
Semi-synthesis: A fast way to produce effective datasets for stereo matching

Ju He1∗ Enyu Zhou2∗ Liusheng Sun2 Fei Lei2 Chenyang Liu2 Wenxiu Sun2

1Johns Hopkins University 2SenseTime Research

Abstract

Stereo matching is an important problem in computer

vision which has drawn tremendous research attention for

decades. Recent years, data-driven methods with convo-

lutional neural networks (CNNs) are continuously push-

ing stereo matching to new heights. However, data-driven

methods require large amount of training data, which is not

an easy task for real stereo data due to the annotation diffi-

culties of per-pixel ground-truth disparity. Though synthetic

dataset is proposed to fill the gaps of large data demand, the

fine-tuning on real dataset is still needed due to the domain

variances between synthetic data and real data. In this pa-

per, we found that in synthetic datasets, close-to-real-scene

texture rendering is a key factor to boost up stereo match-

ing performance, while close-to-real-scene 3D modeling is

less important. We then propose semi-synthetic, an effective

and fast way to synthesize large amount of data with close-

to-real-scene texture to minimize the gap between synthetic

data and real data. Extensive experiments demonstrate that

models trained with our proposed semi-synthetic datasets

achieve significantly better performance than with general

synthetic datasets, especially on real data benchmarks with

limited training data. With further fine-tuning on the real

dataset, we also achieve SOTA performance on Middlebury

and competitive results on KITTI and ETH3D datasets.

1. Introduction

Stereo matching is one of the most fundamental prob-

lems in computer vision. It is widely used in applications

such as reconstruction [8, 5], robot navigation [18, 19],

and autonomous driving [4, 11]. Traditional methods solve

this task by carefully hand-crafted image priors and energy

functions. Recently, with the resurgence of the deep learn-

ing, we have witnessed significant progress in this field. The

deep learning methods define loss functions and learn com-

plex priors but are data-thirsty, which require a large amount

of training data to reach good performance.

There exist two kinds of datasets for stereo matching.

One is real datasets such as Middlebury [20], KITTI [17],

*: equal contribution.

Figure 1. A sample pair from semi-synthetic datasets and stereo

matching results on a real stereo pair from Middlebury dataset. (a)

Left view of a semi-synthetic image pair. (b) Ground-truth dispar-

ity map. (c) Stereo matching result trained on SceneFlow dataset.

(d) Stereo matching result trained on Semi-Synthetic datasets.

ETH3D [23], and the other is synthetic datasets such as

Sintel [1], Sun3D [27], SceneFlow [15]. Though they

prove their effectiveness in their corresponding task, they

all suffer from problems that harm their practical use. Real

datasets are usually small in scale due to the amount of hu-

man labor involved in constructing the scenes and annotat-

ing ground truth information, leading to the inaccuracy of

ground truth and monotonousness of scenes. On the other

side, synthetic datasets suffer from lacking real textures,

and they usually cost a long time to produce because of con-

structing real scenes and rendering.

To overcome these shortcomings, people now usually

combine these two kinds of datasets to train models. The

models are firstly pre-trained on the large general synthetic

datasets followed by fine-tuned on the corresponding real

datasets. However, this kind of training strategy struggles

when there is difficulty in collecting sufficient high-quality

real data. Besides, since some key factors of synthetic

datasets such as textures, illumination, disparity distribution

might be totally different from the real scenes, this kind of

pre-training might hurt the model’s performance.

1



Due to the limitations on the synthetic datasets, recent

work started to research on how to tackle domain gaps

between different datasets by either transferring certain

dataset to others [25, 12] or doing normalization to each

dataset separately [31]. However, there exists difficulty to

transfer certain key factors such as disparity distribution and

textures to a uniform space. Their usage is also limited to

existing datasets and can not be adapted to unseen scenes.

