
Occlusion Guided Scene Flow Estimation on 3D Point Clouds

Bojun Ouyang

Tel Aviv University

bojungouyang@mail.tau.ac.il

Dan Raviv

Tel Aviv University

darav@tauex.tau.ac.il

Abstract

3D scene flow estimation is a vital tool in perceiving

our environment given depth or range sensors. Unlike op-

tical flow, the data is usually sparse and in most cases par-

tially occluded in between two temporal samplings. Here

we propose a new scene flow architecture called OGSF-Net

which tightly couples the learning for both flow and occlu-

sions between frames. Their coupled symbiosis results in

a more accurate prediction of flow in space. Unlike a tra-

ditional multi-action network, our unified approach is fused

throughout the network, boosting performances for both oc-

clusion detection and flow estimation. Our architecture is

the first to gauge the occlusion in 3D scene flow estimation

on point clouds. In key datasets such as Flyingthings3D and

KITTI, we achieve the state-of-the-art results.1 2

1. Introduction

Scene flow estimation is a core challenge in computer vi-

sion which aims to find the 3D motion between points from

consecutive temporal frames. While flows in between im-

ages, also known as optical flow, still have an important part

in modern vision systems, the rise of depth sensors shifts

the focus towards geometric flows. The two tasks are simi-

lar in spirit but with one fundamental gap - the data source

for optical flow are regular dense samples given on top of

a grid, while most depth sensors, especially outdoor, pro-

vide a sparse set of points in space. Algorithmic-wise, in

the deep networks era, that gap shifts us from image-based

convolutions towards graph neural network architectures.

Early attempts to solve 3D model alignment minimized

the point-to-point or point-to-plane energy and were re-

ferred to as Iterative-Closest-Point (ICP) algorithms [5, 9],

where during iterative steps one searches for the closest set

of matched points and minimizes the energy on that subset.

Rigid alignment [5] was first introduced, then rapidly non-

rigid deformations were solved by adding adequate regu-

larization [3]. Many different approaches for alignment ap-

1Our code will be publicly available upon publication.
2https://github.com/BillOuyang/OGSFNet.git

OGSF-Net

Alignment

Occlusion	Map

Non-Occluded	
Occluded	

Figure 1: Multi-task model. OGSF-Net directly consumes the

point clouds from two different frames as its input. It predicts the

scene flow and occlusion map of the source relative to the target.

peared over the years. Just stating a few - [17, 7, 20, 14, 11]

focused on RGB-D between stereo images, [35] introduced

a more robust cost function, [36] considered the alignment

as a quadratic assignment task and [1] added intrinsic long

geodesics to enrich the process with global features.

Moving from axiomatic methods towards learning-based

approach became feasible lately, where graph convolutions

evolved as well as rich and deep enough networks were ca-

pable of sensing more of the scene. FlowNet3D [23] was

probably the first robust learnable deep network for aligning

3D point clouds. It utilizes a PointNet++ [33] structure and

computes the correlation between the point clouds by using

the flow embedding layer. Following that line of thought

PointPWC-Net [53], based on an optical flow mechanism

[44], uses Feature Pyramid Network on top of local corre-

lations with a new cost volume and cost function, show-

ing superior results all across the benchmarks. Lately, we

have seen attempts to handle larger sets of deformations by

correlating all points with all points [31] but those models

require a massive increase in memory resources and suffer

from outliers that need to be cleaned.

When calculating flow in between objects, we encounter

in many cases the challenge of occlusions, where some re-

gions in one frame do not exist in the other. Due to the

displacement between the sensor and the object, the sen-



sor does not see the entire object in all time steps. Incor-

rect treatment of the occluded area would reduce the per-

formance of the flow estimation. That is true for optical

flow tasks in images and of course for scene flow. Classi-

cal methods usually regularize incoherent motion to prop-

agate flow from non-occluded pixels to the occluded re-

gion [40, 26]. That is also true in the deep learning era

where occlusions were learned in addition to flow estima-

tion. Those attempts worked well on regular grids but tra-

ditionally failed on a sparse set of points due to numerical

challenges. In this work, we focus on that exact task and

show for the first time that if we couple the task for flow

and occlusion tight enough in a guided approach we can

gain in both worlds; getting a more accurate flow and un-

derstanding what is occluded.

The main contributions of our work are:

• We propose a deep learning model called OGSF-Net

which can jointly estimate the scene flow and occlu-

sion map from point clouds.

