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Abstract

Autonomous driving systems need to handle complex

scenarios such as lane following, avoiding collisions, tak-

ing turns, and responding to traffic signals. In recent

years, approaches based on end-to-end behavioral cloning

have demonstrated remarkable performance in point-to-

point navigational scenarios, using a realistic simulator

and standard benchmarks. Offline imitation learning is

readily available, as it does not require expensive hand an-

notation or interaction with the target environment, but it

is difficult to obtain a reliable system. In addition, existing

methods have not specifically addressed the learning of re-

action for traffic lights, which are a rare occurrence in the

training datasets. Inspired by the previous work on multi-

task learning and attention modeling, we propose a novel

multi-task attention-aware network in the conditional imita-

tion learning (CIL) framework. This does not only improve

the success rate of standard benchmarks, but also the abil-

ity to react to traffic lights, which we show with standard

benchmarks.

1. Introduction

In the field of autonomous driving, end-to-end behav-

ioral cloning has emerged recently, and many deep net-

works trained to mimic expert demonstrations have shown

reasonable performances from lane-keeping [3, 30] to

point-to-point navigation [6, 7]. Typically, those deep net-

works are trained by using an offline dataset generated by

an expert-driver (off-policy), or they lean a control policy

by rolling out the environment itself to find good rewards

using reinforcement learning (on-policy).

However, previous studies have revealed several critical

limitations. Firstly, an agent that learned a control policy

from an offline dataset may not be able to make accurate de-

cisions in previously unobserved environments. In a study

[7] conducted by using an open-source driving simulator

CARLA [10], it was reported that the driving performance

of the imitation learning agent considerably drops under
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Figure 1: An overview of our proposed multi-task attention-

aware network architecture which is composed of seven

components: encoder, two decoders, traffic light (TL) state

classifier, flatten module, velocity encoder, and driving

module. The main target task of this network is to predict

control signals from a monocular RGB camera end-to-end.

The encoder implements an attention mechanism and gen-

erates two types of attention-weighted latent feature maps

(see Figure 2).

those conditions such as untrained urban area, weather con-

ditions, and traffic congestion. Secondly, it is important to

know how well a network perceives visual inputs for such a

safety-critical application of autonomous driving, but only

a few studies addressed this issue [8, 21, 24].

Therefore, in this work, we tackle the aforementioned

problems based on the following ideas: (1) Learning visual

recognition sub-tasks (e.g., semantic segmentation) along-

side can encourage the network to learn generalizable scene

representations that are effective for decision-making. Sim-

ilarly to [21], we also introduce multi-tasking to decode

scene representations as sub-tasks. Although, in the previ-

ous study, the learning process was divided into perception

and control, we train all tasks at the same time. Addition-

ally, we adopt traffic light classification as one of the sub-



tasks. In this way, an operator can easily debug the model

performance by looking at its predictions. (2) Also, an at-

tention mechanism is introduced to further improve control

performance by focusing on salient regions among the ex-

tracted features like humans do when driving. Our main

contributions can be summarized as follows:

• We propose a novel multi-task attention-aware net-

work for vision-based end-to-end autonomous driving.

• We show that our approach achieves better or compa-

rable results with the current state-of-the-art models on

the CARLA benchmarks [7, 10].

• We further perform the traffic light infraction analy-

sis to quantitatively show the effectiveness of our ap-

proach in handling traffic lights.

• We study how attention layers change what network

focuses on by visualizing saliency maps.

2. Related work

Behavioral cloning for autonomous driving Bojarski et

al. [3] were the first to successfully demonstrate lane fol-

lowing task in an end-to-end (image-to-steering) manner us-

ing a simple CNN. Later, Xu et al. [30] used a large-scale

video dataset to predict vehicle egomotion. To extend the

learned control policy to goal-directed navigation to solve

the ambiguous action problem (e.g., intersections), Codev-

illa et al. [6] proposed Conditional Imitation Learning (CIL)

framework. The goal of CIL is to navigate in an urban en-

vironment where the autonomous vehicle must take turns

at intersections based on high-level command input such

as “turn left”, “turn right”, and “go straight”. Because of

CIL and open-source access to realistic driving simulator

CARLA [10], many follow-up works have been conducted

in CIL framework [4, 7, 8, 21, 22, 26] which called a vision-

based driving system where perception relies on visual in-

put from cameras only to keep the entire system simple.

