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Abstract

Real-time, robust, and accurate stereo depth-prediction

algorithms deliver cutting-edge performance in applica-

tions ranging from autonomous driving to augmented re-

ality. Many state-of-the-art approaches produce subpixel

error and subsecond runtimes on commodity hardware, but

improving even these remains an area of active research.

We focus on improving accuracy and efficiency in stereo-

based depth prediction by contributing two generic tech-

niques to improve performance and runtime. First, we pro-

pose encoding the ground truth disparity as a discrete dis-

tribution that can be trained via cross-entropy loss. Specif-

ically, we use the minimum variance and unbiased ‘Soft’

encoding, where two adjacent bins are weighted so the ex-

pected value is ground truth. We demonstrate that training

with cross entropy loss using this encoding decreases er-

ror rate by 10% on synthetic and LIDAR datasets over the

more popular regression losses such as Huber and MAE.

Second, we propose a bottleneck tri-cost volume composed

of the sum of absolute difference of the features as well as

two reference channels. Replacing the standard 64-channel

concatenation popular in state-of-the-art networks with this

3-channel cost-volume maintains metric performance and

can reduce runtime by over 22% on PSM-Net architectures.

1. Introduction

As an enabling technology, real-time, robust, and accu-

rate depth prediction stands to improve occlusion interac-

tions in augmented reality [1], lower costs for 3D object de-

tection in autonomous vehicles [2], provide 3D mapping of

scenes for virtual exploration [3], and advance widespread

3D visualization of objects [4]. As such, over the last few

years, the computer vision community has witnessed an

explosion of research in depth prediction via monocular,

Kitti 2015 Test Set D1 Time (s)

PSM [5] 2.32 0.41
PSM-BTC [ours] 2.09 0.32

Table 1: State-of-the-Art Comparison. We show a 10% D1

improvement and 22% speed improvement with our pro-

posed changes. BTC, or Bottleneck Tri-Cost, is a reference

to our use of a bottleneck tri-cost volume and Soft cross

entropy loss to learn the probability distribution directly.

stereo, and multiview algorithms. We focus on stereo ap-

proaches, where cost volume architectures are pervasive in

state-of-the-art [5–12].

The design of stereo networks commonly requires pre-

diction of a probability distribution over a cost volume, a

geometry-based structure from classical stereo vision. A

cost volume is a 4D tensor of disparity, height, width, and

costs (or features) where the disparity dimension typically

accounts for methodical single-pixel shifts of the one of

the stereo images against the other. After networks pro-

cess the cost volume, a Softmax is taken over the dispar-

ity dimension to produce a discrete probability distribution.

Many papers use the expected value, commonly termed the

“Soft argmax” by Kendall et al. [13], over this distribution

to estimate the true disparity of each pixel [5–11, 14–16].

Typically, regression losses, such as mean absolute error

or Huber loss, train the network so the expected value has

small deviation with ground truth, but the learned distri-

bution may be multi-modal due to depth edges, repeating

structure, or low-texture areas, resulting in a degraded ex-

pectation [10,17–20]. Unfortunately, such regression losses

suffer one-to-many relationship between the expected value

and the probability distribution, which can add local min-

ima noise to the gradient and degrade learning.

We argue that instead of learning expected value via

regression, the probability distribution should be directly



learned through a categorical cross entropy (CCE) loss and

a local expected value should predict the disparity. There

has been some interest in pursuing this in the literature, but

prior work suggests that regression loss performance is sim-

ilar or superior [13, 18, 19]. However, we believe this result

is strongly influence by the choice of the ground truth en-

coding. Thus, we propose a minimum variance, unbiased

‘Soft’ encoding whose expected value equals the ground

truth disparity and demonstrate improved performance over

regression losses with this technique.

In addition to proposing a new loss function, we also

investigate efficient cost volume design. Existing litera-

ture uses a variety of architectures and multiple studies

have demonstrated trade-offs between memory consump-

tion, runtime, and metric quality. For instance, PSM Net

concatenates 32 features from both views to allow the net-

work to learn a distance metric [5]. AA Net uses a single

cost, a dot product with no additional features [11], while

GWC Net concatenates 12 features from each view and 40

correlation costs, each generated from 8 features, to im-

prove performance [6]. Rao et al. use per-channel variance

of 32 features in NLCA Net [8]. Several papers use single-

channel cost-volumes to achieve real-time performance, but

doing so often result in lower metrics, as shown in Ta-

ble 2. We introduce a solution in the form of an efficient

tri-channel cost volume, one we term the ”bottleneck tri-

cost volume” which maintains performance with standard

64-channel concatenation cost volumes at a fraction of the

memory and computational cost.