• We utilize an occlusion handling mechanism inside our

Cost Volume layer.

• We present a new residual multi-scale architecture in

place of traditional multi-scale flow schemes.

• We show state-of-the-art performance on Flyingth-

ings3D and KITTI Scene Flow 2015.

2. Related Work

Deep Learning on Point Clouds. Deep learning has been

proved to be one of the most successful learning tools in

image processing and swept the community towards new

achievements over axiomatic modelling. Graph neural net-

works, focusing on a more generalized structure, where

vertices and edges represent our data, followed the rev-

olution, presenting exciting new tools to handle irregular

data. In computer vision, point cloud is one very com-

mon way to represent geometry acquired by range sensors

or generated in virtual worlds. We have seen papers cop-

ing with new challenges by sampling the data and project-

ing the points into volumetric lattices [54, 2, 32, 25] and

later on focusing on point convolutions or a combination of

edge and points pulling layers, known as message passing

[48, 8, 33, 34, 42, 45, 43, 16, 12, 47, 22, 25]. Interesting

follow-up papers appeared rapidly, trying to solve the main

challenge arising from the permutation challenge in graphs.

We do see recently different sampling strategies or different

pulling methods. MLP layers and MAX-pooling are two

relevant and popular building blocks for that [8, 34]. An-

other interesting and popular approach was using the points

as raw data input [8], followed by a hierarchical architec-

ture which can capture the local structure of the point clouds

[33]. Treating point cloud as graph and performing convo-

lution over local neighbourhood make a lot of sense, and

several successful approaches were introduced lately focus-

ing on the convolution engine [6, 41, 49, 15, 50, 52]. In

our work, we use the PointConv suggested by [52, 53] to

perform the convolutions on the point clouds.

Scene Flow Estimation on Point Clouds. The increas-

ing popularity of range data gave birth to the need for fast

and accurate mapping of point clouds. [10, 4, 39, 46] sug-

gested estimating the scene flow directly from real LiDAR

scans. [10, 4] consider the scene flow as a rigid motion,

while [49, 23, 13, 53, 24, 31] remove those restrictions.

Based on the [33] architecture, FlowNet3D [23] introduced

a novel flow embedding layer that aggregates the features

from different frames. However, they only applied the flow

embedding at a certain scale which limits the allowed feasi-

ble gap between the frames. [53] introduced a neural net-

work based on [44] which can predict the scene flow in

a coarse-to-fine manner, showing superior results both for

large and small flows. However, they do not have any treat-

ment for the occlusions, and their accuracy decrease signif-

icantly when there are occluded regions in the point clouds.

Recently, [38] suggests estimating the scene flow using both

RGB and LiDAR data to overcome ambiguity by providing

an additional layer of information. [31] proposed an in-

teresting approach focusing on all-to-all correlation using

graph matching.

Occlusion estimation in Scene Flow. Scene flow estima-

tion and occlusion are treated as a chicken-and-egg prob-

lem as they are highly related to each other and one influ-

ence the other. Many papers [19, 20, 21, 40] suggest to

predict the occlusion mask jointly with the flow and to re-

fine the flow estimation by using the predicted occlusion

mask. [18, 51, 28] suggest to predict both the forward and

backward flow and to find the occluded region based on the

warped images. In [21], they proposed an unsupervised

training framework which can predict the optical flow and

occlusion from multiple frames. Based on [44], PWOC-

3D [40] suggests a self-supervised strategy for the occlu-

sion estimation by masking the warped feature inside the

Cost Volume layer using the occlusion map.

In this work, we suggest entangling the two aspects to-

gether all across the network, not just only in the cost func-

tion. We claim that the occlusion should guide the flow and

vice-versa as part of the architecture itself to gain the most

out of the two. To the best of our knowledge, we are the

first to estimate the occlusion in 3D scene flow estimation

on point clouds and the first to present a guided linked unit

in the pipeline to solve the flow-occlusion coupled task. We

present state-of-the-art alignment results over all methods

described above on known datasets.



