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Abstract

Multi-sensor fusion is for enhancing environment per-

ception and 3D reconstruction in self-driving and robot

navigation. Calibration between sensors is the precondition

of effective multi-sensor fusion. Laborious manual works

and complex environment settings exist in old-fashioned

calibration techniques for Light Detection and Ranging (Li-

DAR) and camera. We propose an online LiDAR-Camera

Self-calibration Network (LCCNet), different from the pre-

vious CNN-based methods. LCCNet can be trained end-to-

end and predict the extrinsic parameters in real-time. In the

LCCNet, we exploit the cost volume layer to express the cor-

relation between the RGB image features and the depth im-

age projected from point clouds. Besides using the smooth

L1-Loss of the predicted extrinsic calibration parameters

as a supervised signal, an additional self-supervised signal,

point cloud distance loss, is applied during training. In-

stead of directly regressing the extrinsic parameters, we pre-

dict the decalibrated deviation from initial calibration to the

ground truth. The calibration error decreases further with

iterative refinement and the temporal filtering approach in

the inference stage. The execution time of the calibration

process is 24ms for each iteration on a single GPU. LCCNet

achieves a mean absolute calibration error of 0.297cm in

translation and 0.017◦ in rotation with miscalibration mag-

nitudes of up to ±1.5m and ±20◦ on the KITTI-odometry

dataset, which is better than the state-of-the-art CNN-based

calibration methods. The code will be publicly available at

https://github.com/LvXudong-HIT/LCCNet

1. Introduction

In the past few years, research on autonomous driving

technology has developed rapidly. The working environ-

ment of autonomous driving is very complex and highly

dynamic. No single sensor can ensure stable perception in

all scenarios. The fusion of the LiDAR and the camera can

provide accurate and stable perception for the surrounding

environments or benefit for 3D reconstruction. The basis of

Figure 1. The proposed LCCNet takes the RGB and the projected

depth image as inputs to predict the extrinsic parameters between

the LiDAR and the camera. The point clouds are re-projected by

the predicted extrinsic parameters. The re-projected depth image

and the RGB image will be the subsequent inputs of the LCC-

Net. This process is called iterative refinement. After five times

iterative refinements, we obtain the final extrinsic parameters esti-

mation.

LiDAR-camera fusion is the accurate extrinsic calibration,

that is, precise estimation of the relative rigid body trans-

formation. LiDAR point cloud and camera image belong

to heterogeneous data. Point clouds are sparse 3D data,

while images are dense 2D data. Calibration needs to ac-

curately extract the 2D-3D matching correspondences be-

tween the pairs of a temporally synchronized camera and

LiDAR frames.

Some early calibration works utilized artificial markers,

such as checkerboard and specific calibration plates, to cal-

ibrate LiDAR and cameras. Most marker-based calibration



algorithms are time-consuming, laborious, and offline, not

suitable for self-driving car production. During the vehi-

cle’s operation, the position between the sensors will drift

slightly with the running time. After a period of operation,

the sensors need to be re-calibrated again to eliminate the

accumulated error caused by drift. Some current calibra-

tion methods for LiDAR and cameras focus on fully auto-

matic and target-less online self-calibration. However, most

online self-calibration methods have strict requirements on

calibration scenarios, and the calibration accuracy is not

as high as offline calibration algorithms based on markers.

Some researchers try to apply deep learning to the calibra-

tion tasks, using neural networks to predict the 6-DoF rigid

body transformation between the two sensors. These meth-

ods directly fuse the features extracted from the image and

the point cloud without considering the correlation between

these two features. e This article proposes a new method for

predicting extrinsic calibration parameters of an RGB cam-

era and a LiDAR. More specifically, our contribution can be

concluded as follows:

(1) LCCNet is a novel end-to-end learning network for

LiDAR-Camera extrinsic self-calibration. The network

consists of three parts: feature extraction network, fea-

ture matching layer, and global feature aggregation net-

work. We use the quaternion as the ground truth during

training. Besides the smooth L1-Loss between the pre-

dicted calibration and ground truth, an additional point

cloud distance loss is presented.

