regularize the

structure of the latent space, adapting representations into a

domain independent class-wise distribution.

Mathematically, we define the clustering objective as:

Ls,t
C =

1

|C|

∑

c∈C

1

|Fs,t
c |

∑

f∈F
s,t
c

||p̂c − f ||2, (5)

where || · || denotes the L2 norm. This loss has multiple

purposes: first, to better cluster representations in the latent

space in a supervised manner, thus reducing the probabil-

ity of erroneous classification. Second, to perform semi-

supervised clustering on target samples exploiting network

predictions as pseudo-labels (notice that we used only the

most confident labeling as detailed in Sec. 3). Finally, to

improve prototype estimates, since forcing tighter clusters

will result in more stable batch-wise centroids, which will

be closer to the moving-averaged prototypes.

4.2. Perpendicularity of Latent Representations

We further enhance the space shaping action induced by

the clustering objective by introducing a prototype perpen-

dicularity loss. The idea is to improve the segmentation ac-

curacy by better separating the tight and domain-invariant

clusters on both domains. By doing so, we allow the clas-

sifiers to increase the margin between decision boundaries

and feature clusters, and, consequently, we reduce the like-

lihood of those boundaries to cross target high-density re-

gions of the feature space (i.e., regions populated by many

target samples). Unlike previous works [42], class clusters

of latent embeddings are forced to adopt a regular disposi-

tion, whilst being spaced out. In fact, we directly encourage

a class-wise orthogonality property, by pushing prototypes

to be perpendicular. In this way, not only we increase the

distance among class clusters, but we jointly regularize the

latent space and encourage channel-wise disjoint activations

between different semantic categories.

To quantify perpendicularity in the loss value, we ex-

ploit the inner product in the euclidean space and its rela-

tionship with the angle θ between two vectors j and k, i.e.,

j ·k = ||j|| ||k|| cos θ. Minimizing their normalized product

is equivalent to maximizing the angle between them, since

feature vectors have non-negative values. To capture this,

we enforce cross-perpendicularity between any couple of

prototypes:

Ls
P =

1

|C|(|C| − 1)

∑

ci,cj∈C,i ̸=j

pci

||pci ||
·

pcj

||pcj ||
. (6)

Eq. 6 computes the sum of the cosines over the set of all

couples of non-void classes. We use the per-batch compu-

tation of prototypes on source samples pc (notice the miss-

ing hat on the prototype symbols, see Eq. 2), guaranteeing

a stronger gradient flow through the network. In addition,

thanks to the tight geometric relation between prototype es-

timates and feature vectors enforced by Ls,t
C , the effect in-

duced by the orthogonality constraint on the prototypes is

propagated to the vectors associated to them.

The net result is the application of the shaping action to all

feature vectors of each class, thus promoting perpendicular-

ity between all individual components of distinct clusters.

The loss seeks to increase the angular distance between la-

tent representations of separate classes, which is achieved

when distinct sets of active feature channels are associ-

ated to distinct semantic categories. A similar orthogonal-

ity constraint has been proposed in [42], but here we di-

rectly enforce the perpendicularity property between clus-

ters, whereas in [42] each feature vector is considered inde-



pendently without accounting for its semantic labeling, as

the constraint is imposed in an unsupervised fashion.

4.3. Latent Norm Alignment Constraint

The last constraint we propose acts on the norm of source

and target feature vectors. In particular, we promote the

extraction of latent representations with uniform norm val-

ues across domains. Our objective is twofold. First, we

aim at increasing the classification confidence during tar-

get prediction, similarly to what achieved by adaptation

strategies based on entropy minimization over the output

space [48]. In particular, recent studies in image classifica-

tion [52] highlight how the norm of target feature vectors

tends towards smaller values than source ones, generally

leading to reduced prediction confidence and potentially er-

roneous classifications. Second, we assist the perpendicu-

larity loss by reducing the number of domain-specific fea-

ture channels exploited to perform classification. We argue,

in fact, that by forcing the network to produce consistent

feature norms, we reduce the number of channel activations

switched on for only one of the two domains, as they would

cause norm discrepancies. Formally, we define two separate

objectives for source and target domains:

Ls
N =

1

|Fs|

∑

f∈Fs

∣

∣(f̄s +∆f )−||f ||
∣

∣, (7)

Lt
N =

1

|F t|

∑

f∈Ft

max(0, (f̄s +∆f )−||f ||), (8)

where f̄s is the mean of the feature vector norms com-

puted from source samples in the previous optimization step

and ∆f dictates the enhancement step (we experimentally

tuned it, e.g., ∆f = 0.002). Feature vectors are pushed

towards the same global average norm value, regardless of

their labeling. This removes any bias generated by hetero-

geneous pixel-class distribution in semantic labels, which,

for example, would cause the most frequent classes to show

larger norm than the average. The source-specific constraint

(Eq. 7) forces both the inter-class alignment and enhance-

ment step, i.e., it ensures that norms are progressively in-

creased throughout the training process, towards a common

value for all the classes. On the other hand, the target ob-

jective (Eq. 8) focuses on domain-alignment, by enforcing

the target norms to be similar to the source ones. Further-

more, since target features have typically smaller norms, we

do not penalize target norms exceeding the reference value.

5. Implementation Details

Datasets and Setup. We test our model (LSR, Latent

Space Regularization) on synthetic-to-real UDA on road-

view semantic segmentation. As (synthetic) source domains

we employ the GTAV [32] and the SYNTHIA [33] datasets.

The former is comprised of 24, 966 densely labeled, high-

resolution (1914× 1052 px) images, taken from a video se-

quence produced by the GTAV game engine, while the lat-

ter provides 9, 500 densely labeled samples with resolution

1280× 760 px, produced using the homonym software. As

target domain, we choose the Cityscapes [10] dataset, which

contains 5, 000 densely labeled high-resolution (2048 ×
1024 px) images, acquired in European cities.

We train the architecture in a closed-set [40] setup, i.e.,

source and target class sets coincide. Therefore, we use

the 19 and 16 common classes for GTAV and SYNTHIA, re-

spectively. GTAV and Cityscapes images are resized during

training to 1280× 720 px and 1024× 512 px, respectively,

while SYNTHIA samples are kept at the original resolution.

Baseline Model. We used the common [7, 42–44, 48]

DeepLabV2 network [4–6], with ResNet101 [14] as the

backbone (with K = 2048 channels at the last level of the

encoder) and stride 8. We pre-train the model on source-

only samples with a batch size of 10 for more stable train-

ing, using patches of 512 × 512 px and data augmentation

to remove visual biases introduced by the running mean

components of batch-normalization layers when full images

are employed. As an example, a dark patch on the bottom

half of the image will often be interpreted as road, while a

light patch on the top half will often be interpreted as sky,

which is not always true (see the random camera angles in

the SYNTHIA dataset) and preserving such behavior may

be detrimental for some applications. The final goal is to

reduce color and texture-based biases that could be intro-

duced during training on a single source dataset.

Training Procedure. We optimize the network using

SGD with momentum of rate 0.9 and weight decay reg-

ularization of 5 × 10−4. The learning rate was sched-

uled according to a polynomial decay of power 0.9 start-

ing from 2.5 × 10−4 over 250k steps, following [7]. A

subset of the original training set was exploited as valida-

tion set for the hyper-parameters search in our loss terms.

To reduce overfitting we employ various dataset augmen-

tation strategies: random left-right flip; white point re-

balancing ∝ U([−75, 75]); color jittering ∝ U([−25, 25])
(both applied independently over color channels) and ran-

dom Gaussian blur [7, 55]. We used one NVIDIA Titan

RTX GPU, with batch size of 2 (1 source and 1 target sam-

ples), training the network for 27, 450 steps (i.e., 10 epochs

of the Cityscapes [10] dataset) and employing early stop-

ping based on the validation set.