On PSM-Net, we demonstrate a 10% decrease in the

error rate from our proposed Soft encoding and a 22%

faster runtime from the bottleneck tri-cost volume on the

Kitti2015 benchmark (Table 1).

1.1. Contributions

We make the following contributions to benefit cost-

volume stereo networks.

C1. Experiments showing a simple minimum variance, un-

biased ‘Soft’ ground truth encoding for cross-entropy

loss enables networks to learn more accurate proba-

bility distributions than standard regression losses. At

inference, this translates to 10% lower error rate across

synthetic and LIDAR-based datasets.

C2. Evidence that a bottleneck tri-cost volume, constructed

with sum of absolute differences and 2 reference fea-

tures, provides performance comparable to cost vol-

umes 21 times larger in memory. During training, this

enables larger patch or batch sizes. At inference, this

translates to a 22% faster inference time on PSM-Net.

We report a series of experiments comparing loss func-

tions and cost volume architectures to gain insight and guide

development of the above contributions. These experiments

Figure 1: Example of a stereo network. FE stands for the

feature extractor, which is Siamese, performing the same

operations on the left and right images. The cost-volume is

a 4D tensor generated without any learned parameters. The

cost aggregator processes the 4D tensor to make a predic-

tion. Image 110 from the Kitti 2015 test set.

evaluate ℓ2 (mean squared error), ℓ1 (mean absolute error),

Huber (smooth ℓ1), and categorical cross entropy (CCE)

loss with Guassian, Laplacian, Hard, and Soft encoding

of the ground truth. For the cost volume, we assess sev-

eral distance metrics, including the absolute difference, eu-

clidean distance, variance, and correlation functions. We

consider these metrics per-channel and over all channels.

We evaluate standard concatenation and compact represen-

tations. In order to demonstrate performance on state-of-

the-art, we perform an ablation study on PSM-Net, compar-

ing performance differences between the base network and

ones trained with each of our proposed changes.

2. Background

Many stereo papers use a 3-stage network composed

of feature extraction, cost volume, and cost aggregation,

as shown in Figure 1. Typically, the feature extractor

is a Siamese network that uses shared weights to extract

matched features from a pair of images. The cost vol-

ume generates a comparison between the reference and sec-

ondary features, over the range of disparities under consid-

eration. Finally, the cost aggregator processes the cost vol-

ume to make a final dense prediction for disparity.

The majority of the top performing networks on the

Kitti 2015 benchmark today use a cost-volume network,

including NLCA Net [8] AM Net [9], ACF Net [10], GA

Net [7], CSP Net [21], and optical expansion net [22]. Only

SUW-Learn does not have a cost volume; instead it uses

monocular time-series data [23], which includes an unsu-

pervised warping loss between time-steps. While single-

frame monocular approaches have made remarkable strides

over the last few years, monocular predictions tend to report

worse metrics than stereo predictions [24]. In fact, Ranjan

et al. demonstrated that developing an optical flow archi-

tecture with cost volumes leads to more robust performance

in the face of adversarial attacks than an encoder/decoder

architecture [25]. This work suggests that while processing

cost volumes may be expensive, such representation is more

robust than other approaches.



Real-time networks often have similar architectures to

state-of-the-art, although they typically sacrifice low error

rates for speed. For instance, networks focussd on com-

pute speed, such as HD3-Net [26], RTS2-Net [16], Any-

Net [15], and Stereo-Net [14], MAD-Net [27], Disp-Net-

C [28], AA-Net [11], and HIT-Net [12] achieve impressive

FPS on the Kitti test set, as shown in Table 2. The major-

ity of these networks, inspired by optical flow techniques,

achieve high speed by generating multiple cost volumes in

the style of PWC-Net [29], where each successive cost vol-

ume is generated at a higher resolution and attempts to re-

fine the residual error of the lower resolution prediction. We

do not directly address such architectures in this work, but

our Soft encoding and bottleneck tri-cost volume are appli-

cable to these networks.

