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Abstract

Accurate 3D object detection (3DOD) is crucial for

safe navigation of complex environments by autonomous

robots. Regressing accurate 3D bounding boxes in clut-

tered environments based on sparse LiDAR data is how-

ever a highly challenging problem. We address this task

by exploring recent advances in conditional energy-based

models (EBMs) for probabilistic regression. While meth-

ods employing EBMs for regression have demonstrated im-

pressive performance on 2D object detection in images,

these techniques are not directly applicable to 3D bound-

ing boxes. In this work, we therefore design a differentiable

pooling operator for 3D bounding boxes, serving as the

core module of our EBM network. We further integrate this

general approach into the state-of-the-art 3D object detec-

tor SA-SSD. On the KITTI dataset, our proposed approach

consistently outperforms the SA-SSD baseline across all

3DOD metrics, demonstrating the potential of EBM-based

regression for highly accurate 3DOD. Code is available at

https://github.com/fregu856/ebms_3dod.

1. Introduction

3D object detection (3DOD) is a key perception task for

self-driving vehicles and other autonomous robots. 3DOD

entails detecting various objects from sensor data, and es-

timating their size and position in the 3D world. Specif-

ically, the goal of 3DOD is to place oriented 3D bound-

ing boxes which tightly contain all surrounding objects of

interest. See Figure 1 for an example. These 3D bound-

ing boxes then serve as input to important high-level tasks

such as planning and collision avoidance. Accurate 3DOD

is thus crucial for safe autonomous navigation of different

complex environments.

In the automotive domain, 3DOD is usually performed

from LiDAR point clouds [65, 56, 54], images captured by

vehicle-mounted cameras [59, 5, 58], or from a combina-

tion of both data modalities [36, 37, 32]. Radar sensors

are sometimes also utilized [42, 43, 63]. State-of-the-art

Figure 1. We study how energy-based models (EBMs) can be ap-

plied to accurately regress 3D bounding boxes in 3DOD from Li-

DAR point clouds. Here, we visualize the output of our detector

on a validation example from the KITTI [15] dataset.

3D object detectors employ deep neural networks (DNNs)

to learn powerful feature representations directly from this

data [54, 51, 66]. The 3DOD task is then commonly di-

vided into two sub-tasks, in which anchor or proposal 3D

bounding boxes are classified as either background or a spe-

cific class of object, and then regressed toward ground truth

boxes [68, 33, 55].

In general, regression entails predicting a continuous tar-

get y from an input x. This is a fundamental machine learn-

ing problem that can be addressed using a variety of differ-

ent techniques [34, 14, 40, 49, 7]. Specifically in 3DOD, the

3D bounding box regression problem is usually addressed

by letting a DNN directly predict a target bounding box y
for a given input x, and training the DNN by minimizing

the L2 or Huber loss [28, 68, 65, 54, 23]. Alternatively, a

probabilistic regression approach has also been employed.

The conditional target density p(y|x), i.e. the distribution

for the target 3D bounding box y given the input x, is then

explicitly modelled using a DNN, which is trained by min-

imizing the associated negative log-likelihood. Previous



SA-SSD Pool f(x,y)

y
x

Figure 2. An overview of our proposed approach, applying EBM-based regression to the task of 3D object detection. We integrate a con-

ditional EBM p(y|x; θ) = efθ(x,y)/
∫
efθ(x,ỹ)dỹ into the state-of-the-art 3D object detector SA-SSD [23]. We achieve this by designing

a differentiable pooling operator that, given a 3D bounding box y, extracts a feature vector from the SA-SSD output. This feature vector is

then processed by three fully-connected layers, outputting the scalar energy fθ(x, y) ∈ R.

work on 3DOD has mainly explored Gaussian models of

p(y|x) [9, 11, 10, 41].