6. Results

In this section, we report the quantitative and qualitative

results produced by the proposed approach (LSR), com-

paring it with several feature-level approaches [19, 42, 44]

and with some works, like entropy minimization strate-

gies [7, 48], whose effect on feature distribution is found to
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Table 1: Comparison of adaptation strategies in terms of IoU, mIou and mASR % (Sec. 6). Best in bold, runner-up underlined.

mIoU1 and mASR1 restrict to 13 classes, ignoring the ones with same superscript. We use same setup and codebase of [7,42].

be similar to ours. An ablation study and a discussion of the

effects brought by the proposed loss terms is also included.

Notice that our method is trained end-to-end, thus we

can seamlessly add other adaptation techniques, e.g., en-

tropy minimization or adversarial input or output level ap-

proaches. To prove such compatibility, we introduce an

entropy-minimization loss [7] in our framework.

6.1. Measuring the Adaptation Performances

For a better evaluation, we introduce a novel measure,

called mASR (mean Adapted-to-Supervised Ratio), to cap-

ture the relative performance between an adapted architec-

ture and its target supervised counterpart. We start by com-

puting the ratio between the IoU score of the adapted net-

work for each class c ∈ C (IoUc
adapt) and the IoU of super-

vised training on target data (IoUc
sup), that is a reasonable

upper bound estimate. Notice that higher means better, with

a value of 1 meaning that the adapted architecture has the

same performances of supervised training. Finally we aver-

age the scores over all the classes in the dataset:

mASR =
1

|C|

∑

c∈C

ASRc, ASRc def
=

IoUc
adapt

IoUc
sup

. (9)

Differently from other recent measures [23, 31], the mASR
measure captures the relative performance between an

adapted architecture and its supervised counterpart, allow-

ing an evaluation of adaptation schemes more independent

from the overall performances of the network on the various

datasets. The per-class ASR values allows to quickly dis-

cover the most challenging classes for the adaptation task.

Notice how, if compared with the standard mIoU, a key dif-

ference is that the contribution of each class is inversely pro-

portional to the capacity of the segmentation model to learn

it in the supervised reference scenario, thus emphasizing the

most challenging semantic categories.

6.2. Adaptation from GTAV to Cityscapes

In the GTAV → Cityscapes setup our approach achieves

a score of 46.0% mIoU, with a gain of 9.1% compared to

the baseline. In addition, LSR outperforms all competi-

tors, with only the very recent works of [42] and [7] able

to get close to our result, while there is a quite relevant

gap compared to other methods. Such improvement is quite

stable across most single-class IoU scores, and is particu-

larly evident in difficult classes, such as terrain, where our

strategy shows the highest percentage gains. As an index

of robustness and performance balance, we use the stan-

dard deviation of the per-class IoUs. LSR reduces it by

0.8 compared to the latest state-of-the-art [42] (from 24.8
to 24.0). Furthermore, LSR surpasses the same strategy by

0.4% in terms of mASR, reaching 67.7%, meaning that our

approach shows improved accuracy over more challenging

classes, thanks to the enhanced latent space regularization.

Some qualitative results are reported in the top half of

Fig. 2 and on the paper webpage http://lttm.dei.

unipd.it/paper_data/LSR. From visual inspection,

we can verify the increased precision of t. sign, t. light, pole

and person borders in both images. Furthermore, our ap-

proach correctly classifies the wall in the first image (la-

beled as building by competitors) and the building in the

second image (confused for fence by competitors).