(2) The feature matching layer constructs a cost volume

that stores the matching costs for RGB features and

the corresponding Depth features. To our best knowl-

edge, it is the first deep learning-based LiDAR-camera

self-calibration approach that considering the correla-

tion between features of different sensors.

(3) To further improve the calibration accuracy, iterative re-

finement and multiple frames analysis is applied. LCC-

Net has the best accuracy-speed trade-off compared to

other state-of-the-art learning-based calibration meth-

ods.

2. Related Work

The calibration between LiDAR and camera can be for-

mulated as a 2D-3D registration problem to obtain the trans-

formation of two sensors’ coordinates. The calibration has

three main solutions: (a) Target-based; (b) Target-less; (c)

Learning-based.

2.1. Target­based methods

Geige et al. [3] realized LiDAR-camera calibration

by multiple printed checkboard patterns on the walls and

floors. Define a camera as a reference, all checkerboards in

the target image are assigned to the nearest position in the

reference image given the expectation. Wang et al. [21]

developed a new automatic extrinsic calibration method

for 3D LiDAR and panoramic camera using checkerboard.

Multiple chessboards or auxiliary calibration object are uti-

lized to provide extra 3D-3D or 2D-3D point correspon-

dences [8, 1].

To obtain more accurate 3D-3D or 2D-3D point corre-

spondences, custom-made markers with a specific appear-

ance, such as polygon plates, hollow circles, unmarked

planes, and spherical targets, are introduced for calibration.

Park et al. [12] estimated the corresponding 3D points by

LiDAR scans on the edges of adjacent polygonal planar

boards. The 2D vertical lines detected from the RGB image

and the 3D vertical lines estimated from the LiDAR point

cloud were regarded as calibration correspondences. [4]

employed hollow circles as the calibration target to find the

center of the circle in 2D image data and 3D LiDAR point

cloud, respectively. Pusztai et al. [13] adopted a carton of

known size as the calibration plate to detect the box’s sur-

face. Mishra et al. [10] proposed a LiDAR-camera extrin-

sic estimation algorithm on unmarked plane target by uti-

lizing Planar Surface Point to Plane and Planar Edge Point

to back-projected Plane geometric constraint. The surfaces

and contours of the sphere can be accurately detected on

point clouds and camera images, respectively. Thus, the

spherical targets can achieve fast, and robust extrinsic cali-

bration [9, 19].

2.2. Target­less methods

Tamas et al. [17] proposed a nonlinear explicit

correspondence-less calibration method regarding the cal-

ibration problem as a 2D-3D registration of a common

LiDAR-camera region. Minimal information like depth

data and shape of areas are applied to construct the nonlin-

ear registration system, which directly provides the calibra-

tion parameters of the LiDAR-camera. Furthermore, [16]

advanced a new method of estimating 3D LiDAR and Om-

nidirectional Cameras’ extrinsic calibration. Without using

2D-3D corresponding points or complex similarity mea-

surement, this method depends on a set of corresponding

regions and regresses the pose by solving a small nonlinear

system of equations. Pandey et al. [11] adopted the effec-

tive correlation coefficient between the surface reflectivity

measured by LiDAR and the intensity measured by a cam-

era as one of the extrinsic parameters calibration function,

while the other parameters remain unchanged.

Registering the gradient direction of the data obtained

by LiDAR and camera was another target-less method. [18]

estimated the extrinsic parameter by minimizing the gradi-

ent’s misalignment to realize data registration. Kang et al.

[6] employed the projection model-based edge alignment

to construct the cost function, taking full advantage of the



dense photometric and sparse geometry measurements.

2.3. Learning­based methods

RegNet [14] leverages the Convolutional Neural Net-

works (CNNs) to predict the 6-DoF extrinsic parameters

between LiDAR and camera. CalibNet [5] proposed a ge-

ometrically supervised deep network capable of automat-

ically estimating the 6-DoF extrinsic parameters in real-

time. The end-to-end training is performed by maximizing

the geometric and photometric consistency between the in-

put image and the point cloud. RGGNet [22] utilized the

Riemannian geometry and deep generative model to build a

tolerance-aware loss function.