A Gaussian model is however fairly restrictive, limiting

p(y|x) to unimodal and symmetric distributions. Instead,

recent work [19, 6, 20] has demonstrated that improved

regression accuracy can be obtained on various tasks by

employing energy-based models (EBMs) [35] to represent

the conditional target density p(y|x). Specifically, this ap-

proach entails modeling p(y|x) with the conditional EBM

p(y|x; θ) = efθ(x,y)/
∫

efθ(x,ỹ)dỹ, and then using gradi-

ent ascent to maximize p(y|x; θ) w.r.t. y at test-time. Since

the EBM p(y|x; θ) is directly specified via the scalar func-

tion fθ(x, y), which is defined using a DNN, it is a highly

expressive model that puts minimal restricting assumptions

on p(y|x). Even potential multi-modality in the distribution

p(y|x) can therefore be learned directly from data. This

EBM-based regression approach is thus an attractive alter-

native also for 3D bounding box regression, especially con-

sidering the impressive performance demonstrated on con-

ventional 2D bounding box regression in images [19, 6, 20].

Extending the approach from 2D to 3D is however chal-

lenging. In particular, using gradient ascent to maximize the

EBM p(y|x; θ) at test-time requires the scalar DNN output

fθ(x, y) to be differentiable w.r.t. the bounding box y. For

2D bounding boxes in images, this was achieved by apply-

ing a differentiable pooling operator [30] on image features

[19, 6, 20], but this technique is not directly applicable to

3D bounding boxes. How EBM-based regression should be

applied to 3DOD is thus currently an open question, which

we set out to investigate in this work.

Contributions We apply conditional EBMs p(y|x; θ) to

the task of 3D bounding box regression, extending the re-

cent EBM-based regression approach [19, 6, 20] from 2D

to 3D object detection. This is achieved by adding an ex-

tra network branch to the state-of-the-art 3D object detector

SA-SSD [23], and designing a differentiable pooling oper-

ator for 3D bounding boxes y. We evaluate our proposed

detector on the KITTI [15] dataset and consistently outper-

form the SA-SSD baseline detector across all 3DOD met-

rics. Our work thus demonstrates the potential of EBM-

based regression for highly accurate 3DOD.

2. Energy-Based Models for Regression

EBMs were extensively studied by the machine learning

community in the past [35, 60, 3, 45, 25, 48]. In recent

years they have also had a resurgence within the field of

computer vision, frequently being employed for generative

image modeling [61, 12, 47, 8, 18, 13, 50, 2]. In com-

parison, the application of EBMs to regression problems

has not been a particularly well-studied topic. Very recent

work [19, 6, 20] has however demonstrated their efficacy

on diverse computer vision regression tasks such as visual

object tracking, head-pose estimation and age estimation.

In regression, the task is to learn to predict targets y⋆ ∈
Y from inputs x⋆ ∈ X , given a training setD of i.i.d. input-

target pairs, D = {(xi, yi)}
N
i=1, (xi, yi) ∼ p(x, y). The

input space X depends on the specific problem, but can e.g.

correspond to the space of images or point clouds. The tar-

get space Y is continuous, Y = R
K for some K ≥ 1.

In EBM-based regression [19, 6, 20], this task is ad-

dressed by modelling the distribution p(y|x) of y given x
with a conditional EBM p(y|x; θ), defined according to,

p(y|x; θ) =
efθ(x,y)

Z(x, θ)
, Z(x, θ) =

∫

efθ(x,ỹ)dỹ. (1)

Here, fθ : X × Y → R is a DNN that maps any input-

target pair (x, y) ∈ X × Y directly to a scalar fθ(x, y) ∈
R, and Z(x, θ) is the input-dependent normalizing partition

function. The DNN output fθ(x, y) is interpreted as the

(negative) energy of the distribution p(y|x; θ).



2.1. Prediction

At test-time, EBM-based regression entails predicting

the most likely target under the model given an input x⋆,

i.e. y⋆ = argmaxy p(y|x
⋆; θ) = argmaxy fθ(x

⋆, y). In

practice, y⋆ = argmaxy fθ(x
⋆, y) is approximated by re-

fining an initial estimate ŷ via T steps of gradient ascent,

y ← y + λ∇yfθ(x
⋆, y), (2)

thus finding a local maximum of fθ(x
⋆, y). Evaluation of

the partition function Z(x⋆, θ) is therefore not required.