Warping
Layer

Upsample
Layer

Upsample
Layer

Coarser
Flow

Coarser
Mask

Occlusion
Branch

Flow
Branch

Finer
Mask

Finer
Flow

Target

Scene	Flow

Occlusion	map

Predictor	Layer

Cost	Volume
Layer

Feature
Propagation

Source

E
st
im
at
or Coarser

Flow
Coarser
Mask

Finer
Flow

Finer
Mask

Zoomed	details

Figure 2: Architecture. On the left, we show the entire pipeline of OGSF-Net. It takes the input point cloud on the left and uses the

PointConv+FPS to downsample the point cloud at each level. On the right, we show the finer details at each level. We first warp the target

towards the source in order to construct our Cost Volume. Using the PointConv and MLP in the Feature propagation layer, we create the

shared input features for the Flow/Occlusion branch.

3. Problem Definition

Given two samplings of a 3D scene we wish to estimate

the movement in space between the source and the target

and to identify the points in the source that do not appear

in the target. We represent the two sampled scenes, source

S and target T as point clouds. Specifically, S = {pi|pi ∈
R

3}n1

i=1 with n1 points and T = {qj |qj ∈ R
3}n2

j=1 with n2

points. Each point can also have a feature vector such as

color or local normal to the surface. To ease notations, we

denote ci ∈ R
d the feature of point pi ∈ S and gj ∈ R

d for

the point qj ∈ T .

Given that S represents a sampling of the source domain,

we wish to find the flow in space of each point in S. We

denote by fi ∈ R
3 the flow vector of point pi which is

shifted towards pi + fi in the target domain. Note that we

do not learn a correspondence between the source points

and the target points but a flow representation of each point

on the source. Due to a potential occlusion, some points in

the source may not appear in the target frame. We note the

occlusion of a point pi in the source using a binary scalar

occi ∈ {0, 1}, where 0 means occluded and 1 means non-

occluded. Our goal is to find the scene flow {fi}
n1

i=1 and

occlusion label {occi}
n1

i=1 for every point in the source.

4. Architecture

Inspired by the architecture of [53], our network utilizes

a feature pyramid structure and uses the point cloud from

two different time frames as its inputs, where each point

can have a rich feature vector such as color or normal to

the surface. In the examples shown in this paper, we use

the RGB color as our input point feature. See Figure 2 for

network architecture. In each pyramid level, we first apply

a backward warping of the target point cloud T towards the

source S by using the upsampled flow from the previous

level. Then, by using the features from the point clouds and

the upsampled occlusion mask from the previous level, we

construct our cost volume for each point in S. The cost

volume is a widely used concept in stereo matching [44,

37]. It stores the point-wise matching cost and measures

the correlation between the different frames. Finally, we

predict the finer flow and mask by using the cost volume,

features from S, upsampled flow and mask.

Feature Pyramid Structure. In order to extract the se-

mantically strong features for the accurate flow and occlu-

sion mask prediction, we construct a 4-level pyramid of fea-

tures with the input at the top (zeroth) level. For each pyra-

mid level l, we downsample the point clouds for the coarser

level (l+1) by using the farthest point sampling (FPS) [33].

Followed by a PointConv [52] operation, we create and in-

crease the number of the features for each downsampled

point. The finer prediction of flow and mask at each level

are made by using the upsampled prediction from its coarser

level (except for the bottom level).

Warping. At each pyramid level, we first do a backward

warping of the target points towards the source by using the

upsampled scene flow from the previous coarser level. We

use the same Upsample layer as in [53]. Since the warping

layer brings the target “closer” to the source, neighborhood

searching of the target around the source point would be

more accurate during the cost volume construction. Denote

the upsampled flow from the coarser layer as {fup
i }n1

i=1. In-

side the warping layer, we first do a forward warping from

the source to the target:

Sw = {pw,i = pi + fup
i }n1

i=1 (1)

For each point qj in the target T , we compute its backward



Replicate
k times

Relative
Displacment

K-NN 
index

Feature
Grouping

Replicate
k times

Max
Pooling

C.V

Source
point

Target
point

Source
feature

Target
feature

Upsampled Occ map

 concatenation
elementwise multiplication

K-NN

Figure 3: Cost Volume Layer. For each point in the source, we

first find its k-NN point in the target. Then, we group the rela-

tive displacement (qj − pi) and the features (gj) of the neighbor-

hood. After we calculate the matching cost, we apply the occlusion

masking and the Max-pooling to construct the Cost Volume.

flow by using the weighted average of the upsampled flow:

f b
j =

∑

pi∈NSw(qj)
w(pi, qj)× (−fup

i )
∑

pi∈NSw(qj)
w(pi, qj)

(2)