Semantic information is introduced for obtaining an

ideal initial extrinsic parameter. SOIC [20] transforms the

initialization problem into the PNP problem of the seman-

tic centroid. In this work, a matching constraint cost func-

tion based on the image’s semantic elements and the LiDAR

point cloud is presented. By minimizing the cost function,

the optimal calibration parameter is obtained. Zhu et al.

[23] regard extrinsic calibration as an optimization problem

using semantic features to build a novel calibration quality

metric.

3. Method

We leverage CNNs to predict the 6-DoF extrinsic cal-

ibration between LiDAR and the camera. Our proposed

method’s workflow block diagram is shown in Figure 2.

3.1. Input Processing

Given initial extrinsic Tinit and camera intrinsic K, we

can generate the depth image by projecting each 3D LiDAR

point cloud Pi = [Xi Yi Zi] ∈ R
3 from the LiDAR

scan onto a virtual image plane with a 2D pixel coordinate

pi =
[
ui vi

]
∈ R

2. The projection process is expressed

as follows:

Zinit
i · p̂i = Zinit

i

[
ui vi 1

]T

= K [Rinit|tinit] P̂i

= K [Rinit|tinit]
[
Xi Yi Zi 1

]T
(1)

Tinit =

[
Rinit tinit
0 1

]
(2)

where P̂i and p̂i represent the homogeneous coordinates

of Pi and pi, Rinit and tinit are the rotation matrix and

translation vector of Tinit. By using a Z-buffer method, the

depth image Dinit is computed to determine the visibility

of points along the same projection line, where every pixel

(ui, vi) preserves the depth value Zinit
i of a 3D point Pi on

camera coordinate.

3.2. Network Architecture

The proposed calibration network comprises three parts:

feature extraction network, feature matching layer, and fea-

ture global aggregation. Since the parameters in each part

are differentiable, CNN can be trained end-to-end. We will

describe the structure and function of each part of this sec-

tion.

3.2.1 Feature Extraction Network

The feature extraction network consists of 2 symmetric

branches, extracting the RGB image and depth image fea-

tures. For the RGB branch, we use a pre-trained ResNet-18

network, excluding the full connection layer. The architec-

ture of the depth branch is consistent with the RGB branch.

In the depth branch, we switch RELU to Leaky RELU as

the activation function.

3.2.2 Feature Matching Layer

After extracting features from two input modalities, a fea-

ture matching layer is adopted to calculate the matching

cost for associating a pixel in RGB feature maps xrgb with

its corresponding depth feature maps xlidar. Inspired by

PWC-Net [15], we take advantage of the correlation layer

for feature matching. We define the constructed cost vol-

ume as the correlation between xrgb and xlidar that stores

the matching cost:

cv(p1, p2) =
1

N
(c(xrgb(p1)))

T
c(xlidar(p2)) (3)

where c(x) is the flattened vector of feature maps x, N is

the length of the column vector c(x), T is the transpose op-

erator. For the features, we need to compute a local cost vol-

ume with a limited range of d pixels, i.e.,|p1 − p2|∞ ≤ d.

Since the input feature maps are very small, 1/32 of the

full resolution images, we need to set the value d very small

(d = 2 in this paper). The dimension of the 3D cost volume

cv is d2 ×H ×W , where H and W donate the height and

width of feature maps xrgb and xlidar, respectively.

3.2.3 Feature Global Aggregation

LCCNet regresses the 6-DoF rigid-body transformation be-

tween LiDAR and camera with cost volume features. This

network consists of a full connection layer with 512 neu-

rons and two branches with stacked full connection layers

representing rotation and translation. The output of the net-

work is a 1× 3 translation vector. tpred and a 1× 4 rotation

quaternion qpred.