In this paper, we propose a novel and fast data synthesis

method, semi-synthesis, to produce large-scale on-demand

stereo datasets. It is called semi-synthesis because we ex-

tract real image patches from the corresponding scenes and

then texture them on generated geometry shapes. With this

simple method, we can easily control the key factors that

affect the training performance for the datasets, such as dis-

parity distribution, textures, geometry shapes, etc. Also,

with the fast speed of generating an image pair, we can pro-

duce large amounts of data in a short time, which definitely

facilitates the training of deep models. Extensive experi-

ments have been conducted to prove the effectiveness of our

semi-synthetic datasets. Besides the simplicity of construct-

ing large on-demand datasets compared to traditional syn-

thetic datasets, our semi-synthetic datasets also alleviate the

problem of domain gaps by not only sampling textures from

the corresponding scenes but also mimicking the desired en-

vironment factors. After only trained on our semi-synthetic

datasets, models outperform those trained on SceneFlow on

all real benchmarks, and even quite close to those fine-tuned

on real datasets on Middlebury.

Our contributions are as follows:

1. We propose a novel and fast method to produce large

on-demand semi-synthetic datasets for stereo match-

ing. This method can also be further extended to some

other fields, such as optical flow.

2. We analyze the impact of textures and scene geometry

of semi-synthetic datasets on the final performance.

3. We achieve significantly better performance on stereo

matching benchmarks with our semi-synthetic datasets

than with general synthetic datasets.

2. Related Work

In this section, we briefly analyze existing stereo datasets

and some recent progress on models of stereo matching.

2.1. Stereo Datasets

Stereo datasets can be roughly classified into two cate-

gories: 1) real datasets, 2) synthetic datasets. Real datasets

are either constructed by using Time-of-Flight (ToF) or

structured light. ToF is a more convenient way to col-

lect real datasets compared to structured light. However,

it struggles at the precision of ground truth since objects

which are far away or opaque can not reflect any light. An-

other problem of ToF is that the resolution of images cap-

tured by ToF is usually small, which means tiny objects’

details can not be well learned by the network. By con-

trast, datasets captured by structured light are much more

accurate, but they are limited to indoor scenes and data col-

lection. Thus they are usually of very small size. Synthetic

datasets are usually made by first constructing background

scenes and then adding some foreground objects, followed

by setting stereo camera to capture the images.

We introduce four widely used datasets in detail here.

Middlebury dataset [21] was one of the first datasets

for stereo matching, which contains 38 real indoor scenes

captured via a structured light scanner. A new version of

the Middlebury dataset [20] was proposed to give a more

accurate annotation at a resolution of 6 Megapixels, and it

contains 33 novel indoor scenes. However, due to the dif-

ficulty and high cost of constructing such accurate dense

stereo datasets, they are relatively small in size, and this

also yields the problem of low variability. The scenes are

limited in the indoor environment with controlled light con-

ditions.

KITTI dataset was first produced in 2012 and extended

in 2015. It was recorded by using a laser scanner mounted

on a car. While it is also a real dataset, the recorded scenes

are limited on streets with a fixed height and width. More-

over, the benchmark images are of low resolution, and the

laser only provides sparse ground truth information.

ETH3D dataset was proposed by Schöps et al. [23]

in 2017, which contains real images. The ground truth of

the datasets is acquired by using a laser scanner. Instead

of carefully constructing scenes in a controlled laboratory

environment as in Middlebury, ETH3D provides the full

range of challenges of real-world photogrammetric mea-

surements. However, it still suffers from a lack of data sam-

ples and variability.

SceneFlow dataset is a combined dataset of three large

synthetic stereo video datasets proposed by Mayer [15]. As

a synthetic dataset, it has accurate dense disparity maps and

variability in scenes. However, it still suffers problems such

as the fixed disparity distribution, limiting its usage on dif-

ferent baselines. Besides, the cost to extend it to a specified

domain can also not be ignored due to the limited scene en-

vironments.

2.2. Models for Stereo Matching

As introduced by the survey of Scharstein [22], a typ-

ical stereo matching algorithm takes four steps: matching

cost calculation, matching cost aggregation, disparity calcu-

lation, and disparity refinement. Traditional methods either

focus on aggregating local costs according to neighborhood

information [16, 32] or constructing a global energy func-

tion to minimize it [30, 7, 10].

2



Figure 2. Diagram of the pipeline of generating semi-synthetic datasets.