6.3. Adaptation from SYNTHIA to Cityscapes

In the SYNTHIA → Cityscapes setup LSR surpasses all

the competitors in the 16-classes configuration, reaching

41.7% of mIoU, with a gap compared to the best competing

approach larger than in the previous setting. Once more,
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Figure 2: Qualitative results on sample scenes taken from the Cityscapes validation split.
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Figure 3: (a) Ablation analyses. (b) Image of Fig. 1 down-

sampled nearest (top) or frequency-aware (bottom).

our method reduces the standard deviation of the IoU distri-

bution (27.7 compared to 29.7 of [42]). At the same time,

LSR shows the highest mASR, surpassing the second best

approach (on 16 classes) by 2.2%. On the 13-classes setup

our strategy outperforms all competitors in terms of mASR

with only a marginal loss in mIoU score, confirming our

previous claim of better performance balance across classes

and reduced gap with respect to supervised learning.

Similarly to the GTAV case, the performance gain is vis-

ible also from the qualitative results in the bottom half of

Fig. 2. The segmentation maps show an overall improve-

ment in the shape of sidewalk and pole. Our method can

correctly detect the car and person behind the pole in the

last image, which are missed or wrongly classified by com-

peting strategies (e.g., the car is confused as person in [7]),

and can accurately predict the t. sign, missed by some strate-

gies. Furthermore, we remark that LSR can correct the re-

gion around the car logo (bottom-part of each figure), which

is often confused with bicycle, car or bus by competitors.
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Figure 4: Class distribution of segmentation maps down-

sampled either via histogram-aware or via nearest neighbor.

6.4. Ablation Studies

In this section, we evaluate the impact of each constraint

on the final accuracy. Quantitative results are reported in

Fig. 3a, where we evaluate our strategy by removing each

constraint independently and evaluating the impact on the

final accuracy. In particular, we show how the absence of

each of our losses reduces the final performance by a min-

imum of 0.8% mIoU and an average of 1% mIoU. Each

module brings a significant improvement in terms of accu-

racy and all the components are needed for the best results.

Concerning the novel downsampling scheme (Sec. 3), the

goal of the proposed frequency-aware setup is to label only

feature locations with a clear class assignment. This aims

to reduce cross-talk between neighboring features of differ-

ent classes, thus improving class discriminativeness at the

latent space. We can observe this phenomenon in Fig. 3b,

where the label map downsampled via our frequency-aware

scheme (bottom) marks some features close to the edges of

objects as unlabeled. This is confirmed by the class distribu-

tion of the downsampled segmentation maps (i.e., to match

the spatial resolution of the feature level), reported in Fig. 4

for both the histogram-aware scheme (ours) or the standard



(a) Baseline. (b) LSR.

Figure 5: Features distribution before and after adaptation.

nearest neighbors one. In particular, the histogram-aware

scheme generally seldom preserves small classes, promot-

ing unlabeled classification when discrimination between

classes is uncertain.

6.5. Analysis of the Latent Space Regularization

Norm Alignment. We analyze the effect of the norm

alignment constraint in Fig. 5, where we show a plot of

some feature vectors after projecting them to a 2D space

for better visualization. This and the subsequent plots were

produced using a balanced subset of feature vectors (350
vectors per class) extracted from the Cityscapes validation

set for a fair comparative analysis across the classes.

In Fig. 5 the norm of each vector is represented in the ra-

dial axis in log scale, the inner angle between any point and

its prototype’s direction is represented in the angular axis.

The original direction in the high dimensional space of each

centroid is ignored, as a meaningful representation would

be very difficult to achieve in 2D. Instead, we assign to each

centroid a reference angle (as shown by the colored lines)

and plot the associated feature vectors centered on it. The

plots also reports a confidence interval for the global av-

erage norm, to highlight how the proposed norm alignment

constraint (Sec. 4.3) effectively promotes uniform norm val-

ues: the dark gray line represents the median of the distribu-

tion and the shaded gray area represents the 95% confidence

interval. The effect of our space shaping strategy is clearly

visible, in that the norms align very tightly around the global

mean value (smaller shaded region around the unique gray

line). The distribution of the points around each prototype

is shrunk, thanks to the clustering objective, while the cen-

troids themselves are pushed away from each other, thanks

to the perpendicularity constraint (not visible from this plot,

but appreciable in Fig. 6 as we discuss next).