Attention in vision models In the field of computer vi-

sion, attention has been a key idea to improve perfor-

mance of CNNs in various tasks such as classification

[16, 29], object detection [11], image tracking [9], and

captioning [31]. Katharopoulos and Fleuret [17] proposed

an attention-sampling approach to process megapixel im-

ages . Liu et al. [23] presented the Multi-Task Attention

Network (MTAN) that has a feature-level attention mecha-

nism to select task-specific features for multi-task learning.

Usually, incorporating an attention mechanism requires a

unique architectural design like the abovementioned ones.

In contrast, module-based attention approaches [16, 28, 29]

are another trend that can simply be attached to existing

CNNs [5, 14, 15] and improves performances. Convolu-

tional Block Attention Module (CBAM) [29] is a repre-

sentative of them, where attention is learnable end-to-end

without requiring additional labels. A few approaches have

also introduced attention in the autonomous driving context.

Mori et al. [24] used Attention Branched Network [12] to

develop a visually interpretable model. Similarly, Kim and

Canny [18] visualized saliency part to predict steering by

decoding attention heat maps.

An approach similar to ours by Cultrera et al. [8] splits

features into multi-scale grids and weighs with softmax

scores to drop out irrelevant regions. In comparison, our

approach uses CBAM specialized for one particular task in

multi-task architecture to emphasize features over the chan-

nel and spatial dimensions separately and refines specifi-

cally to the task. Also, our attention mechanism is based

on MTAN [23], which originally handles dense estimation

tasks only such as semantic segmentation and depth estima-

tion, while we design it to fit into the CIL framework [6]

and our model performs control prediction in an end-to-end

manner as well.

3. Methodology

Inspired by the previous works of end-to-end driving

[6, 21] and visual attention methods [23, 29], we introduce a

multi-task attention-aware neural network that learns com-

pact road scene representation to jointly predict scene rep-

resentations (semantic segmentation and depth estimation),

color state of traffic light, and driving control.

First of all, we consider the autonomous driving problem

in an urban environment as a goal-directed motion planning

task. To this end, we adopt the Conditional Imitation Learn-

ing (CIL) framework [6] to train our model in an end-to-end

manner.

Secondly, our approach learns semantic segmentation

and depth estimation to learn to encode the image into a

meaningful feature vector as in [21]. Although the authors

of [21] were the first to introduce those scene representa-

tion learning in the CIL framework, the learning process

was divided into perception and driving. In our approach,

we train segmentation and depth estimation together with

control. Moreover, we also add traffic light classification

task as the fourth task that our network performs at the same

time as the others.

Thirdly, our approach incorporates an attention mecha-

nism inspired by the MTAN proposed by Liu et al. in [23]

to successfully learn task-shared and task-specific features

separately. Differently from the original MTAN which

drops irrelevant features from global feature maps, we use

a CBAM-based attention module to emphasize the global

feature maps by additive operation. This contributes to the

learning of much more complex behavior of reacting to traf-

fic lights than the ability to keep lane and following vehi-
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Figure 2: Visualization of the ResNet34-based encoder network with two attention mechanisms. This encoder outputs

two types of task-specific attention-weighted feature maps: Type1 and Type2, generated by its attention paths formed by

attention modules and convolution blocks, similar to MTAN [23].

cles.

3.1. Network architecture

Figure 1 gives an overview of the architectural design of

our proposed approach which is composed of seven com-

ponents: encoder, two decoders for scene representations,

traffic light state classifier, flatten module, velocity encoder,

and driving module. Our network model is built on the two

state-of-the-art approaches in the CARLA benchmark; the

Conditional Imitation Learning approach with ResNet-34

backbone and Speed prediction head (CILRS) proposed by

Codevilla et al. in [7], and the Multi-Task learning approach

(MT) proposed by Li et al. in [21].