Where NSw(qj) is the K nearest neighbor (k-NN) of qj on

Sw, weight w(pi, qj) =
1

d(pi,qj)
is simply the inverse of the

euclidean distance between pi and qj . Finally, the warped

target point will be the element-wise addition of the back-

ward flow and itself:

Tw = {qw,j = qj + f b
j }

n2

j=1 (3)

Cost volume with Occlusion mechanism. Traditionally,

occlusions play an essential role in the scene flow estima-

tion on the 2D stereo frames. When it comes to the 3D point

clouds, occlusion issues still exist due to the motion of the

object and the camera position. The main impact of the oc-

clusion is on the cost volume since the matching cost for

the occluded point is not available. Similar to the images,

the occlusion in the source point cloud relative to the target

can be modeled as a map: OCCS−T : S → [0, 1] where 0

stands for the occluded point, 1 stands for the non-occluded.

FlowNet3D [23] uses a flow embedding layer to aggregate

the features and spatial relationships for each neighbor in

the target around the source. Since their model only finds

the neighboring points within a certain radius, it is somehow

robust to the occlusion as the relative displacement between

the occluded point and target is usually large. PointPWC-

Net [53] suggests a novel cost volume that can aggregate the

features of both input point cloud in a patch-to-patch man-

ner. However, for the occluded regions in the source, this

feature aggregation operation can be incorrect since they do

not have a correspondence in the target frame. Inspired by

PWOC-3D [40], we suggest a novel occlusion mechanism

that helps the construction of our cost volume.

One of the critical components of cost volume is the

matching cost. It measures the similarity between the

source point and the target point. Since we believe that the

correlation between the points is highly related to their fea-

tures and relative displacement, for the non-occluded point

pi, the matching cost between pi and qj is calculated by

cost(pi, qj) = h(ci, gj , qj − pi) (4)

Where h(·) is simply a concatenation of its input followed

by 1×1 convolution layers, ci and gj are the corresponding

features of pi ∈ S and qj ∈ Tw. When it comes to the

occluded points pi , we expect to get a matching cost of 0,

as they do not have a correspondence in the target frame.

As shown in Figure 3, by using our definition of occlusion

map, we can calculate our matching cost of pi with qj as:

cost(pi, qj) = OCCS−T (pi)h(ci, gj , qj − pi) (5)

In our case, we use the upsampled predicted occlusion mask

from its coarser layer as the occlusion map in Eq. 5.

After we calculate the matching cost, we can aggregate

them to form the cost volume. Theoretically, we can use all

possible pairs of (pi, qj) in our calculation, but this is in-

efficient in terms of the computation. With the help of the

Warping layer, we can assume that the correct correspond-

ing point pairs between source and target are relatively close

to each other. For this reason, we only aggregate the match-

ing cost of the nearest target neighbor for every point in the

source. It can be summarized in the following form:

CV (pi) = Aggregation
qj∈NTw(pi)

{cost(pi, qj)} (6)

where NTw(pi) is the nearest neighborhood of the source

point pi in the warped target Tw.

In the cost volume layer of [53], they use a learnable

weighted sum based on the relative distance as the aggre-

gation function to calculate their Point-to-Patch cost. This

implies that the proportion of the matching cost between

(pi, qj) in CV (pi) only depends on their relative displace-

ment (qj − pi). However, in many cases, the correlation

between the points depends on their features but not their

relative displacement, the correct corresponding pairs can

have less contribution to the cost volume by using this ag-

gregation design. In our work, we decide to use the max-

pooling to aggregate the matching cost. The intuition is that,

to make an accurate prediction of the flow and mask, the

model needs the matching cost of the correct correspond-

ing pairs to have the highest contribution in the cost vol-

ume. Using max-pooling can force their matching cost to

have the highest value among the neighborhood NTw(pi)
during training. This choice of design also agrees with our

definition of the matching cost above. To summarize, we

calculate the cost volume for every point pi by using the

following equation:



Cost
Volume

Upsampled	
mask

Upsampled
flow

Source
point

Source
feature

finer	mask

finer	flow

Occ
predictor

Residual	flow
predictor

Concatenation

PointConv

MLP

MLP

Addition

MLP

Figure 4: Predictor Layer. Our Predictor layer takes several in-

puts and produces the scene flow and occlusion mask at current

level. These outputs will be upsampled and used as one of the

inputs in the the next pyramid level.