2.2. Training

The DNN fθ(x, y) that specifies the conditional EBM (1)

can be trained using various methods for fitting a density

p(y|x; θ) to observed data {(xi, yi)}
N
i=1. Generally, the

most straightforward such method is probably to minimize

the negative log-likelihood L(θ) = −
∑N

i=1 log p(yi|xi; θ),
which for the EBM p(y|x; θ) is given by,

L(θ) =
N
∑

i=1

log

(
∫

efθ(xi,y)dy

)

− fθ(xi, yi). (3)

The integral in (3) is however intractable, preventing exact

evaluation of L(θ). One possible solution to this problem

is to approximate the intractable integral using importance

sampling, as employed in [19]. However, numerous alter-

native approaches also exist, including noise contrastive es-

timation (NCE) [21] and score matching [29]. The problem

of how EBMs should be trained specifically for regression

was studied in detail in [20], comparing six methods on the

task of 2D bounding box regression in images. From this

comparison, [20] concluded that a simple extension of NCE

should be considered the go-to training method.

NCE entails learning to discriminate between observed

data examples and samples drawn from a noise distribution.

NCE was adopted for EBM-based regression only recently

in [20], but has often been used to train EBMs for classifi-

cation tasks in the past [46, 44, 31, 39]. Recently, it has also

become highly utilized within self-supervised representa-

tion learning [26, 1, 4, 22]. Applying NCE to regression

means training the DNN fθ(x, y) by minimizing the loss,

J(θ) = −
1

N

N
∑

i=1

Ji(θ),

Ji(θ)=log
exp

{

fθ(xi, y
(0)
i )−log q(y

(0)
i |yi)

}

M
∑

m=0
exp

{

fθ(xi, y
(m)
i )−log q(y

(m)
i |yi)

}

,
(4)

where y
(0)
i , yi, and {y

(m)
i }Mm=1 are M samples drawn

from a noise distribution q(y|yi) that depends on the true

target yi. Effectively, J(θ) in (4) is the softmax cross-

entropy loss for a classification problem with M+1 classes.

A simple choice for q(y|yi) that was shown effective in [20]

is setting q to a mixture of K Gaussians centered at yi,

q(y|yi) =
1

K

K
∑

k=1

N (y; yi, σ
2
kI), (5)

where K and the variances {σ2
k}

K
k=1 are hyperparameters.

A simple extension to NCE, termed NCE+, was pro-

posed and demonstrated to further improve the regression

accuracy on certain tasks in [20]. The DNN fθ is still

trained by minimizing J(θ) in (4), but y
(0)
i is now defined

as y
(0)
i , yi + νi. The true target yi is thus perturbed with

νi ∼ qβ(y), where qβ is a zero-centered and scaled ver-

sion of q(y|yi) in (5), i.e. qβ(y) =
1
K

∑K

k=1N (y; 0, βσ2
kI).

NCE+ accounts for possible inaccuracies in the annotation

process producing yi, and can be understood as a direct gen-

eralization of NCE. In fact, NCE is recovered as a special

case when β → 0 in qβ(y).

3. Method

We apply EBM-based regression to 3DOD by extending

the state-of-the-art 3D object detector SA-SSD [23] with a

conditional EBM p(y|x; θ) (1). In Sec. 3.1, we first provide

necessary background on SA-SSD, including a description

of its input and output data format. We then detail how the

EBM p(y|x; θ) is defined, employing differentiable pooling

of 3D bounding boxes y and an added network branch, in

Sec. 3.2. Our approach for training p(y|x; θ) is based on

NCE and further described in Sec. 3.3. Lastly, our predic-

tion strategy using gradient ascent is detailed in Sec. 3.4.

3.1. The SA­SSD 3D Object Detector

SA-SSD [23] takes a LiDAR point cloud of the scene as

input x and produces a set {di}
D
i=1 of D detections. Each

detection d consists of a predicted 3D bounding box y,

y = [ cx cy cz h w l φ ]T ∈ R
7, (6)

and an associated classification confidence score s ∈ (0, 1).
In (6), (cx, cy, cz) is the 3D coordinate of the bounding box

center, (h,w, l) is the 3D bounding box size, and φ is the

heading angle of the bounding box.