Recently, with the appearance of large-scale datasets,

deep neural networks tuned for stereo matching produce

SOTA performance on several stereo benchmarks. Prior

work [13, 24, 33] mainly focus on producing better features

for traditional stereo matching algorithms with a convolu-

tional neural network. First end-to-end network DispNet

together with a large synthetic dataset ScenFlow is intro-

duced in [15]. Then the widely used 3D cost volume is

first proposed in GCNet [9], which aims at using regression

to find the optimum matching results. PSMNet [2] further

introduced pyramid spatial pooling and 3D hourglass struc-

tures to enlarge the net’s receptive field and achieve better

results.

While these methods get good results on stereo match-

ing, they suffer from considerable use of GPU memory

and time, which limits their practical use. So recent re-

search pays more attention to fast and light methods on

high-resolution images. HSM [29] built a light model with

a hierarchical design. AANet [28] replaced the costly 3D

convolutions with aggregation modules and achieves com-

parable accuracy. Cascade Cost Volume [6] further extends

the hierarchical modules method to narrow the search range

of deeper stages based on the output of prior stages.

These models can achieve outstanding performance with

a large number of training samples but will struggle in sit-

uations when data are insufficient. Besides, the common

problem is that models trained on one specific domain can

not generalize well on new domains. In this paper, we aim

at solving these two problems simultaneously by generating

large-scale semi-synthetic datasets in the next section.

3. Method

We introduce our method of producing semi-synthetic

datasets step by step in section 3.1 followed by an analy-

sis of our main differences from other synthetic datasets at

section 3.2.

3.1. Pipeline

The open-source 3D software Blender 2.83a is used to

generate required stereo data, including left images, right

images, and the dense ground truth of disparity. As illus-

trated by figure 2, our method mainly contains the following

six steps.

Preparing background and stereo camera. For indoor

scenes, we usually choose a cuboid as a background to sim-

ulate the walls, floors, and ceilings in the scene. For outdoor

scenes, we generally choose a large faraway plane as the

background whose disparity value is close to zero. The ex-

ample scene shown in figure 2 is used to generate the semi-

synthetic training datasets for Middlebury. Besides, we add

the stereo camera, which is a built-in function of Blender.

As the experiment conducted by [14], the disparity distribu-

tion of the training set will affect the results of the network.

3



Figure 3. Examples demonstrating the variety of our semi-synthetic datasets. With manually setting of stereo camera’s hyper-

parameters, selected 3D models and image sequences, our datasets show a flexibility in terms of disparity distribution, objects, and textures.

So we set the focal length, sensor size, and baseline param-

eters of the scene according to the testing environments to

simulate the max disparity of testing scenes.

Looking for proper 3D models with UV maps. The

desired 3D models can be divided into simple geometric

primitives such as cubes and real object models like tables,

which can be downloaded from the Blender kit. After ac-

quiring these models, we delete their original materials and

only keep their UV maps. Random scaling and rotation aug-

mentation are applied for data diversity.

Adding 3D models to the particle system. After choos-

ing the needed 3D models, we use Blender’s particle sys-

tem to make these 3D models move in the space, avoiding

manually setting the motion tracks for objects. An emis-

sion source is placed in the space to emit particles (the 3D

models), which is at a plane above the whole space in our

figure 2. And we can simulate the disparity distribution of

test scene by controlling the particle quantity in different

levels of depth. In this process, a sequence of frames will

be captured by the stereo camera, and each frame serves as

an image in the final dataset.

Collecting textures from images. With all settings of

the 3D structure finished, we collect some pictures from

the testing scenes as the textures of the 3D objects. Note

that what we need is only a small set of monocular images

without any other types of data, such as ground truth dis-

parity. Collected images are further cropped into a series of

squares to prevent the images from being stretched. Putting

these cropped images together yields an image sequence to

be exploited later.

Texturing collected image patches to 3D models. Each

object can be randomly textured with an image sequence

sampled through the build-in features of Blender, which in-

ducing more variety in the data. Shading mechanism is not

applied to our model, unlike other synthetic datasets, so the

images are directly output as textures to the material. In

this way, we can ensure that the imported image textures

will not be disturbed by lighting so that the network can

extract the real image’s features. The parameter Mapping

Scale in Blender is adjusted according to the image patches

for avoiding over-scaling.

Rendering the whole scene. Finally, the Eevee engine

is employed for rendering, and the depth map of the left

and right cameras can be output in the Blender’s Com-

positing module. As we do not add shader to the pipeline,

our method reaches a very fast speed. Using one RTX

2080Ti, we can generate an image pair and the dense dis-

parity ground truth at the resolution of 1500×1000 in 2 sec-

onds, saving a few minutes of rendering time.