Of particular note, Yin et al.’s optical flow network,

HD3, introduces ‘Vector to Density’ [26], a ground truth

encoding scheme mathematically equivalent to the Soft en-

coding, and train with Kullback-Leibler (KL) divergence,

which is equivalent to minimizing CCE. Yin et al. demon-

strate proficiency training mutliresolution cost volumes and

flow networks using Soft KL. However, their contribution

is distinct from ours. Yin et al. work to show their unique

network, when trained by Soft KL loss, is competitive with

state-of-the art and near real-time performance. In contrast,

we demonstrate Soft CCE loss is superior to standard re-

gression losses. We hope this generalized insight helps re-

searchers push forward state-of-the-art on their networks.

2.1. Cost Volume Architectures

In the literature, distance metrics used by cost volumes

vary substantially, as demonstrated in Table 2. For in-

stance, NLCA Net uses 32 variance features and reports

2-4% metric improvements over concatenation [8]. AM Net

introduces an extended cost volume, including concatena-

tion, multiplication, and absolute difference of each feature.

They do not clarify the number of channels, but they do pro-

vide a series of experiments showing a steady improvement

by combining these metrics [9]. GA Net, GC Net, and RTS

Net simply concatenate reference and secondary features to

produce a 64-channel cost volume [7, 13, 20]. GWC Net

carries out a series of experiments on cost-volume construc-

tion with correlation groups. They work with 320 channels

from the feature extractor, and show performance improves

as they increase the number of groups from 1 to 160. Their

best cost volume uses 40 correlation groups concatenated to

12 channels from each view, for a total of 64 channels [6].

Stereo Net creates a cost-volume of C features by taking the

difference of channels between the two candidates.

Many networks optimized for speed use only a single

channel in their cost volumes. For instance, Any Net uses

the sum of absolute differences (SAD) [15]. DispNetC uses

correlation at a low resolution and uses features from the

Net Losses CCV D1 Time (s)

Select State-of-the-Art on Kitti 2015

PSM [5] Huber 64 2.32 0.41
GWC [6] Huber 64 2.11 0.32
ACF [10] Huber

Focal

Confidence

64 1.89 0.48

AM [9] Huber

Segmentation

4C 1.84 0.9

NLCA [8] ℓ1

SSIM

Warping

32 1.83 0.44

GA [7] Huber 64 1.81 1.8
CSP [21] ℓ1 64 1.74 1.0

Select Real-Time Networks

Any [15] Huber 1 6.2 0.097
Stereo [14] Huber C 4.83 0.015
MAD [27] Photometric 1 4.66 0.02
DispNetC [28] ℓ1 1 4.34 0.06

RTS2 [16] Huber

Segmentation

C 3.56 0.02

AA [11] Huber 1 2.03 0.06
HIT [12] ℓ1

Huber

Slant

Confidence

1 1.98 0.015

Select Studies on the Distribution

ES [30] Gaussian 1 4.54 1.0
RTS [20] Focal 64 3.41 0.02
GC [13] ℓ1 64 2.87 0.9
PS [18] Laplacian 8 2.58 0.5
PSM-CD [17] Wasserstein 64 2.29 0.4
NS [19] ℓ1

Laplacian

64 2.27 0.6

PSM-BTC [ours] Soft 3 2.09 0.32

HD3 [26] Soft >C 2.02 0.14

Table 2: Stereo Networks. D1 is reported on the Kitti 2015
test benchmark. CCV is cost volume channels. C is the

number of channels from the feature extractor. HD3 in-

cludes feature correlation, reference features, and an em-

bedding vector. Note: Some networks, such as HIT and

HD3 predict disparity at multiple resolutions.

reference image to upsample the prediction [28]. MAD Net

generates correlation cost-volumes at multiple resolutions;

at each higher resolution, MAD uses the lower-resolution

prediction to warp the secondary image into the reference

view, generates a new correlation cost-volume, and refines

the disparity prediction.