In the CIL framework, the agent is conditioned by the ex-

ternal navigational command (e.g., turn left) and asked for

the control command corresponding to it so that the learned

agent can be controlled by that command at test time. This

eliminates the ambiguous problem at intersections where

multiple actions can be taken [6].

Our model’s inputs are a monocular RGB camera im-

age I from a front-facing camera, a measured velocity v

of the ego-vehicle, and a high-level command c which is a

one-hot encoded vector of (“follow lane”, “turn left”, “turn

right”, “go straight”). Our model performs predictions of

control signals (steering ŝ, throttle t̂, and brake b̂) as main

task along with three different complementary sub-tasks:

semantic segmentation Ŝ, depth estimation D̂, and classi-

fication of the traffic light state t̂ which is one-hot vector of

(“red”, “yellow“,“green”, “none”) at every frame. By doing

such sub-tasks, we suppose that the model can capture road

scenes without missing necessary information for generat-

ing control signals and encode those into its latent feature

maps. Additionally, we employ a simple channel-spatial at-

tention mechanism described in the next paragraph inspired

by the study [23] where task-specific attention modules are

used to select and emphasize features from one shared en-

coder for different image recognition tasks.

Residual network with attention Figure 2 shows the en-

coder module that consists of ResNet-34 [14] for the back-

bone network, attention modules, and convolutional blocks.

Using these attention modules and convolution blocks, we

build two types of task-specific attention paths along with

the shared backbone encoder: Type1 and Type2. Type1

is formed by a set of attention modules and convolution

blocks, which then takes convolution feature maps from ev-

ery end of the ResNet stages. The attention modules play

as feature refiners that emphasize the global feature maps

specifically to a certain task. In comparison, MTAN [23]

used attention to select which features to use, while we em-

phasize them via an additive operation.

The Type2 is made of an attention module that refines

the feature maps obtained from the last layer of the ResNet.

In total, we prepare two Type1 attention paths for segmen-

tation and depth estimation, and two Type2 paths for traffic

light classification and control command prediction.

We have empirically found that combining the two types

of attention mechanisms results in better performance than

using only Type1 or Type2 individually for all tasks. In-

tuitively this is reasonable because tasks that require dense

estimation, such as segmentation and depth estimation, may

often be better to have access to higher resolution feature

maps to avoid missing details, as is a common technique

in architectures like U-Net [25]. Conversely, tasks such as

control prediction and traffic light classification may require

more abstract features in the hidden representation. For the



attention module, we adopt CBAM [29].

Decoder networks As shown in Figure 1, we build two

decoder networks for the image decoding sub-tasks: se-

mantic segmentation and depth estimation, each receiving

Type1 task-specific features from the encoder. The goal

of those sub-tasks is to learn compact and generalizable la-

tent representation for control prediction as done in [21, 30].

This multi-tasking approach enforces the encoder to gener-

ate representations such that they encode “what”, “where”,

and “how far” information in the feature maps. The resolu-

tion of both decoded images is the same as the input image

resolution of 384×160. The decoder architectures are based

on [21], but empirically we have found that performance is

improved when the segmentation decoder larger than the

depth one.

Traffic light classifier Reacting to the traffic lights has

not yet been explicitly modeled in vision-based end-to-end

driving approaches [6, 8, 21]. In some works [4, 7], the

authors addressed the learning of the behavior of reacting

to the traffic lights from only the demonstration of stop-

ping for a red light and starting going forward when it turns

green. However, in situations where an agent is facing a

traffic light, it is important for humans to know which state

of the traffic light the agent is aware of. Also, the ability to

classify the light state can help the network learn the behav-

ior of reacting to it according to the color. Therefore, we

introduce traffic light state classification as one of the sub-

tasks. Our approach classifies a traffic light state at every

frame into one of four classes including (“red”, “yellow”,

“green”, “none”).