3.2. Comparison to previous synthetic datasets

Compared with previous synthetic datasets, two major

differences exist in our semi-synthetic datasets, which con-

tribute to our superior performance, and we give a detailed

analysis below.

Texture. Compared with SceneFlow, our dataset shares

the similar 3D scene design of adding foreground objects

on the background, but differ on the texture. In SceneFlow,

the texture of objects was chosen from combination of pro-

cedural images, fixed real images, and texture-style pho-

tographs. We argue that procedural and texture-style tex-

tures would not contribute much to the model generalization

on real datasets due to different distributions. By contrast,

we sample our textures from the images of corresponding

testing scenes directly to mimic the testing situations. Also,

since we abandon high-level information by texturing dif-

ferent image patches to objects without limitation of objects

themselves, the diversity of textures becomes much larger,

which benefits the training of models.

Diversity of geometry primitives Previously, Watson

et al. [26] also tried to use real images for making stereo

matching datasets, and compared different data generation

methods, such as Affine warps [3], Random pasted shapes

[14] in their paper. But all the results have not been sig-

nificantly improved compared to SceneFlow especially on

Middlebury. We reason that it is because they lack the di-

4



Figure 4. Visualization of outputs of CasStereo trained on different datasets on four Middlebury images at half resolution. Semi-

Synthetic-M stands for semi-synthetic datasets with Middlebury textures. Top row: Four images in the Middlebury datasets. Second

row: Output of CasStereo trained on SceneFlow. Third row: Output of CasStereo trained on Semi-Synthetic-M. Fourth row: Output of

CasStereo trained on SceneFlow and Middlebury. Last row: Output of CasStereo trained on Semi-Synthetic-M and Middlebury.

versity of geometry primitives. Therefore, We add various

3D models in the generation process by texture real images

on 3D models. This operation intuitively provides much

more information for the network to capture.

4. Experiments

We conduct extensive experiments to illustrate the ef-

fectiveness of our semi-synthetic dataset. We first describe

our detailed setup in section 4.1, including datasets, model

structures and metrics. Then we evaluate our models on

three public benchmarks with a comparison to SceneFlow.

We give a detailed analysis in section 4.2 followed by abla-

tion studies in section 4.3 to demonstrate the effects of dif-

ferent settings of several key factors in our semi-synthetic

datasets.

4.1. Setup

Datasets We use four publicly available datasets includ-

ing Middlebury-v3 [20], KITTI 2015 [17], ETH3D [23]

and Sceneflow [15] plus our own semi-synthetic datasets.

Middlebury-v3 contains 10 high-resolution training image

pairs and 13 additional image pairs with ground truth.

KITTI 2015 contains 200 low-resolution image pairs col-

lected on streets. ETH3D consists of 27 low-resolution im-

age pairs of both indoor and outdoor scenes. Sceneflow con-

tains around 35k synthetic image pairs with dense ground

5



Table 1. Results on Middlebury-v3 additional images where all pixels are evaluated. Test size stands for the test resolution of images where

Q means quarter, H means half and F stands for full. Best results for each method are bolded, second best results are underlined.

Method Test Size Training Datasets avgerr rms bad-1.0 bad-2.0 bad-4.0

PSMNet [2] Q

SceneFlow 13.026 36.281 61.361 42.810 26.718

Semi-Synthetic-M 4.269 15.662 41.270 23.029 12.302

SceneFlow + Middlebury 5.563 19.406 50.363 30.186 16.447

Semi-Synthetic-M + Middlebury 4.186 15.986 40.623 22.247 11.995

HSM [29] F

SceneFlow 8.806 26.272 55.267 36.913 23.122

Semi-Synthetic-M 6.402 22.346 39.487 24.177 14.497

SceneFlow + Middlebury 6.368 23.830 38.579 22.331 13.849

Semi-Synthetic-M + Middlebury 5.763 21.418 31.247 17.529 10.304

CasStereo [6] H

SceneFlow 17.960 44.488 50.971 37.948 28.170

Semi-Synthetic-M 4.340 17.936 25.247 14.090 8.825

SceneFlow + Middlebury 5.570 20.752 27.961 17.188 11.399

Semi-Synthetic-M + Middlebury 5.419 21.528 25.169 14.526 9.331

truth.