3.3. Loss Function

Given an input pair composed of an RGB image I and a

depth image Dinit, we use two types of loss terms during



Figure 2. The workflow of our proposed method for the estimation of the extrinsic calibration parameters between 3D LiDAR and 2D

camera. The network takes an RGB image from a calibrated camera and a projected sparse depth image from a mis-calibrated LiDAR as

input. The output of the network is a 6-DoF rigid-body transformation Tpred that represents the deviation between the initial extrinsic Tinit

and the ground truth extrinsic TLC . As shown, we notice that the 3D structure highlighted using red rectangles fails to project to their 2D

counterparts with the mis-calibrated depth image. When using the predicted transformation Tpred to revise the Tinit, we can reconstruct a

more consistent and accurate 3D scene structure.

training: regression loss LT and point cloud distance loss

LP .

L = λTLT + λPLP (4)

where λT and λP denotes respective loss weight.

3.3.1 Regression Loss

For the translation vector tpred, the smooth L1 loss is ap-

plied. The derivative of L1 loss is not unique at zero,

which may affect the convergence of training. Compared

to L1 loss, the smooth L1 loss is much smoother due to the

square function’s usage near zero. Regarding the rotation

loss Lq , since quaternions are essentially directional infor-

mation, Euclidean distance cannot accurately describe the

difference between the two quaternions. Therefore, we use

angular distance to represent the difference between quater-

nions, as defined below:

LR = Da(qgt, qpred) (5)

where qgt is the ground truth of quaternion, qpred is the pre-

diction, Da is the angular distance of two quaternions [7].

The total regression loss LT is the combination of transla-

tion and rotation loss:

LT = λtLt + λqLR (6)

where Lt is the smooth L1 loss for translation, λt and λq

denotes respective loss weight.

3.3.2 Point Cloud Distance Loss

Besides the regression loss, a point cloud distance constrain

is added to the loss function. After transforming the quater-

nion qpred to a rotation matrix Rpred, we can obtain the

homogeneous matrix Tpred:

Tpred =

[
Rpred tpred
0 1

]
(7)

Given a group of LiDAR point cloud P =
{P1, P2, . . . , PN} , Pi ∈ R

3, the point cloud distance

loss LP is defined as:

Lp =
1

N

N∑

i=1

∥∥∥T−1

LC · T−1

pred · Tinit · Pi − Pi

∥∥∥
2

(8)

where TLC is the LiDAR-Camera extrinsic matrix, N is the

number of point clouds, ‖·‖
2

denotes the L2 Normalization.

3.4. Calibration Inference and Refinement

The extrinsic calibration parameter between the uncali-

brated LiDAR and camera can be obtained by combining



the predicted results Tpred of the calibration network and

the initial calibration parameter Tinit. The extrinsic cali-

bration parameter is expressed as:

T̂LC = T−1

pred · Tinit (9)

In this paper, we train multiple networks on

different mis-calibration ranges. We choose

the same translation and rotation range as [14]:

[−x, x] , x = {1.5m, 1.0m, 0.5m, 0.2m, 0.1m}, [−y, y],
y = {20◦, 10◦, 5◦, 2◦, 1◦}. The latter smaller range is

determined by the maximum mean absolute error (MAE)

of the predicted results after training the network using the

former larger range. The RGB image and the projected

depth map will input the largest range (±1.5m,±20◦) net-

work. We regard the prediction Tpred as T0, and re-project

the LiDAR point cloud with T−1

0
· Tinit to generate a new

depth image including more projected LiDAR points. The

new depth image and the same RGB image will input to

the second range (±1.0m,±10◦) network to predict new

transformation T1. The aforementioned process is iterated

five times to get the final extrinsic calibration matrix.

T̂LC = (T0 · T1 . . . T5)
−1

· Tinit (10)

The calibration accuracy can be improved by using the

multi-range network iterative refinement. We use the me-

dian of the predicted results of multiple frames as the final

estimation of the extrinsic parameters.

4. Experiments and Discussion

We evaluate our proposed calibration approach on the

KITTI odometry dataset. In this section, we detail the data

preprocessing, evaluation metrics, training procedure and

discuss the results of different experiments.