Driving module The driving module takes a vector fea-

ture map denoted as j produced by concatenating flattened

feature map, encoded velocity input v, high-level com-

mand c and outputs control commands (steering ŝ, throt-

tle t̂ and braking signal b̂), which are referred to as regres-

sion tasks. Following prior works in the CIL framework

[4, 6, 7, 8, 21, 26], our driving module also implements

branched prediction head: four branches corresponding to

each navigational command. Command input selects which

of these branches is used to predict control commands. The

agent that has the command-dedicated prediction head per-

forms better than that with one prediction head, which is

reported by Codevilla et al. in [6].

3.2. The model objective

To the network, we define the objective function Ltotal

as the weighted sum of control regression loss Lcontrol,

traffic light state classification loss Ltl, semantic segmen-

tation loss Lseg , and depth estimation loss Ldep with the
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Figure 3: Example frames of the collected dataset (train-

ing conditions in Town01) and new weather conditions in

Town02.

task weightings denoted by λ with each task subscript:

Ltotal = λcontrolLcontrol + λtlLtl + λsegLseg + λdepLdep

(1)

Control loss Lcontrol is the weighted linear combination of

steering, throttle, and brake losses Lc with weighting terms

γc, where c = 1 is for steering, c = 2 for throttle, and c = 3

for brake:

Lcontrol =

3∑

c=1

γcLc (2)

We use a mean squared error for each control regression loss

Lc. For traffic light state classification and semantic seg-

mentation, we use class-weighted categorical cross-entropy

losses: Lseg calculated between the network output Ŝ and

ground-truth label S, and Ltl done between t̂ and t. Lastly,

for depth estimation, we use a pixel-wise mean squared er-

ror between the network output D̂ and the ground-truth la-

bel D. All coefficients λ and γ are obtained empirically by

examining validation errors to determine when they were

valid.

4. Environment and dataset

We perform all our experiments in CARLA simula-

tor [10] version 0.8.4. This version of the simulator pro-

vides two different suburban towns: Town01 for training,

and Town02 for testing. It has a diverse, non-deterministic



environment where dynamic obstacles may appear (e.g

auto-cruising vehicles and pedestrians) and weather con-

ditions can also change by user preferences. In particu-

lar, pedestrians have random behaviors; crossing the street

without any previous notice, which is unpredictable and

thus an agent needs to react quickly as described in [7].

Moreover, they may crash themselves into a car stopping

at a red light or an obstacle, resulting in an incomplete eval-

uation.

4.1. Dataset collection

We collected our dataset simply because provided one

by Codevilla et al. in [7] do not contain traffic light infor-

mation. To do so, we adapt a hand-coded expert autopilot

provided by Codevilla et al. in [6], which leverages simu-

lated information to follow the waypoints nearly perfectly

and stop for forward-driving vehicles and pedestrians to

avoid collisions. It also reacts to the traffic lights regard-

ing their color state. To obtain the ground-truth label of the

light state, the original code provided was modified to save

it additionally. When multiple lights are visible, the state

of the light facing the ego-vehicle is saved as the ground-

truth label. We collected 466, 000 frames from Town01 and

randomly split into 372, 000 of the training set and 94, 000

of the validation set. Each frame consists of front-faced

monocular RGB camera image I , auto-generated semantic

segmentation S, depth map D, and measurements includ-

ing steering s, throttle t, brake b, speed v, high level com-

mand c, and ground-truth traffic light state t. The dataset

is collected under four different weather conditions (“Clear

Noon”, “Wet Noon”, “Hard Rain Noon”, “Clear Sunset”)

as it is specified condition by the CARLA benchmarks, de-

scribed more in Section 5.3.

4.2. Data augmentation and balancing

We found that data augmentation and balancing are cru-

cial for better generalization performance as reported in pre-

vious works [6, 21]. In order to enlarge training dataset dis-

tribution, we use the same set of common image augmen-

tations as done in [6], including gaussian noise, blurring,

pixel dropout, and contrast normalization during training.