Similarly, AA Net generates cost volumes from the cor-

relation of all features at each resolution, and then uses a

series of multiscale deformable convolutions to refine re-



sults [11]. HIT Net uses the sum of absolute differences to

quickly produce disparity initializations at multiple resolu-

tions and proceeds to refine these hypotheses with tiles of

the disparity, slant, estimated cost, and 16 reference view

features (at highest resolution), achieving close to the state-

of-the-art in real-time [12]. Single cost networks introduce

some questions. How much information is really lost by

using a single cost? Are they making up for significant

degradations with their unique aggregators or are large cost

volumes an extremely inefficient component of stereo net-

works? Is AA Net’s use of correlation a wiser choice than

HIT Net’s ℓ1 distance?

2.2. Categorical Cross Entropy (CCE) Losses

As shown in Table 2, the top-performing stereo networks

use regression losses. However, we contend that properly

formulated CCE losses are more competitive than regres-

sion losses because stereo networks perform regression by

first predicting the underlying distribution, and then calcu-

lating the expected value over this distribution. Thus, the

regression suffers from a one-to-many relationship between

the expected value and predicted distribution, as shown at

the bottom of Figure 2. That is, the expected value of many

plausible distributions can result in a given ground truth.

Zhang et al. recognize this problem and suggest a series

of constraints to improve performance in ACF Net [10].

Among other techniques, Zhang et al. use a focal cross-

entropy loss with Hard one-hot encoding to improve the

learned distribution. Similar to Zhang’s work, Garg et al.

focus on learning the distribution with a Wasserstein loss.

They learn a Hard one-hot distribution and an offset to the

ground truth, and demonstrate that this technique improves

results on benchmark models [17].

Various CCE losses have been proposed for stereo net-

works. Luo et al. used an approximate Gaussian distribu-

tion in their 2016 ES Net [30]. In 2017, Kendall et al. ar-

gued that between Luo et al.’s Gaussian distribution, a Hard

one-hot encoding, and ℓ1 loss, ℓ1 regression outperforms

CCE losses in the long term on their GC Net, even though

the cross entropy loss initially learns faster. Notably, GC

Net is trained up to 120,000 iterations, whereas we train

for 170,000 iterations. GC Net had an EPE of 2.5 px for

ℓ1, over 5.0 px for Hard CCE, and 5.4 px for Gaussian

CCE [13]. In 2018, Tulyakov et al. used a Laplacian CCE to

improve the 3PE metric on their PS Net and use sub-pixel

MAP estimation to further improve results [18]; however,

their results on EPE were worse for Laplacian CCE than

ℓ1 loss. In 2019, Lee and Shin reported that a focal loss

centered around a Hard one-hot encoding could learn effec-

tively in their RTS Net, which runs in 0.02 sec. Instead of

sub-pixel MAP, they proposed using the Top K lowest cost

disparities to estimate the disparity [20]. In 2020, Chen

et al. used a Laplacian CCE loss to slightly improve the

learned distribution of PSM Net [19].

2.3. Application to SOTA

As demonstrated in Table 2 and our background discus-

sion, almost all state-of-the-art (SOTA) networks use cost

volumes. Our bottleneck tri-cost volume is a drop-in re-

placement for other cost volumes. Depending on the ar-

chitecture, single-cost networks, such as HIT-Net [12] and

AA-Net [11] have specialized backends and may not be de-

signed to use the bottleneck tri-cost volume as-is. HIT-Net

already makes use of reference features whereas AA-Net

expects a single feature for processing.

Our loss function is also widely applicable to SOTA.

For most networks, it can be implemented as a drop-in re-

placement for Huber or MAE loss. On multistage networks,

such as PWC-Network (which is originally implemented for

optical flow prediction), where cost-volumes are generated

at multiple resolutions around a narrow disparity window

using warped features, Soft CCE is still applicable. The

ground truth encoding would simply shift to encompass the

correct disparity window at each refinement stage.

3. Methodology

3.1. Soft Categorical Cross­Entropy Loss

Our proposed Soft CCE encoding is a neighboring 2-

bin probability distribution whose expected value equals

ground truth. For instance, if the cost volume has 8 dis-

parity levels starting at 0 px disparity with shifts of 1 px
per step, and the ground truth disparity for a pixel is 0.4 px,

the CCE ground truth would be [0.6, 0.4, 0, 0, 0, 0, 0, 0], as

shown in Figure 2. Soft encoding is the “ideal” distribution

that could be learned via regression as it is the minimum

variance, unbiased distribution for a given expected value.