4.1. Dataset Preparation

We use the odometry branch of the KITTI dataset [2]

to verify our proposed algorithm. KITTI Odometry dataset

consists of 21 sequences from different scenarios. The

dataset provides calibration parameters between each sen-

sor, among which the calibration parameters between Li-

DAR and camera were obtained by [3] as the ground truth

of extrinsic calibration parameters. In this paper, we only

consider the calibration between the LiDAR and the left

color camera. Specifically, we used sequences from 01 to

20 for train and validation (39011 frames) and sequence 00

for test (4541 frames). The test dataset is spatially indepen-

dent of the training dataset, except for a very small subset

sequence (about 200 frames), so it can be assumed that the

test scenario is not in the training data.

To solve the insufficiency of training data, we add a ran-

dom deviation ∆T within a reasonable range to the extrinsic

calibration matrix of LiDAR and camera. In this paper, we

define the extrinsic parameter TLC as the Euclidean trans-

formation from the LiDAR coordinate to the camera coor-

dinate. After adding the random parameter ∆T to TLC , the

initial extrinsic Tinit = ∆T ·TLC is obtained. By randomly

changing the deviation value, we can acquire a large amount

of training data.

4.2. Evaluation Metrics

The experimental results are analyzed according to the

rotation and translation of the calibration parameters. The

Euclidian distance between the vectors evaluates the trans-

lation vector. The absolute error of the translation vector is

expressed as follows:

Et = ‖tpred − tgt‖2 (11)

where ‖·‖
2

denotes the 2-norm of a vector. We also test

the translation vector’s absolute error in X,Y, Z directions,

respectively.

Quaternions represent the rotation part. Since quaternion

means direction, we use quaternion angle distance to illus-

trate the difference between quaternions. To test the extrin-

sic rotation matrix’s angle error on three degrees, we need to

transform the rotation matrix to Euler angles and compute

the angle error of Roll, Pitch, and Yaw.

4.3. Training Details

During the training stage, we use Adam Optimizer with

an initial learning rate 3e−4. We train our proposed calibra-

tion network on two Nvidia GP100 GPU with batch size 120

and total epochs 120. For the multi-range network, it is not

necessary to retrain each network from scratch. Instead, a

large-range model can be regarded as the pre-trained model

for small-range training to speed up the training process.

The model’s training epoch with the largest range is set to

120, while the others are set to 50.

4.4. Results and discussion

The visual results of the multi-range iterations are shown

in Figure 3. The final calibration results are shown in Table

1. It is obvious that after multi-range iterations, the cali-

bration error is further reduced and the error distribution is

concentrated at a smaller value. Our approach achieves a

mean square translation error of 1.588cm, a mean transla-

tion error of 0.361cm (x, y, z: 0.243cm, 0.380cm, 0.459cm),

and a mean quaternion angle error of 0.163◦, a mean angle

error of 0.030◦(roll, pitch, yaw: 0.030◦, 0.019◦, 0.040◦).

From Figure 4, we can find that our proposed calibration

method can accurately predict the extrinsic calibration pa-

rameters for different random initial parameters. Although

there is a great difference between the two initial parame-

ters shown in Figure 4(a), their corresponding calibration

results are almost in full accord. Figure 4(c) also shows that



(a) (b) (c)

Figure 3. Results of different single-shot calibration after multi-range iteration on the test dataset. (a) Initial Calibration, (b) Ground truth,

(c) Calibration results.

Table 1. The results of the multi-range network iteration

Results of multi-range
Translation (cm) Rotation (◦)