Furthermore, those image transformations are followed by

PCA color augmentation which is proposed in [20] across

every mini-batch.

Additionally, it is well known that driving datasets have

inherently unbalanced distribution in general, especially in

control [2]. Our dataset is no exception and thus contains

mostly driving forwards, so without balancing agent only

drives forward. To ease the bias of the skewed distribu-

tion of our dataset, we performed undersampling based on

steering values during training. Specifically, a sample has a

smaller chance of being selected if it is overrepresented in

the dataset. Consequently, straight driving scenes which are

Training conditions (4 weathers, Town01)

Task MT CILRS Ours w/o Att. Ours

Straight 100 ± 0 98 ± 3 99 ± 1 100 ± 0

One Turn 100 ± 1 92 ± 7 97 ± 4 100 ± 1

Navigation 100 ± 0 97 ± 4 98 ± 3 100 ± 0

Nav. Dyn. 99 ± 3 95 ± 4 96 ± 4 99 ± 2

New weather (2 weathers, Town01)

Task MT CILRS Ours w/o Att. Ours

Straight 100 ± 0 95 ± 5 98 ± 4 100 ± 0

One Turn 100 ± 1 85 ± 8 94 ± 7 99 ± 3

Navigation 100 ± 0 71 ± 6 94 ± 9 97 ± 6

Nav. Dyn. 99 ± 3 70 ± 4 96 ± 7 97 ± 4

New town (4 weathers, Town02)

Task MT CILRS Ours w/o Att. Ours

Straight 98 ± 4 95 ± 4 98 ± 4 99 ± 3

One Turn 93 ± 6 85 ± 7 92 ± 8 98 ± 2

Navigation 81 ± 12 71 ± 9 84 ± 14 93 ± 10

Nav. Dyn. 78 ± 16 70 ± 14 82 ± 13 91 ± 11

New town & weather (2 weathers, Town02)

Task MT CILRS Ours w/o Att. Ours

Straight 99 ± 2 92 ± 6 100 ± 0 99 ± 1

One Turn 99 ± 2 83 ± 12 91 ± 8 99 ± 1

Navigation 88 ± 7 68 ± 24 90 ± 9 96 ± 6

Nav. Dyn. 86 ± 11 67 ± 21 88 ± 9 91 ± 9

Table 1: Comparison of the success rate of the proposed

approach to the state-of-the-art models on the original

CARLA benchmark (CoRL2017) [10]. Mean and standard

deviation over three repetitions are reported (MT [21] has

two repetitions). For all methods, seed is not fixed at train-

ing time. Our approach emits competitive or better results

than the previous state-of-the-art models of end-to-end driv-

ing.

the dominant mode in the dataset are often skipped when

training. Without this balancing, our agents rarely com-

pleted full episodes in the benchmarks.

5. Experiments

5.1. Training setup

We implemented the proposed approach in TensorFlow

2.3.0 framework [1]. In contrast to the [21], we do not di-

vide the training process into stages. We use a mini-batch

size of 32 and the Adam optimizer [19] in which the ini-

tial learning rate is set to 0.005. When training, we val-

idate the presented model at the end of every epoch, and

then if the validation error of control does not record the

best for over five epochs, we divide the learning rate by 5.