We compare Hard, Gaussian, and Laplacian encodings

from literature against our proposed Soft encoding in Fig-

ure 2. Hard is a one-hot encoding, with disparity rounded

to its nearest index. Gaussian encodes the ground truth

by forming a normalized Gaussian distribution centered

around the true disparity with variance σ2 = 2
π

based on

ES Net [30]. We create a normalized Laplacian distribution

centered around the ground truth disparity with b = 2 based

on on PS Net [18], resulting in a much larger bandwidth

than the Gaussian distribution. Due to bin boundaries, there

is no guarantee that the expected value over Hard, Gaussian,

or Laplacian distributions equals ground truth.

Regression losses do not necessarily learn minimum-

variance distributions, as demonstrated by [10]. For in-

stance, a distribution learned from regression losses could

be [0.8, 0, 0.2, 0, 0, 0, 0, 0] since 0.2 ∗ 2 px. = 0.4 px, as

shown in Figure 2. Additionally, since many different dis-

tributions can equal a given expected value, the gradient

may not be very clear, resulting in slower training, as noted



Figure 2: Minimum loss probability distributions for 0.4 px
disparity. Bins are bounded by min (0 px) and max (7 px),

which degrades Gaussian and Laplacian ground truth en-

codings. Gaussian and Laplacian distributions centered

around 3.4 px would have small error in expected value.

The two regression distributions both minimize the regres-

sion loss, demonstrating how minimization over regression

has one-to-many solutions with multiple local minima.

Figure 3: Predicted distribution for ground truth 5.6 pix
disparity before and after applying local MAP re-

normalization. The left probability distribution is the net-

work’s prediction with two local maxima probabilities, per-

haps along a depth discontinuity. The expected value

3.4 pix deviates greatly from the true disparity, and will re-

sult in a blurred edge. The right probability distribution is

the result after applying local MAP re-normalization with

δ = 1. As can be seen, the new expected value greatly re-

duces error with ground truth and results in a sharper edge.

by [13, 18].

The apparent drawback of Soft CCE is that, at training

time, it penalizes all disjoint errors equally. For instance, a

disjoint distribution producing 3 px error results in as much

loss as disjoint distribution producing 100 px error, which

intuitively seems undesirable, but actually makes Soft CCE

more robust to challenging outliers.

For instance, suppose there are two pixels in an

image, each with ground truth disparity Soft encod-

ing [0.3, 0.7, 0, 0, 0, 0, 0, 0] (0.7 pix). Let us as-

sume the network makes the following two predictions:

P1 = [0, 0, 0.6, 0.4, 0, 0, 0, 0] (2.4 pix) and P2 =
[0, 0, 0, 0, 0, 0, 0.2, 0.8] (6.8 pix). Let’s assume that for nu-

meric stability, ǫ = 1e-7. The loss for each of these pre-

dictions is CCE Loss = −(0.3 ∗ log(ǫ) + 0.7 ∗ log(ǫ)) =
−log(ǫ) = 16.12. In comparison, ℓ1,P1 = |2.4−0.7| = 1.7
and ℓ1,P12 = |6.8 − 0.7| = 6.1. For MSE, ℓ2,P1 = 1.72 =
2.89 and ℓ2,P12 = 6.12 = 37.2. MAE loss puts more em-

phasis on correctly predicting the more challenging pixels

than CCE Loss while MSE does this to an even greater ex-

tent. We compare training on MSE, MAE, and Soft CCE

in Table 3. We show that MAE greatly outperforms MSE,

suggesting that heavily weighing challenging outliers harms

optimization.

In practice, we find that Soft CCE improves learning and

propose three explanations:

1. Progress in stereo networks and datasets has reduced av-

erage prediction error to subpixel, enabling CCE to pre-

dict subpixel distributions accurately.

2. Soft CCE Loss is more robust than regression losses

since it penalizes all disjoint predictions equally, spend-

ing fewer resources on challenging outliers.

3. The one-to-many relation between expectation and

probability distribution results in noisy gradients with

many local minima for regression losses, slowing train-

ing and limiting learning.