Implementation We conduct our experiments based

on three network structures: PSMNet [2], HSM [29],

CasStereo [6]. PSMNet is a classic work which first in-

troduced the pyramid structure into Stereo Matching. HSM

is a light network structure proposed to produce fast on-

demand results under some realistic situations and can be

applied to high-resolution input pairs. CasStereo is a recent

work which dynamically adjusting the search range of later

stages according to the results of early stages. Limited by

GPU memory due to different design of network modules,

size used for Middlebury datasets during training and test-

ing are different for each network. We follow the strategies

implemented by the authors while making some adaptations

to train these networks. To be specific:

For PSMNet, we perform color normalization to all data.

During training, images are randomly cropped to size H =

256 and W = 512. The max disparity is set to 192 for

KITTI, 192 for Middlebury, and 64 for ETH3D.

For HSM, we perform all augmentation strategies pro-

posed by the authors to the four public datasets excluding

our semi-synthetic datasets. During training, all images are

resized to size H = 512 and W = 768. The max disparity

is set to 192 for KITTI, 768 for Middlebury, 64 for ETH3D.

For CasStereo, we adopt a three-stage cascade cost vol-

ume. The max disparity is set to 192 for KITTI, 384 for

Middlebury, and 64 for ETH3D. Corresponding disparity

hypothesis and interval are also adapted according to the

max disparity.

Metrics Our evaluation is done on Middlebury-v3,

KITTI 2015 and ETH3D benchmarks. We use different

metrics for these three benchmarks.

For Middlebury-v3, we adopt the official metrics which

contains bad-4.0 (percentage of “bad“ pixels whose error

is greater than 4.0), bad-2.0, bad-1.0 for evaluating the re-

sult under different accuracy requirement; avgerr (average

absolute error in pixels) and rms (root-mean-square dispar-

ity error in pixels) count for subpixel level absolute errors.

These metrics are also used for evaluating ETH3D.

For KITTI 2015, we adopt D1-all for measuring the per-

centage of outliers for all pixels.

4.2. Comparison to SceneFlow

In this section, We discuss several strategies for the pre-

training and fine-tuning of those networks. Since these

benchmarks only allow one submission on the official test

splits, we evaluate our experiments on the validation sets of

each dataset. To be specific, for Middlebury we adopt the

13 additional pairs for validation. For KITTI 2015, we fol-

low the split protocol in HSM [29]. For ETH3D we manu-

ally sample 13 pairs from the training sets as validation sets.

We mainly conduct four experiments for each network: 1)

Train on SceneFlow. 2) Train on semi-synthetic datasets.

3) Train on SceneFlow and fine-tune on corresponding real

datasets. 4) Train on semi-synthetic datasets and fine-tune

on corresponding real datasets. For each validation dataset,

we re-generate the semi-synthetic datasets with the corre-

sponding real images as textures. We denote them with

suffix, e.g. Semi-Synthetic-M means that the textures of

generated semi-synthetic datasets come from Middlebury,

and K stands for KITTI, E stands for ETH3D. We limit

the size of semi-synthetic datasets to be comparable with

SceneFlow for a fair comparison. We pre-train our models

for 10 epochs and for the fine-tuning stage we set the epochs

to be 30.

Results on Middlebury. Deep learning based methods

have been struggling on Middlebury due to the insufficiency

of training data and the complexity of scenes. Table 1 sum-

marizes the results on Middlebury dataset. All three net-

works achieve much better performance when trained on

semi-synthetic datasets compared to those trained on Scene-

Flow. The average error rate drops 8% in average and bad-

2.0 rate drops by 50% percent. For PSMNet and CasStereo,

the results are even better than those pre-trained on Scene-

6



Figure 5. Visualization of outputs of CasStereo trained on different datasets on three KITTI images. Semi-Synthetic-K stands for

semi-synthetic datasets with KITTI textures. Top row: Three images in the KITTI datasets. Second row: Output of CasStereo trained on

SceneFlow. Third row: Output of CasStereo trained on Semi-Synthetic-K. Fourth row: Output of CasStereo trained on SceneFlow and

KITTI. Last row: Output of CasStereo trained on Semi-Synthetic-K and KITTI.