The input LiDAR point cloud x = {(p
(i)
x , p

(i)
y , p

(i)
z )}ni=1

of n points is encoded into a sparse 3D tensor by means of

voxelization. This tensor is then processed by a backbone

network utilizing submanifold sparse 3D convolutional lay-

ers [62, 17], producing a 3D feature tensor h1(x) of shape

W×L×H×C. A bird’s eye view (BEV) feature representa-

tion of the scene is then created by flattening h1(x) into the

2D feature map h2(x) of shape W ×L×HC. Then, h2(x)
is further processed by six standard 2D convolutional lay-

ers, outputting the feature map h3(x) of shape W ×L×C ′.



Figure 3. Illustration of our modified variant of RoIAlign [24] for

oriented 2D bounding boxes. In this example, the regular W ′×L′

grid is 2 × 3. Bilinear interpolation is used to extract a feature

vector for each of the W ′L′ grid points.

Finally, h3(x) is fed to a detection network, in which two

1× 1 convolutions are applied. The first outputs classifica-

tion confidence scores and the second outputs offsets for a

W × L grid of anchor 3D bounding boxes.

The SA-SSD backbone and detection networks are

trained by minimizing a weighted sum of multiple losses.

The focal loss [38] is employed for the classification sub-

task, and the Huber loss [28] is used for the regression of

anchor bounding box offsets. Additionally, SA-SSD em-

ploys two losses stemming from auxiliary tasks. By in-

verting the voxelization via interpolation, 3D feature ten-

sors in the backbone network are represented as point-wise

feature vectors. These are then utilized for point-wise fore-

ground segmentation, i.e. predicting whether or not a point

lies within any ground truth 3D bounding box, and point-

wise center offset regression, i.e. predicting the offset from

a foreground point to the center of its 3D bounding box.

3.2. Conditional EBM Definition

In this work, we extend the SA-SSD 3D object detector

with a conditional EBM p(y|x; θ) = efθ(x,y)/
∫

efθ(x,ỹ)dỹ,

which is fully specified by the DNN fθ. To enable the use

of gradient ascent at test time (Sec. 2.1), the DNN must be

designed such that its scalar output fθ(x, y) is differentiable

w.r.t. the 3D bounding box y (6). To achieve this, we take

inspiration from the recent work [19, 6, 20] applying EBM-

based regression to 2D bounding box regression in images.

Thus, we design a differentiable pooling operator that, for

a given 3D bounding box y, extracts a feature vector from

the SA-SSD backbone network output. This feature vec-

tor is then processed by an added network branch of fully-

connected layers, outputting the energy value fθ(x, y) ∈ R.

Differentiable Pooling of 3D Bounding Boxes Various

pooling operators for 3D bounding boxes y (6) have been

utilized for refining proposal bounding boxes in previous

work [55, 56, 65, 54], none of which are however differen-

tiable w.r.t. the bounding box y. [55] extracts all points in

the point cloud x = {(p
(i)
x , p

(i)
y , p

(i)
z )}ni=1 which lie within

a given box y, and then processes the associated point-wise

h

c

BEV Feature Map

RoIAlign

z

Figure 4. Detailed illustration of the proposed differentiable pool-

ing operation from 3D bounding box y (6) to feature vector

h5(x, y) (8). The BEV version of y is pooled with the BEV fea-

ture map produced by SA-SSD. The z coordinate cz and height h
of the box y are processed by two fully-connected layers.

features to extract a feature vector for y. This operator

is however not differentiable w.r.t. y, due to the required

discrete assessment of whether a point (p
(i)
x , p

(i)
y , p

(i)
z ) lies

within the 3D bounding box y or not. [56] instead divides

the box y into a 3D grid and extracts all points which lie

within each grid cell. By also encoding which grid cells are

empty, this pooling operator better captures geometric in-

formation. Because of the discrete extraction of points for

each grid cell, it is however still not differentiable w.r.t. the

3D bounding box y. For similar reasons, the pooling oper-

ators utilized in [65, 54], which capture even richer contex-

tual information, are not differentiable w.r.t. y either.

Instead, we utilize the 2D feature map h3(x) of shape

W × L × C ′ that is produced by the SA-SSD backbone

network. This is a compact yet powerful BEV feature rep-

resentation of the scene. Specifically, we extract a feature

vector h4(x, y
BEV) by pooling h3(x) with yBEV,

yBEV = [ cx cy w l φ ]T ∈ R
5, (7)

which is the BEV version of the 3D bounding box y (6).