Et X Y Z ER Roll Pitch Yaw

After 20◦/1.5m network

Mean 17.834 11.849 5.169 7.613 1.235 0.170 0.676 0.594

Median 13.423 14.415 5.337 4.188 0.898 0.033 0.615 0.549

Std. 17.165 5.783 3.847 6.492 1.427 0.260 0.580 0.216

After 10◦/1.0m network

Mean 6.291 2.045 4.195 2.238 0.594 0.378 0.391 0.405

Median 5.662 1.929 3.066 2.437 0.452 0.271 0.156 0.218

Std. 3.494 1.629 3.673 1.683 0.637 0.422 0.480 0.453

After 5◦/0.5m network

Mean 3.915 1.267 2.212 1.107 0.414 0.309 0.330 0.334

Median 3.712 1.390 2.410 1.057 0.297 0.028 0.026 0.071

Std. 0.809 0.686 0.989 0.570 0.541 0.507 0.538 0.479

After 2◦/0.2m network

Mean 2.069 0.664 0.633 0.281 0.288 0.132 0.103 0.081

Median 1.592 0.475 0.455 0.316 0.215 0.038 0.040 0.045

Std. 1.859 0.497 0.581 0.112 0.465 0.196 0.140 0.099

After 1◦/0.1m network

Mean 1.588 0.243 0.380 0.459 0.163 0.030 0.019 0.040

Median 1.011 0.262 0.358 0.352 0.121 0.030 0.001 0.022

Std. 1.776 0.053 0.253 0.254 0.435 0.019 0.031 0.039

the two tests’ error distributions are very similar. The pro-

posed method has a high tolerance for the deviation of ini-

tial extrinsic parameters; that is, the algorithm can perform

the calibration task accurately even a few point clouds are

projected into the image. The results of the multiple frames

analysis are exhibited in Table 2, the algorithm achieves a

mean square translation error of 1.010cm, a mean transla-

tion error of 0.297cm (x, y, z: 0.262cm, 0.271cm, 0.357cm)

and a mean quaternion angle error of 0.122◦, a mean angle

error of 0.017◦(roll, pitch, yaw: 0.020◦, 0.012◦, 0.019◦).

The comparison results with other learning-based extrinsic

calibration methods in Table 3 express that our proposed

method is superior to these state-of-the-art algorithms. Due

to most of the training datasets are the same, we do not re-

train the baselines.

5. Conclusion

We propose a novel learning-based extrinsic calibration

method for the 3D LiDAR and the 2D camera. The cal-

ibration network consists of three parts: feature extraction

network, feature matching layer and feature global aggrega-



(a) Initial calibration

(b) Calibration results

(c) Calibration error with temporal filtering

Figure 4. Examples of the error distribution for a miscalibration, which is fixed over the test sequence. Five networks are executed iteratively

(20◦/1.5m, 10◦/1.0m, 5◦/0.5m, 2◦/0.2m, 1◦/0.1m).

Table 2. The results of the calibration error with multiple frames analysis

Results
Translation (cm) Rotation (◦)

Et X Y Z ER Roll Pitch Yaw

Mean 1.010 0.262 0.271 0.357 0.122 0.020 0.012 0.019

Median 1.010 0.260 0.274 0.337 0.122 0.020 0.010 0.019

Std. 0.007 0.087 0.109 0.148 0.001 0.008 0.007 0.009

tion network. We construct a cost volume between the RGB

features and the depth features for feature matching instead

of concatenating them directly compared to other learning-

based approaches. To deal with the training data’s insuffi-

ciency, we add a random deviation to the extrinsic transfor-

mation matrix. Therefore, the network does not predict the

extrinsic parameters between LiDAR and camera directly,

but the random deviation. Besides the extrinsic ground

truth’s supervision, we also add a point cloud constrain to

the loss function. Iteratively refinement with multi-range

networks and multiple frames analysis will further decrease

the calibration error. Our method achieves a mean absolute

calibration error of 0.297cm in translation and 0.017◦ in ro-

tation with miscalibration magnitudes of up to ±1.5m and

±20◦, which is superior to other state-of-the-art learning-

based methods.



Table 3. Comparison results with other learning-based calibration algorithms.

Method Mis-calibrated range
Translation absolute Error (cm) Rotation absolute Error (◦)

mean X Y Z mean Roll Pitch Yaw

Regnet [18] [−1.5m, 1.5m]/[−20◦, 20◦] 6 7 7 4 0.28 0.24 0.25 0.36

Calibnet [19] [−0.2m, 0.2m]/[−10◦, 10◦] 4.34 4.2 1.6 7.22 0.41 0.18 0.9 0.15

Ours [−1.5m, 1.5m]/[−20◦, 20◦] 0.297 0.262 0.271 0.357 0.017 0.020 0.012 0.019
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