The training lasts for approximately two days on a single

Nvidia GeForce GTX 1080Ti. The resolution of all images



Training conditions New weather

Task MT CILRS Ours w/o Att. Ours MT CILRS Ours w/o Att. Ours

Straight 0.0±0.0 1.0±1.7 0.7±1.5 0.3±1.1 1.0±1.7 2.9±2.1 3.6±4.0 0.0±0.0

One Turn 0.3±0.7 1.1±0.9 0.8±1.2 0.0±0.0 0.0±0.0 0.6±1.3 1.1±1.1 0.0±0.0

Navigation 1.0±1.1 1.8±1.3 0.8±1.0 0.1±0.3 0.6±0.6 0.6±0.6 0.6±0.9 0.4±0.6

Nav. Dyn. 0.6±0.6 1.1±1.3 0.6±1.1 0.5±0.9 1.5±0.5 2.6±1.1 2.0±1.3 0.2±0.4

New town New town & weather

Task MT CILRS Ours w/o Att. Ours MT CILRS Ours w/o Att. Ours

Straight 15.9±10.1 8.3±4.5 10.3±3.5 5.4±4.5 17.7±5.9 17.3±20.5 11.8±3.4 7.8±6.5

One Turn 11.1±5.3 11.3±4.8 8.2±3.9 4.1±3.7 15.7±6.7 22.3±19.8 14.8±8.1 4.2±3.3

Navigation 9.7±6.4 12.0±6.7 12.9±2.8 8.7±4.9 13.6±5.6 16.8±11.9 18.7±17.1 11.4±6.9

Nav. Dyn. 8.7±3.5 9.8±4.6 11.4±7.1 6.1±3.6 9.5±4.0 10.1±3.8 10.0±1.75 14.2±10.5

Table 2: Traffic light infraction analysis on CoRL2017 benchmark [10]. Percentage of times an agent crossed on red traffic

lights is reported with mean and standard deviation over three repetitions except for MT [21] that has two repetitions (lower is

better). Our proposed approach records a smaller number of infractions under most tasks. Note that the MT method contains

traffic light classifier in our implementation, not present in the original MT [21].

Input image CILRS MT Ours w/o Att. Ours
Grad-CAM calculated on control prediction

Grad-CAM calculated on traffic light state prediction

No Image

No Image

Figure 4: Randomly picked Grad-CAM [27] visualization results. CILRS does not have traffic light prediction. Shown

results on control prediction (top four rows) are summed over individual Grad-CAM results done on each control output.

is 384 × 160, including depth and semantic segmentation

images. Without setting a random seed, we repeated all

methods three times from training to evaluation (except for

MT, which was repeated only twice), while the best seed out

of five runs was selected in [7]. This may result in larger

standard deviations in the results, but the reproducibility

may also be higher. Note that we have come up with the

above hyperparameter settings through experiments.

5.2. Baselines

We compare our proposed method to the two methods

we build on: the conditional imitation learning approach



Training conditions (4 weathers, Town01)

Task MT CILRS Ours w/o Att. Ours

Empty 100 ± 0 94 ± 6 97 ± 4 99 ± 1

Regular 90 ± 3 87 ± 5 91 ± 5 88 ± 5

Dense 46 ± 11 41 ± 6 45 ± 14 53 ± 11

New weather (2 weathers, Town01)

Task MT CILRS Ours w/o Att. Ours

Empty 98 ± 3 85 ± 9 94 ± 7 97 ± 4

Regular 84 ± 3 76 ± 8 87 ± 10 93 ± 5

Dense 45 ± 9 35 ± 6 42 ± 7 44 ± 12

New town (4 weathers, Town02)

Task MT CILRS Ours w/o Att. Ours

Empty 66 ± 14 57 ± 11 76 ± 11 90 ± 12

Regular 50 ± 10 44 ± 11 62 ± 13 69 ± 11

Dense 20 ± 4 17 ± 8 23 ± 5 37 ± 9

New town & weather (2 weathers, Town02)

Task MT CILRS Ours w/o Att. Ours

Empty 57 ± 10 37 ± 11 71 ± 11 81 ± 11

Regular 44 ± 7 30 ± 11 61 ± 8 67 ± 9

Dense 24 ± 10 14 ± 5 22 ± 10 23 ± 5

Table 3: Results on the NoCrash benchmark [7] with mean

and standard deviation over three runs except for MT [7]

that has two runs. For all methods, seed is not fixed when

training.

(CILRS) proposed by Codevilla et al. [7] and the origi-

nal multi-task learning approach (MT) proposed by Li et

al. [21] (see Section 3 for detailed information). For a

fair comparison, we implement the two approaches with the

same setup as ours using our dataset and the same network

module for all methods (just reflecting the original idea of

the papers), so results are different from the original ones.