Since yBEV is an oriented 2D bounding box and not neces-

sarily axis-aligned, we can not directly apply standard 2D

bounding box pooling operators [16, 24, 30]. Instead we

employ a modified variant of RoIAlign [24], which entails

dividing yBEV into a regular W ′ × L′ grid, and extract-

ing a feature vector g ∈ R
C

′

in each grid point via bilin-

ear interpolation of h3(x). See Figure 3 for an illustra-

tion. This operation results in a 2D feature map of shape

W ′ × L′ × C ′, which we then flatten to obtain the feature

vector h4(x, y
BEV) ∈ R

W ′L′C′

. By flattening the feature

map instead of e.g. averaging over it, more information is

preserved in h4(x, y
BEV). It can thus be used to discrimi-

nate between a given box and the same box rotated π rad.

This pooling operation is differentiable w.r.t. yBEV, but

the extracted feature vector h4(x, y
BEV) ∈ R

W ′L′C′

is

of course only a function of yBEV (7), not of the full 3D

bounding box y (6). Using gradient ascent at test-time



would thus not update the z coordinate cz or height h of

the bounding box y. To resolve this, we take inspiration

from the architecture used for EBM-based age estimation

[19]. We thus process cz ∈ R and h ∈ R by two small fully-

connected layers, generating feature vectors gcz ∈ R
C′′

and

gh ∈ R
C′′

. Finally, we concatenate the three vectors to ob-

tain h5(x, y),

h5(x, y) = h4(x, y
BEV)⊕ gcz ⊕ gh ∈ R

W ′L′C′+2C′′

, (8)

where ⊕ indicates vector concatenation. The complete

pooling operation from 3D bounding box y to feature vector

h5(x, y) is illustrated in Figure 4.

Energy Prediction Branch Following [19, 6, 20], we

add an extra network branch onto SA-SSD for processing

the extracted feature vector. The network branch consists

of three fully-connected layers. It takes the feature vector

h5(x, y) ∈ R
W ′L′C′+2C′′

as input and outputs the scalar

energy fθ(x, y) ∈ R, thus fully specifying the conditional

EBM p(y|x; θ) (1). The complete architecture of p(y|x; θ)
is illustrated in Figure 2.

3.3. Detector Training

Following the work on EBM-based 2D object detec-

tion [19, 20], the extra fully-connected layers described in

Sec 3.2 are added onto a pre-trained and fixed SA-SSD de-

tector. The parameters θ in fθ(x, y) thus only stem from

these added fully-connected layers, and the SA-SSD back-

bone and detection networks are kept fixed during training

of the DNN fθ. To train fθ, we use NCE as described in

Sec 2.2. We employ the same training parameters (batch

size, data augmentation etc.) as for SA-SSD [23], only re-

placing the original detector loss with the NCE loss (4).

Algorithm 1 Gradient-based refinement.

Input: x⋆, {ŷi}
D
i=1, T , λ, η.

1: for i = 1, . . . , D do

2: y ← ŷi.
3: for t = 1, . . . , T do

4: PrevValue← fθ(x
⋆, y).

5: ỹ ← y + λ∇yfθ(x
⋆, y).

6: NewValue← fθ(x
⋆, ỹ).

7: if NewValue > PrevValue then

8: y ← ỹ.

9: else

10: λ← ηλ.

11: yi ← y.

12: Return {yi}
D
i=1.