3.2. Local Maximum A Posteriori (MAP)

As detailed in Zhang et al. [10], Garg et al. [17],

Tulyakov et al. [18], Chen et al. [19], and Lee et al. [20], the

predicted disparity distributions may be multimodal, hav-

ing various local minima due to repeating structure, depth

boundaries, pixel noise, or low texture. In such situations,

simple expected value may pull the prediction away from

the true ground truth, as shown in Figure 3. Each prior

work proposes their own solution to this problem, such as

Top K [20] or Wasserstein distance loss [17]. The Top K

approach would still be susceptible to multiple local min-

ima, so we choose to use the subpixel MAP introduced by

Tulyakov et al. to estimate disparity at inference [18] by the

following equation:

dMAP
δ =

d̂+δ
∑

d=d̂−δ

d · P̂ (d = d|xL, xR) (3.1)



Left Image Ground Truth PSM PSM Error PSM-BTC [ours] PSM-BTC Error

Figure 4: Examples of PSM-BTC [ours] inference on FlyingThings3DClean Test images A/0057/0009, B/0097/0009, &

C/0062/0009. PSM-BTC uses local MAP while PSM uses regression in this example. These predictions are made at 1
4

resolution and bilinearly upsampled before calculating the expected value. Note that local MAP (δ = 1) with Soft CCE

sharpens edges and better distinguishes depth discontinuities in complex scenes where multiple local cost minima may be

present.

where d is a disparity step and the maximum probability

disparity, d̂, is

d̂ = argmax
0≤d≤D

P (d = d|xL, xR) (3.2)

We do clarify that P̂ is locally normalized from the full pre-

dicted distribution P by

P̃ =

d̂+δ
∑

d=d̂−δ

P (d = d|xL, xR) (3.3)

P̂ (d = d|xL, xR) =

{

P (d=d|xL,xR)

P̃
|d̂− d| ≤ δ

0 else
(3.4)

When δ = ∞, we sum over all predicted indices.

We slightly modify Tulyakov’s equation by specifying that

when δ = 1
2 , we only sum over two indices: the maximum

probability index and the highest probability adjacent in-

dex. This additional capability enables intuitive comparison

of our predicted probability distribution against the Soft-

encoded ground truth. We only use subpixel MAP at infer-

ence time; training of regression losses occurs with δ = ∞.

We demonstrate the benefits of local MAP trained with

Soft CCE loss over a regression model trained with Huber

loss in Figure 4. Near complicated depth boundaries, dis-

parity edges tend to appear crisper under local MAP. To ob-

serve the improvements under local MAP, it is important to

not interpolate over the depth dimension.

3.3. Bottleneck Tri­Cost (BTC) Volume

As covered in the background, cost-volume experiments

have been performed before, but results are difficult to com-

pare between disparate networks, training methods, and

datasets. There is no consensus in the literature on how to

construct the cost-volume efficiently. We aim to fill that gap

and provide a more complete picture by performing a series

of experiments where we examine different distance met-

rics, multi-cost volumes, and compact representations. The

full list of experiments is in the appendix, and a truncated

version highlighting the most relevant experiments appears

here. Some of the cost volumes we consider are demon-

strated visually in Figure 5.

Based on our experimental results, we propose the bot-

tleneck tri-cost volume, which is composed of the sum of

absolute differences (SAD) plus two separate reference fea-

tures. This is 21 times smaller than the popular concatena-

tion technique but has comparable performance. To gener-

ate this cost volume, we start with the standard 32 channel

output for each view from the feature extractor. We increase

the output channels to 34. For a given disparity, SAD is

taken over 32 of the features. The final 2 features of the ref-

erence view are concatenated along the channel axis of the

SAD result, while the final 2 features of the secondary view

are discarded. The secondary view is then shifted to the

next disparity step, and the process is repeated until the full

3-channel cost volume composed of both stereo and monoc-

ular cues is generated. This procedure does replicate the

same 2 reference features across all disparity steps, result-

ing in an inefficient representation of the monocular infor-



Concatenation Multi-Cost Bottleneck

Per-Channel AD 4 SAD Groups SAD

Figure 5: Cost Volume Visualization. In this example, the

feature extractor outputs 12 channels for the reference and

secondary views, represented by dark and light gray. Costs

may be absolute difference (AD), correlation, variance, etc

and are in color. SAD is sum of AD.

mation and presenting opportunities for future research to

improve performance.