Flow and then fine-tuned on Middlebury. Networks, pre-

trained on Semi-Synthetic-M datasets and further fine-tuned

on Middlebury, get little performance gain, and even nega-

tive gain for CasStereo case. This indicates that our datasets

already contain sufficient information to learn the complex

Middlebury scenes.

Results on KITTI. KITTI is a relatively easier dataset

for stereo matching since the scenes are comparable sim-

ple and consistent and there exists adequate frames. Deep

models can get very good results on it after fine-tuned for

many epochs, e.g. the final submission model of PSM-

Net on KITTI benchmark was fine-tuned for 1000 epochs.

However, in this way, the models will be overfitting to the

KITTI dataset and thus the performance will decrease a lot

on other datasets. We only fine-tune the models on KITTI

2015 training sets for 30 epochs and compare the results. As

shown in table 2, networks pre-trained on semi-synthetic-

K improve by a lot margin compared to those pre-trained

on SceneFlow. And the performance is still better than the

SceneFlow ones after fine-tuned which demonstrates the su-

periority of our semi-synthetic datasets.

Results on ETH3D. ETH3D has a sparse ground truth

Table 2. Results on KITTI 2015 validation sets where all pixels are

evaluated. Best results for each method are bolded.

Method Datasets D1-all

PSMNet [2]

SceneFlow 33.586

Semi-Synthetic-K 9.510

SceneFlow + KITTI 2.695

Semi-Synthetic-K + KITTI 2.578

HSM [29]

SceneFlow 8.75

Semi-Synthetic-K 6.73

SceneFlow + KITTI 3.75

Semi-Synthetic-K + KITTI 3.14

CasStereo [6]

SceneFlow 18.570

Semi-Synthetic-K 4.924

SceneFlow + KITTI 2.013

Semi-Synthetic-K + KITTI 1.973

collected by laser scanner, there exists some regions with-

out ground truth that can not be learned sufficiently and the

details of objects edge are blurred. This phenomenon can be

alleviated by our semi-synthetic datasets with dense ground

truth and finer details. Table 3 summarizes the results on

7



Table 3. Results on ETH3D validation sets where all pixels are evaluated. Semi-Synthetic-E stands for semi-synthetic datasets with ETH3D

textures. Best results for each method are bolded.

Method Datasets avgerr rms bad-1.0 bad-2.0 bad-4.0

PSMNet [2]

SceneFlow 7.042 15.506 16.460 9.534 6.878

Semi-Synthetic-E 1.792 4.247 12.907 8.301 6.210

SceneFlow + ETH3D 0.327 0.685 5.479 1.671 0.335

Semi-Synthetic-E + ETH3D 0.296 0.608 4.455 1.282 0.305

HSM [29]

SceneFlow 3.282 8.420 25.020 11.594 6.564

Semi-Synthetic-E 1.294 3.178 10.205 6.241 4.205

SceneFlow + ETH3D 0.411 0.812 5.913 1.892 0.496

Semi-Synthetic-E + ETH3D 0.360 0.642 5.688 1.703 0.376

CasStereo [6]

SceneFlow 0.521 1.541 9.033 3.830 1.836

Semi-Synthetic-E 0.429 1.283 6.388 3.211 1.565

SceneFlow + ETH3D 0.281 0.563 3.988 0.985 0.295

Semi-Synthetic-E + ETH3D 0.257 0.540 3.333 0.826 0.261

Table 4. Ablation study of texture on Middlebury.

Method Test Size Texture avgerr rms bad-1.0 bad-2.0 bad-4.0

CasStereo [6] H

SceneFlow 17.960 44.488 50.971 37.948 28.170

Photos 4.892 20.060 28.564 17.175 11.107

Middlebury 4.340 17.936 25.247 14.090 8.825

Table 5. Ablation study of geometry shape complexity on Middlebury.

Method Test Size Datasets avgerr rms bad-1.0 bad-2.0 bad-4.0

CasStereo [6] H
Simple 5.090 20.419 28.768 16.208 9.794

Complex 4.340 17.936 25.247 14.090 8.825

ETH3D dataset. Models trained on semi-synthetic datasets

outperform those trained on SceneFlow especially when not

further fine-tuned on ETH3D.