3.4. Detector Inference

At test-time, the input LiDAR point cloud x⋆ is first pro-

cessed by the SA-SSD detector. SA-SSD outputs the 2D

3D @ 0.7 BEV @ 0.7

Easy Moderate Hard Easy Moderate Hard

Part-A2 [56] 87.81 78.49 73.51 91.70 87.79 84.61

SERCNN [67] 87.74 78.96 74.30 94.11 88.10 83.43

EPNet [27] 89.81 79.28 74.59 94.22 88.47 83.69

Point-GNN [57] 88.33 79.47 72.29 93.11 89.17 83.90

3DSSD [64] 88.36 79.57 74.55 92.66 89.02 85.86

STD [65] 87.95 79.71 75.09 94.74 89.19 86.42

SA-SSD [23] 88.75 79.79 74.16 95.03 91.03 85.96

3D-CVF [66] 89.20 80.05 73.11 93.52 89.56 82.45

CLOCs-PVCas [51] 88.94 80.67 77.15 93.05 89.80 86.57

PV-RCNN [54] 90.25 81.43 76.82 94.98 90.65 86.14

SA-SSD 88.80 79.52 72.30 95.44 89.63 84.34

SA-SSD+EBM 91.05 80.12 72.78 95.64 89.86 84.56

Rel. Improvement +2.53% +0.75% +0.66% +0.21% +0.26% +0.26%

Table 1. Results on KITTI test in terms of 3D and BEV AP.

Our SA-SSD+EBM detector consistently outperforms the SA-

SSD baseline, and achieves highly competitive performance also

compared to other state-of-the-art methods.

feature map h3(x
⋆) and a set {(ŷi, si)}

D
i=1 of D detections,

where ŷi is a 3D bounding box (6) and si is the associated

classification confidence score. We then take all bounding

boxes {ŷi}
D
i=1 as initial estimates and refine these via T

steps of gradient ascent (Sec 2.1), producing {yi}
D
i=1. The

initial 3D bounding boxes {ŷi}
D
i=1 are thus refined by being

moved toward different local maxima of fθ(x
⋆, y). The re-

fined boxes {yi}
D
i=1 are finally combined with the original

confidence scores, returning the detections {(yi, si)}
D
i=1.

This gradient-based refinement of the detections pro-

duced by SA-SSD of course lowers the detector inference

speed somewhat. The point cloud x⋆ is however still pro-

cessed by SA-SSD only once, and the scalar fθ(x
⋆, y) is

extracted from h3(x
⋆) using an efficient pooling operator

and just a few fully-connected layers. Moreover, the gra-

dient ∇yfθ(x
⋆, y) can be efficiently evaluated using auto-

matic differentiation. The complete refinement procedure

is detailed in Algorithm 1, where λ denotes the gradient as-

cent step-length, η is a decay of the step-length, and the

NewValue > PrevValue check ensures that fθ(x
⋆, y)

is never decreased.

4. Experiments

We evaluate our EBM-based 3DOD approach on the

KITTI 3DOD dataset [15] and compare it with the SA-

SSD [23] baseline and other state-of-the-art methods. Our

detector is implemented in PyTorch [52]. Training and in-

ference code is publicly available.

4.1. Dataset

KITTI [15] is the most commonly used dataset for au-

tomotive 3DOD. It contains 7 481 examples for training,

and 7 518 test examples without publicly available ground

truth annotations. Following common practice [23, 54], the

training examples are further divided into train (3 712 ex-



3D @ 0.7 BEV @ 0.7

Easy Moderate Hard Easy Moderate Hard

SA-SSD [23] 93.23 84.30 81.36 - - -

CLOCs-PVCas [51] 92.78 85.94 83.25 93.48 91.98 89.48

PV-RCNN [54] 92.57 84.83 82.69 95.76 91.11 88.93

SA-SSD 93.14 84.65 81.86 96.56 92.84 90.36

SA-SSD+EBM 95.45 86.83 82.23 96.60 92.92 90.43

Rel. Improvement +2.48% +2.58% +0.45% +0.04% +0.09% +0.08%

Table 2. Results on KITTI val in terms of 3D and BEV AP. Our

proposed detector consistently outperforms the SA-SSD baseline,

and sets a new state-of-the-art for all but one of the metrics.

amples) and val (3 769 examples) splits. We train models

exclusively on the train split and set hyperparameters us-

ing the val split. We report results both on val, and on the

test split by submitting detections to the KITTI benchmark

server. Following SA-SSD, we conduct experiments only

on the car object class.