Also, note that MT contains a traffic light classifier that does

not appear in the original implementation.

5.3. Experimental setup

We evaluate our proposed method on the original

CARLA benchmark named CoRL2017 [10] and on the

NoCrash benchmark [7]. Both evaluate an agent in a goal-

directed navigation scenario whether or not the agent can

accomplish point-to-point navigation in a suburban setting.

Each benchmark defines a fixed number of starting and goal

points in both Town01 and Town02, accompanied by a route

planner that computes a global path between starting and

goal points using the A* algorithm [13]. This planner sends

the high-level command c at every frame considering the

location of an agent to indicate which direction it should

proceed from its current position. All evaluation trials are

done in four generalization contexts: training condition,

new weather, new town, and new town & new weather.

“Training condition” indicates that each trial is done un-

der four training weather conditions in Town01, which are

encountered when training, whereas “new weather” speci-

fies two new weather conditions that do not appear when

training (see examples for the weather conditions shown in

Figure 3). Also, as suggested by its name, “new town” in-

dicates Town02 which is unseen when training, and thus,

“new town & new weather” specifies the most difficult full

generalization test.

The CoRL2017 benchmark consists of four different

driving conditions, which are “driving straight”, “driving

with one turn at an intersection”, “full navigation with mul-

tiple turns at intersections”, and “The same full navigation

but with dynamic obstacles”. A trial is considered success-

ful if an agent reaches within 2 meters from the defined goal

point. Passing through a red traffic light is not counted as

a failure. Therefore, this benchmark is mainly designed for

evaluating the ability of lane-keeping and taking turns to

navigate to the specified goal, but those high-level behav-

iors like handling dense traffic scenarios are not required.

We use NoCrash benchmark [7] for more complex sce-

narios. It measures the ability of agents to handle more

complex events in both towns under six weather condi-

tions as in CoRL2017. This benchmark defines 25 goal-

conditioned routes with a difficulty level equivalent to the

“full navigation“ condition of the CoRL2017 benchmark,

with three traffic congestions: 1) empty town: no dynamic

agents, 2) regular traffic: moderate number of cars and

pedestrians, 3) dense traffic: a large number of pedestrians

and heavy traffic.

Unlike in CoRL2017, the NoCrash benchmark considers

an episode as a failure if a collision bigger than a predefined

threshold occurs. This makes the evaluation more similar to

the ones in the real-world setting where the counted number

of human interventions per kilometer is a common metric

and those human interventions will put the vehicle back to

the safe state [7]. Additionally, this benchmark also mea-

sures the percentage of traffic light violations, however, an

infraction of crossing red traffic light does not terminate a

trial.

5.4. Evaluation results

The results for the CoRL2017 benchmark are shown in

Table 1, where we can see our implementation outperforms

the baselines. Also, both of our models outperform or are

comparable with the current state-of-the-art CILRS. Espe-

cially, although the performance of the CILRS model de-

creases as the driving task gets harder in the “new town”