3.4. D½ Error Metric.

Due to the improvement in EPE in recent years, we in-

troduce the D½ metric, derived from the D1 metric. The D1

metric is an error rate that classifies all pixels over 5% rel-

ative error and 3 px absolute error as erroneous pixels. In-

stead of the typical 3 px threshold of the D1 metric, we use

a 0.5 px absolute error threshold in the D½ metric, which

is more discriminative of errors in distant regions where ac-

curacy may be important for autonomous cars moving at

highway speeds. D½ provides tighter 5% error bounds from

10 px to 60 px, where the D1 metric is dominated by the

3 px threshold.

4. Experiments

We perform a parameter sweep over loss functions and

cost volumes on a lightweight network, known as Small

Simple Training (SST) Net, which is effectively a smaller

version of PSM-Net. For details of the network, setup, re-

sults, and additional experiments, please visit the appendix.

Experiments on SST Net support two main conclusions:

1. Soft CCE Loss outperforms regression losses as well

as other ground truth encoding schemes for CCE Loss

(Table 3). Soft CCE performance increases as local

MAP δ decreases to 1 (see appendix).

2. SAD plus two reference features provides a baseline of

performance that is difficult to meaningfully surmount

(Table 4).

Based on these results, we chose to validate performance

on a state-of-the-art network, PSM-Net, where we carry

out a series of ablation studies comparing these two new

techniques against the reference implementation. On these

MSE1 Hu5 MAE3 L1 Ha1 G3 S5

EPE 2.72 1.37 1.29 1.62 1.46 1.21 1.12

D1 18.5 5.0 4.8 5.4 3.9 3.9 3.8

D½ 46.6 17.2 14.3 30.9 31.4 20.6 11.2

Table 3: Select Lightweight SST Net inference results un-

der local MAP at δ = 2 on FlyingThings3D Test Set. Sub-

scripts indicate the number of times each experiment was

run & averaged. Minimum values per column are bold. Val-

ues within 5% of the minimum of each column are under-

lined. Hu is Huber regression loss, L is Laplacian CCE, Ha
is Hard CCE, G is Gaussian CCE, and S is Soft CCE. In the

appendix, you will find this table reproduced with results

for δ = {∞, 3, 2, 1, 1
2}.

experiments, we follow the training methodology of PSM-

Net [5].

4.1. Highlighted Experiments on SST Net

We evaluate various losses in Table 3, comparing re-

sults on FlyingThings3D when inferred under local MAP.

For reference, δ = 2 was chosen as it was near-minimum

for each experiment. The appendix include additional ex-

periments for those looking to observe how performance

changes with δ. We find that for each metric we considered,

Soft CCE outperforms every other considered loss.

We compare cost volume performance in Table 4. We

demonstrate metric differences between single-cost and per-

channel distance metrics. Single-cost networks appear to be

limited by the lack of purely monocular cues. We particu-

larly aim to highlight the increase in metrics as additional

reference features are added to a single distance metric, up

to 2, where metric gains level off. While generating a cost-

volume composed of 96 channels is able to make modest

gains, for many use cases, the bottleneck tri-cost volume

has an excellent trade-off of metric quality with computa-

tional expense.

4.2. PSM­BTC Net Ablation Studies

For evaluation on PSM-BTC Net, we modify the orig-

inal cost-volume of PSM Net and change trilinear upsam-

pling to bilinear upsampling to enable Soft CCE training

and local MAP to have meaningful results. We evaluate on

the stacked hourglass & pyramid pooling model with half

the dilation rate. We train according to PSM Net’s specified

methodology [5] and evaluate over the standard 192 pix for

the ablation study and Kitti2015 benchmark; however, we

only pretrain on the FlyingThings3DClean subset of the

SceneFlow dataset. We performed the speed test in Table 1

on an NVIDIA Titan Xp, the same as PSM Net, for direct

comparison.