Evaluation Metrics On the KITTI benchmark server,

models are evaluated in terms of average precision (AP) in

both 3D and BEV. It considers three different difficulty lev-

els (easy, moderate and hard), based on how far away and

occluded objects are. AP is the area under the precision-

recall curve, where a predicted bounding box is considered

a true positive if its 3D/BEV IoU with a ground truth box

exceeds a certain threshold. For cars, the threshold is set to

0.7 on the KITTI benchmark. Two predicted boxes with

IoU of, e.g., 0.71 and 0.99 thus have identical effect on

this metric. Since our main goal is to improve the accuracy

of all predicted bounding boxes, we also report the AP for

higher thresholds {0.75, 0.8, 0.85, 0.9} on the val split. All

reported AP values are computed using 40 recall positions.

4.2. Implementation Details

We utilize the open-source implementation and pre-

trained model provided1 by the SA-SSD authors. The fea-

ture map h3(x) that is produced by the backbone network

is of shape 200 × 176 × 256. We divide each yBEV (7)

into a regular 4 × 7 grid, meaning that the feature vector

h4(x, y
BEV) ∈ R

7168. We process cz ∈ R and h ∈ R

with separate fully-connected layers (dimensions: 1 → 16,

16 → 16), generating gcz ∈ R
16 and gh ∈ R

16. After

concatenation, we thus obtain h5(x, y) ∈ R
7200. Finally,

h5(x, y) is processed by three fully-connected layers of di-

mensions 7200 → 1024, 1024 → 1024, 1024 → 1. To

train the DNN fθ(x, y), i.e. the added fully-connected lay-

ers, we just replace the original detector loss with the NCE

loss (Sec. 3.3). We also considered NCE+ with β > 0,

but saw no clear improvements over NCE. We hypothesize

this is because there is less inherent ambiguity in the an-

notation process of 3D bounding boxes than of 2D bound-

ing boxes in images. As in [20], we set K = 3 with

1https://github.com/skyhehe123/SA-SSD
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Figure 5. Impact of the number of gradient ascent iterations T in

Algorithm 1 on detector performance (3D AP with 0.7 threshold,

averaged over easy, moderate and hard) and detector inference

speed (FPS), on KITTI val. Refinement with T = 4 iterations

significantly improves the detector performance, while only de-

creasing the inference speed from 19.2 to 12.8 FPS.

σ1 = σ3/4, σ2 = σ3/2 for the noise distribution q(y|yi)
(5). After ablation, optimizing 3D AP (moderate difficulty)

on the val split, we set σ3 differently for different com-

ponents of the 3D box y (6). Specifically, σ3 = 0.25 for

(cx, cy), σ3 = 0.125 for (cz, h, w, l) and σ3 = 0.0625 for

φ. Following [19, 20], we also set T = 10 and η = 0.5 for

gradient-based refinement (Algorithm 1). The step-length

λ = 0.0002 was selected based on ablation.

4.3. 3DOD Results on KITTI

Results on KITTI test in terms of 3D and BEV AP (0.7
threshold) are found in Table 1. We mainly compare the

performance of our EBM-based 3D object detector (SA-

SSD+EBM) to the pre-trained SA-SSD it extends, and in-

clude other state-of-the-art detectors for reference. We also

include the results for SA-SSD reported in the original pa-

per [23], as these differ somewhat from those obtained with

the provided pre-trained model. In Table 1, we observe

that the added EBM and gradient-based refinement consis-

tently improves the SA-SSD baseline across all metrics. We

also observe that our SA-SSD+EBM detector achieves very

competitive performance compared to previous methods.

Results on KITTI val in terms of 3D and BEV AP (0.7
threshold) are found in Table 2. There, we only include

detectors for which AP values computed using 40 recall po-

sitions are available. In Table 2, we again observe that our

EBM-based detector consistently outperforms the SA-SSD

baseline. On KITTI val, our SA-SSD+EBM also sets a new

state-of-the-art in terms of all but one of the metrics.