and “new town & weather” condition, the other models

that have multi-task knowledge can keep its performance to

some extent, and furthermore, our proposed approach stays

at over 91 in all tasks. Table 2 reports the percentage of

times an agent crossed on red traffic lights in each driving



Training conditions New weather

Task MT CILRS Ours w/o Att. Ours MT CILRS Ours w/o Att. Ours

Empty 0.7±0.7 1.8±1.4 1.0±0.9 0.8±0.6 0.7±0.8 3.0±1.4 1.2±1.1 1.8±1.2

Regular 0.8±0.7 1.7±1.5 0.8±0.9 1.0±0.7 0.6±0.6 3.3±1.1 1.2±1.1 1.9±1.4

Dense 9.3±13.4 7.3±5.2 3.0±2.1 10.7±19.1 4.4±1.2 13.8±10.1 4.8±2.8 13.5±17.7

New town New town & weather

Task MT CILRS Ours w/o Att. Ours MT CILRS Ours w/o Att. Ours

Empty 8.9±5.6 10.8±7.8 10.6±2.2 7.1±4.1 15.8±5.2 16.5±13.8 21.1±14.7 15.5±14.4

Regular 6.5±3.9 7.2±4.2 7.1±1.9 5.1±2.5 8.9±3.7 10.8±4.5 9.4±2.4 13.2±17.1

Dense 11.2±6.2 12.1±8.8 12.8±8.7 16.3±19.1 8.1±3.6 8.9±3.4 21.8±19.0 3.1±2.5

Table 4: Traffic light infraction analysis on NoCrash benchmark [7]. As in Table 2, percentage of times an agent crossed on

red traffic lights is reported with mean and standard deviation over three repetitions except for MT that has two repetitions

(lower is better). As in Table 2, MT contains traffic light classifier in our implementation, not present in the original MT [21].

condition on the CoRL2017 benchmark. From this table,

we can see that our proposed approach is much less likely

to experience the infraction of crossing on red traffic lights

in every condition. Thus, adding our task-specific attention

mechanism can enhance the capability of reacting to traffic

lights.

The NoCrash benchmark results are reported in Table 3,

along with the traffic light violation rates reported in Table

4. Similar to the results on the first CoRL2017 benchmark,

our proposed approach overall records the best numbers in

the “new town”. We noticed, when we were visualizing

the benchmarking runs, there were some scenes where the

agent got stuck every time in those situations where it was

exposed to strong direct sunlight from the front covering

huge regions of the input image. We believe the noisy num-

bers of traffic violations are a result of visual difference be-

tween training and testing set (especially “Wet Sunset” and

“Soft Rain Sunset” conditions in testing) and the crowded

traffic in the NoCrash benchmark.

Comparing MT with our proposed approach without at-

tention, these two approaches showed overall the same per-

formance on the NoCrash benchmark, but occasionally MT

appeared to overfit the training town (also in CoRL2017).

This gives us an intuition that learning the control task and

scene representation simultaneously allows the model to

learn a more generalizable representation. Interestingly, the

MT approach outperformed the CILRS both in the success

rate of episodes and in handling traffic lights, which was the

opposite of the results reported in [7].

5.5. Grad­CAM visualizations

For the qualitative analysis, we use the Grad-CAM visu-

alization [27] shown in Figure 4 for all methods using ran-

domly picked images from training conditions. Grad-CAM

allows us to study what parts of the input play important role

in deciding the output. Firstly, we visualized salient parts

that contributed to control outputs. We can see that Grad-

CAM attention maps of all methods may cover meaningful

regions like the center line or the border between road and

sidewalk. When taking a close look, CILRS might spot ir-

relevant points and MT appeared to be distracted into large

regions, while our proposed approach looks at narrow yet

important points like the center of the road or leading ve-

hicle. Secondly, we also visualized attention maps based

on traffic light prediction. MT and our proposed approach

without attention widely capture the traffic light including

the pole when it is red, whereas our proposed approach at-

tentively looks at it but the red color point is not included.

6. Conclusion

In this work, we have presented a novel multi-task

attention-aware network model for end-to-end autonomous

driving in conditional imitation learning framework [6].

This model uses two types of attention paths to gener-

ate task-specific feature maps fed into each task-specific

module. To verify its effectiveness, we conducted exper-

iments on two CARLA benchmarks [7, 10] and quantita-

tively showed that the attention improves the learned control

policy including the ability to handle traffic lights, outper-

forming the baseline methods. By visualizing the attended

regions using Grad-CAM, we find that our model attends to

correct points or objects of interest (e.g. center lines, other

cars) when making control decisions.

One future direction would be to include temporal in-

formation as well, e.g. by using videos. This way, the

end-to-end driving model can more precisely capture the

visual inputs by distinguishing dynamic and static objects.

Also, it would be interesting to see if the proposed method

can transfer to a real-world data such as BDD100K dataset

[32], after which it would be possible to show how a real

car would behave when controlled by our approach.
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