Perpendicularity. To analyze the effect of the perpen-

dicularity constraint, Fig. 6 shows the distribution of the av-

erage inner angle between a prototype’s direction and the

direction of each other prototype. Ideally, we aim at pro-

ducing as perpendicular prototypes as possible, in order to

reduce the overlap of different semantic classes over feature

channels (i.e., cross-talk). The red dashed line at 90 degrees

shows the target value for perpendicularity, which is also the
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Figure 6: Average inter-prototype angle, comparison be-

tween Source Only and LSR.

(a) Baseline. (b) LSR.

Figure 7: t-SNE plots comparing feature vectors distribu-

tions before and after adaptation. Points are color coded

according to the legend of Fig. 2.

upper bound, as our feature vectors have all non-negative

coordinates. The figure shows that our strategy leads to an

average increase of more than 5 degrees.

Clustering. Finally, we analyze our clustering objec-

tive by means of a t-SNE [46] embedding produced on the

normalized features (to remove the norm information, en-

hancing the angular one) and we report it in Fig. 7. Our

strategy increases significantly the cluster separation in the

high dimensional space and the spacing between clusters

belonging to different classes. As a side effect, this also re-

duces the probability of confusing visually similar classes

(e.g., the truck class with the bus and train ones).

7. Conclusions

In this work, we proposed a new set of latent-space regu-

larization techniques to address the domain shift in an unsu-

pervised fashion. We achieve domain invariance by means

of multiple feature space shaping constraints: namely, class

clustering, class perpendicularity and norm alignment. Our

constraints can be flawlessly applied on top of existing

frameworks as they are separate modules trained end-to-

end. We achieved state-of-the-art results in feature-level

adaptation on two commonly used benchmarks paving the

way to employment of a new family of feature-level tech-

niques to enhance discrimination ability of deep neural net-

works. Future research will concern the design of novel

feature-level techniques, the analysis of the proposed adap-

tation strategies on source accuracy and the evaluation of

their generalization ability to different tasks.
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Cord, and Patrick Pérez. Advent: Adversarial entropy min-

imization for domain adaptation in semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2517–2526, 2019.

[49] Kaixin Wang, Jun Hao Liew, Yingtian Zou, Daquan Zhou,

and Jiashi Feng. Panet: Few-shot image semantic segmenta-

tion with prototype alignment. In Proceedings of the Inter-

national Conference on Computer Vision, pages 9197–9206,

2019.

[50] Qian Wang and Toby P. Breckon. Unsupervised domain

adaptation via structured prediction based selective pseudo-

labeling. In Proceedings of the AAAI Conference on Artificial

Intelligence, pages 6243–6250, 2020.

[51] Si Wu, Jian Zhong, Wenming Cao, Rui Li, Zhiwen Yu, and

Hau-San Wong. Improving domain-specific classification by

collaborative learning with adaptation networks. In Proceed-



ings of the AAAI Conference on Artificial Intelligence, pages

5450–5457, 2019.

[52] Ruijia Xu, Guanbin Li, Jihan Yang, and Liang Lin. Larger

norm more transferable: An adaptive feature norm approach

for unsupervised domain adaptation. In Proceedings of the

International Conference on Computer Vision, pages 1426–

1435, 2019.

[53] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2881–2890, 2017.

[54] Yang Zou, Zhiding Yu, Xiaofeng Liu, B.V.K. Vijaya Kumar,

and Jinsong Wang. Confidence regularized self-training. In

Proceedings of the International Conference on Computer

Vision, pages 5982–5991, 2019.

[55] Yang Zou, Zhiding Yu, BVK Vijaya Kumar, and Jinsong

Wang. Unsupervised domain adaptation for semantic seg-

mentation via class-balanced self-training. In Proceedings

of the European Conference on Computer Vision, pages 289–

305, 2018.