4.3. Ablation Study

In this section, we conduct several ablation studies on

our semi-synthetic datasets to analyze the impact of sev-

eral factors, e.g. the source of textures. Our experiment in

this section is based on CasStereo network for Middlebury

additional images of half-size resolution. Models are only

trained on semi-synthetic datasets with the corresponding

factor varying and all other settings fixed.

Texture. Table 4 summarizes the results on Middlebury

dataset with three different texture sources. SceneFlow rep-

resents traditional synthetic datasets; photos refers to ran-

domly downloaded images; Middlebury stands for training

sets of Middlebury dataset. The texture similarity between

the training and test data is Middlebury > Photos >

SceneF low. The results indicate that the performance be-

comes better with the increment of similarity between train-

ing and testing data textures, especially when the source of

textures change from synthesis to reality.

Geometry shape diversity. Table 5 summarizes Mid-

dlebury’s performance with varying diversity of geometry

shapes. Two typical settings are compared, where Simple

refers to a set of simple geometric bodies, such as cuboid,

cone, cylinder and etc, while Complex denotes the more

complex 3D models downloaded from the Internet as shown

in Figure 2 Step 2, which is more diverse than the former

one. It is shown that a more diverse scene helps to train the

network.

5. Conclusion

In this work, we mainly study the problem of gener-

ating effective datasets for stereo matching. Existing real

datasets are usually small in size, which hinders the train-

ing of deep models. On the other hand, general synthetic

datasets suffer from lacking real textures and they do not

coincide with real testing scenes on several environmental

factors. We propose to solve this by using a novel and fast

method to produce large-scale on-demand semi-synthetic

datasets. Our extensive experiments demonstrate the ef-

fectiveness of semi-synthetic datasets on three widely used

stereo benchmarks of real scenes. For future work, we aim

at continuously analyzing the key factors of a good semi-

synthetic dataset and extending this method to other related

fields such as optical flow.

8



References

[1] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A nat-

uralistic open source movie for optical flow evaluation. In

A. Fitzgibbon et al. (Eds.), editor, European Conf. on Com-

puter Vision (ECCV), Part IV, LNCS 7577, pages 611–625.

Springer-Verlag, Oct. 2012.

[2] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo

matching network. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5410–

5418, 2018.

[3] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-

novich. Superpoint: Self-supervised interest point detection

and description. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pages

224–236, 2018.

[4] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 3354–3361. IEEE, 2012.

[5] Andreas Geiger, Julius Ziegler, and Christoph Stiller. Stere-

oscan: Dense 3d reconstruction in real-time. In 2011 IEEE

intelligent vehicles symposium (IV), pages 963–968. Ieee,

2011.

[6] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong

Tan, and Ping Tan. Cascade cost volume for high-resolution

multi-view stereo and stereo matching. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2495–2504, 2020.

[7] H. Hirschmuller. Accurate and efficient stereo processing

by semi-global matching and mutual information. In 2005

IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05), volume 2, pages 807–814

vol. 2, 2005.

[8] Shahram Izadi, David Kim, Otmar Hilliges, David

Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie

Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,

et al. Kinectfusion: real-time 3d reconstruction and inter-

action using a moving depth camera. In Proceedings of the

24th annual ACM symposium on User interface software and

technology, pages 559–568, 2011.

[9] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter

Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.

End-to-end learning of geometry and context for deep stereo

regression. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 66–75, 2017.

[10] Andreas Klaus, Mario Sormann, and Konrad Karner.

Segment-based stereo matching using belief propagation and

a self-adapting dissimilarity measure. In Proceedings of the

18th International Conference on Pattern Recognition - Vol-

ume 03, ICPR ’06, page 15–18, USA, 2006. IEEE Computer

Society.

[11] Peiliang Li, Xiaozhi Chen, and Shaojie Shen. Stereo r-cnn

based 3d object detection for autonomous driving. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 7644–7652, 2019.

[12] Rui Liu, Chengxi Yang, Wenxiu Sun, Xiaogang Wang, and

Hongsheng Li. Stereogan: Bridging synthetic-to-real do-

main gap by joint optimization of domain translation and

stereo matching. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pages

12757–12766, 2020.