Architecture GFLOP CCV EPE D1 D½

Concat 636 64 1.30 5.3 15.8
AD 571 32 1.29 5.3 15.4
Muliply 571 32 1.46 5.8 16.7
Variance 571 32 1.36 6.0 16.3

Concat & Multiply 700 96 1.26 5.0 14.4

Concat & Variance 701 96 1.25 5.0 14.5
Concat & AD 700 96 1.25 5.1 14.7

SAD & Concat 4 RF 518 5 1.28 5.1 15.2
SAD & Concat 2 RF 513 3 1.27 5.1 15.3
SAD & Concat 1 RF 511 2 1.36 5.5 16.2

SAD 509 1 1.44 6.1 17.4
Euclidean 509 1 1.55 6.8 19.1
Correlation 509 1 1.55 6.1 17.0
Sum Variance 509 1 1.46 6.1 17.8

Table 4: Select SST Net inference results on FlyingTh-

ings3D Test Set. Concat is concatenation. RF are sep-

arate, additional reference features. CCV is the cost volume

channels. Minimum values are bold. Our bottleneck tri-cost

volume is underlined. The appendix includes this table with

additional experiments.

Our ablation study demonstrates comparable metrics on

the concatenation and bottleneck tri-cost volumes (Table 5).

Notably, the Kitti2015 dataset experiences a large de-

gree of overfitting to the training set (where Soft CCE re-

sults are 33% better in D1) compared to the validation set

(only a 9% improvement) and the test set (10% improve-

ment).

5. Discussion

We demonstrate that a bottleneck tri-cost volume, com-

posed of the sum of absolute differences and two monocular

features, can be adopted easily by popular architectures, po-

tentially reducing memory and compute substantially. We

further show that Soft CCE loss with local MAP can sub-

stantially reduce D1 error rate when compared to training

with regression losses, particularly the popular Huber loss.

Our cost-volume experiments demonstrate that monoc-

ular features are important for stereo prediction. However,

stereo networks should aim to make more efficient use of

monocular features than the popular concatenation tech-

nique. While our bottleneck tri-cost volume attempts to do

so, copying the same 2 reference features across all dispar-

ity dimensions remains an inefficient representation.

Our minimum variance, unbiased Soft encoding is the

ideal distribution that may be learned through regression

losses for a given ground truth. Soft encoding is an intuitive

representation for pixel matching in non-occluded regions,

where a pixel may be spread across two adjacent pixels in

the secondary view. However, in occluded regions, Soft en-

Loss Cost Volume EPE D1 D½ >1 pix

Flying Things 3D Clean Test Set

Huber Concatenation 1.05 3.3 5.8 10.6
Huber Bottleneck Tri-Cost 1.06 3.4 5.9 10.6
Soft Concatenation 0.94 2.7 3.9 7.5
Soft Bottleneck Tri-Cost 0.94 2.7 4.1 7.4

Kitti 2015 160 Image Training Split

Huber Concatenation 0.51 0.97 6.8 9.7
Huber Bottleneck Tri-Cost 0.53 1.00 7.2 10.5
Soft Concatenation 0.45 0.70 4.8 6.9

Soft Bottleneck Tri-Cost 0.45 0.64 5.1 7.4

Kitti 2015 40 Image Validation Split

Huber Concatenation 0.72 1.97 10.4 16.4
Huber Bottleneck Tri-Cost 0.71 2.02 10.7 17.1
Soft Concatenation 0.69 1.90 8.8 14.8

Soft Bottleneck Tri-Cost 0.68 1.79 9.2 15.1

Table 5: PSM-BTC Net ablation study under local MAP at

δ = 1 as D½ minimized here for all experiments. We use

the same data splits reported by PSM-Net, which reported

an EPE of 1.12 pix for FlyingThings3DClean and a D1 of

1.83% on the Kitti2015 validation split [5]. The best metric

on each dataset is bolded.

coding makes less sense. A different loss, such as an ordinal

loss, on occluded pixels could improve training, though we

leave this as an avenue for future research.

Training with Soft CCE and generating the bottleneck

tri-cost volume is straightforward, requiring little custom

code. This makes our proposed changes easy to incorpo-

rate in current and upcoming stereo networks. To help de-

velopers and to demonstrate repeatability, we will release

PSM-BTC Net for PyTorch as well as the weights for our

PSM-BTC models.
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