A further comparison of SA-SSD+EBM and the SA-

SSD baseline is provided in Table 3. There, we report AP



3D @ 0.75 3D @ 0.8 3D @ 0.85 3D @ 0.9

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

SA-SSD 84.48 73.91 70.99 60.89 50.08 47.37 24.29 19.58 18.05 2.06 1.58 1.33

SA-SSD+EBM 87.85 74.96 71.95 66.70 54.32 51.36 31.02 23.91 21.95 3.45 2.74 2.26

Rel. Improvement +3.99% +1.42% +1.35% +9.54% +8.47% +8.42% +27.7% +22.1% +21.6% +67.5% +73.4% +69.9%

BEV @ 0.75 BEV @ 0.8 BEV @ 0.85 BEV @ 0.9

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

SA-SSD 95.41 87.47 84.79 87.12 79.07 74.65 61.53 54.15 50.39 17.48 15.71 14.58

SA-SSD+EBM 95.47 87.54 84.88 88.31 80.06 77.25 68.40 58.62 54.48 26.60 22.03 19.48

Rel. Improvement +0.06% +0.08% +0.11% +1.37% +1.25% +3.48% +11.2% +8.25% +8.12% +52.2% +40.2% +33.6%

Table 3. Results on KITTI val in terms of 3D and BEV AP for higher thresholds {0.75, 0.8, 0.85, 0.9}. Our SA-SSD+EBM detector

consistently outperforms the SA-SSD baseline across all metrics, and the relative improvement increases with the AP threshold.

for higher thresholds {0.75, 0.8, 0.85, 0.9} on KITTI val.

We observe that the gradient-based refinement consistently

improves detector performance across all metrics, and that

the relative gain is larger for higher thresholds. Our ap-

proach thus also refines accurate bounding boxes even fur-

ther, an effect not captured by the standard AP metrics.

4.4. Analysis of Inference Speed

The improved detection performance compared to SA-

SSD comes with a decreased inference speed. On a sin-

gle NVIDIA TITAN Xp GPU, SA-SSD runs at 19.2 FPS,

while SA-SSD+EBM runs at 8.4 FPS for T = 10 gradi-

ent ascent iterations. We further analyze how the choice

of T affects detector inference speed and performance in

Figure 5. The performance is here given in terms of 3D

AP (0.7 threshold) averaged over the three difficulty levels

(easy, moderate, hard), on KITTI val. We observe that the

choice T = 4 provides approximately equal performance

compared to T = 10, while only decreasing the inference

speed to 12.8 FPS. This trade-off between detector perfor-

mance and inference speed could potentially be further im-

proved by using fewer grid points in our RoIAlign variant,

or by using a more lightweight energy prediction network

branch. Our approach could also be very well-suited for

offboard 3DOD [53], where inference speed is less of a con-

cern. Exploring these directions is left for future work.

4.5. Analysis of Learned Distribution

For 3DOD from LiDAR point clouds, it can be inher-

ently difficult to correctly predict the heading angle φ of a

3D bounding box y (6). This is because it is often difficult,

when only given a point cloud, to distinguish between two

otherwise identical cars which are heading in opposite di-

rections. The true distribution p(y|x) will thus often have

two distinct modes, one at the true heading angle φ and one

at φ+π. In Figure 6, we visualize fθ(x, y) ∈ R as a function

of ∆φ when a predicted 3D bounding box y is rotated ∆φ
rad, demonstrating that our trained EBM p(y|x; θ) does in-

deed capture this inherent multi-modality in the true p(y|x).
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Figure 6. Visualization of the DNN scalar output fθ(x, y) when a

predicted 3D bounding box y (6) is rotated ∆φ rad. The two dis-

tinct modes at ∆φ = 0 and ∆φ = π demonstrate that the trained

EBM p(y|x; θ) captures the inherent multi-modality in p(y|x).

Future directions include investigating if the trained EBM

p(y|x; θ) could be used to construct accurate estimates of

prediction uncertainty, or provide other useful insights.

5. Conclusion

We applied conditional EBMs p(y|x; θ) to the task of 3D

bounding box regression, thus extending the recent EBM-

based regression approach from 2D to 3D object detec-

tion. By designing a differentiable pooling operator for

3D bounding boxes, we could integrate a conditional EBM

p(y|x; θ) into the state-of-the-art 3D object detector SA-

SSD. On the KITTI dataset, our approach consistently out-

performed the SA-SSD baseline across all 3DOD metrics,

and achieved highly competitive performance also com-

pared to other state-of-the-art methods. By demonstrating

the potential of EBM-based regression for highly accurate

3DOD, we hope that our work will encourage the research

community to further explore the application of EBMs to

3DOD and other important regression tasks.
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