[13] W. Luo, A. G. Schwing, and R. Urtasun. Efficient deep learn-

ing for stereo matching. In 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 5695–

5703, 2016.

[14] Nikolaus Mayer, Eddy Ilg, Philipp Fischer, Caner Hazir-

bas, Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox.

What makes good synthetic training data for learning dispar-

ity and optical flow estimation? International Journal of

Computer Vision, 126(9):942–960, 2018.

[15] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 4040–4048, 2016.

[16] X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang. Segment-

tree based cost aggregation for stereo matching. In 2013

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 313–320, 2013.

[17] Moritz Menze and Andreas Geiger. Object scene flow for au-

tonomous vehicles. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 3061–

3070, 2015.

[18] Don Murray and James J Little. Using real-time stereo vision

for mobile robot navigation. autonomous robots, 8(2):161–

171, 2000.

[19] Javier Salmerón-Garcı, Pablo Inigo-Blasco, Fernando Dı,

Daniel Cagigas-Muniz, et al. A tradeoff analysis of a cloud-

based robot navigation assistant using stereo image process-

ing. IEEE Transactions on Automation Science and Engi-

neering, 12(2):444–454, 2015.

[20] Daniel Scharstein, Heiko Hirschmüller, York Kitajima,

Greg Krathwohl, Nera Nešić, Xi Wang, and Porter West-

ling. High-resolution stereo datasets with subpixel-accurate

ground truth. In Xiaoyi Jiang, Joachim Hornegger, and

Reinhard Koch, editors, Pattern Recognition, pages 31–42,

Cham, 2014. Springer International Publishing.

[21] Daniel Scharstein and Richard Szeliski. A taxonomy and

evaluation of dense two-frame stereo correspondence algo-

rithms. International journal of computer vision, 47(1-3):7–

42, 2002.

[22] D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and

evaluation of dense two-frame stereo correspondence algo-

rithms. In Proceedings IEEE Workshop on Stereo and Multi-

Baseline Vision (SMBV 2001), pages 131–140, 2001.

[23] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani,

Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-

dreas Geiger. A multi-view stereo benchmark with high-

resolution images and multi-camera videos. In Conference

on Computer Vision and Pattern Recognition (CVPR), 2017.

[24] A. Shaked and L. Wolf. Improved stereo matching with con-

stant highway networks and reflective confidence learning.

In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 6901–6910, 2017.

9



[25] Xiao Song, Guorun Yang, Xinge Zhu, Hui Zhou, Zhe

Wang, and Jianping Shi. Adastereo: A simple and effi-

cient approach for adaptive stereo matching. arXiv preprint

arXiv:2004.04627, 2020.

[26] Jamie Watson, Oisin Mac Aodha, Daniyar Turmukhambe-

tov, Gabriel J Brostow, and Michael Firman. Learning stereo

from single images. arXiv preprint arXiv:2008.01484, 2020.

[27] Jianxiong Xiao, Andrew Owens, and Antonio Torralba.

Sun3d: A database of big spaces reconstructed using sfm

and object labels. In Proceedings of the IEEE international

conference on computer vision, pages 1625–1632, 2013.

[28] Haofei Xu and Juyong Zhang. Aanet: Adaptive aggrega-

tion network for efficient stereo matching. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 1959–1968, 2020.

[29] Gengshan Yang, Joshua Manela, Michael Happold, and

Deva Ramanan. Hierarchical deep stereo matching on high-

resolution images. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5515–

5524, 2019.

[30] Q. Yang. A non-local cost aggregation method for stereo

matching. In 2012 IEEE Conference on Computer Vision

and Pattern Recognition, pages 1402–1409, 2012.

[31] Feihu Zhang, Xiaojuan Qi, Ruigang Yang, Victor Prisacariu,

Benjamin Wah, and Philip Torr. Domain-invariant stereo

matching networks. arXiv preprint arXiv:1911.13287, 2019.

[32] K. Zhang, J. Lu, and G. Lafruit. Cross-based local stereo

matching using orthogonal integral images. IEEE Trans-

actions on Circuits and Systems for Video Technology,

19(7):1073–1079, 2009.

[33] J. Žbontar and Y. LeCun. Computing the stereo matching

cost with a convolutional neural network. In 2015 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1592–1599, 2015.

10