CV (pi) = MAX
qj∈NTw(pi)

{cost(pi, qj)} (7)

Predictor Layer. In order to make the final prediction of

the flow and occlusion mask at each pyramid level, we use

a predictor layer. As shown in Figure 4, this layer contains

a feature propagation module followed by two predictor

branches. In the feature propagation module, we first con-

catenate all its inputs along the feature dimension. Then by

using several PointConv and Multilayer perceptron (MLP),

we generate the final features for the flow and mask pre-

diction. The inputs of the feature propagation module are

the features of the source, masked cost volume described

above, upsampled flow and upsampled occlusion mask. Af-

ter the feature propagation layer, we connect a flow predic-

tor and occlusion predictor in parallel. Since we believe

that the scene flow and occlusion are highly related to each

other, we decide to use the shared input features for the two

branches. Our flow predictor consists of a single MLP layer

such that the output tensor has a dimension of (n1, 3). Un-

like the PointPWC-Net [53], our flow predictor only pre-

dict a residual flow vector such that the final scene flow

is the element-wise addition of the upsampled flow from

the previous level and the residual flow for every point in

the source. By using this residual flow design, we solve

the scene flow estimation problem in an iterative approach

and we get a stronger correlation between the consecutive

pyramid levels. Shifting from multi-scale flow estimation

to multi-scale residual improve the results significantly and

we show that in the ablation study.

For the occlusion branch, we use a 2-layer MLP with

leaky-ReLU activation in the middle to process the input

features. We also connect a sigmoid activation layer in the

end. This ensures the output to be a probability distribution

with value in the range [0, 1].

5. Loss functions

We train our model in a supervised manner with the

ground truth scene flow and occlusion mask. Since the ex-

isting scene flow dataset with real scans is too small for the

training, we adopt a similar training scheme as in the pre-

vious work [23, 53]. We first train our model with the syn-

thetic data from the FlyingThings3D [27], then we test it

with the real LiDAR scans from the KITTI [29, 30]. We

show that OGSF-Net has the best generalization ability to

the unseen data from KITTI in the experiment section. In

order to predict both the scene flow and occlusion map, we

use two loss terms to train our model.

Scene flow loss. We use a similar loss function as in [23]

and [53] for the flow estimation. Let f ′

i be the ground truth

flow and fi be the predicted flow for the point pi ∈ S. Let

occ′i be the ground truth occlusion label for pi with the value

in {0, 1}. We use a multi-level loss for the flow as below

Floss(Θ) =
3

∑

l=0

αl

∑

pi∈Sl

occ′i
∥

∥fi − f ′

i

∥

∥

2
+
∥

∥fi − f ′

i

∥

∥

2
(8)

Where Θ is the learnable parameters of OGSF-Net, Sl is

the sampled point cloud at pyramid level l, and αl is the

weight for each level. The first term in the inner summa-

tion penalizes the L2 norm of the errors in estimated flow

for non-occluded regions. Since we also want to predict the

flow for occluded regions, we add the second term which

penalizes the error for all points in every Sl and it improves

the performance through our experiments.

Occlusion loss. At each pyramid level, we use the pre-

dicted occlusion map to construct our masked cost volume.

It means accurate mask prediction is also important for flow

estimation at each level. Let occ′i be the ground truth oc-

clusion label and occi be the predicted label for the point

pi ∈ S. We use a similar occlusion loss as the flow loss:

Oloss(Θ) =

3
∑

l=0

βl

∑

pi∈Sl

‖occi − occ′i‖ (9)

The overall loss function we used is simply the combination

of the flow and occlusion loss from each pyramid level:

L(Θ) = Floss(Θ) + λ ·Oloss(Θ) (10)

We use the λ as a weight to control the balance between the

flow loss and occlusion loss.

6. Experiments

In this section, firstly, we compared the performance

of our OGSF-Net with previous work on the FlyingTh-

ings3D [27] synthetic dataset on several evaluation met-

rics. Without any fine-tuning, we also test our model’s gen-

eralization ability on the real scans from KITTI [29, 30].



Dataset Method EPEfull↓ EPE↓ ACC05↑ ACC10↑ Outliers↓

Flyingthings3D

ICP [5] 0.5048 0.4848 0.1215 0.2558 0.9441

FlowNet3D [23] 0.2119 0.1577 0.2286 0.5821 0.8040

HPLFlowNet [13] 0.2012 0.1689 0.2629 0.5745 0.8123

FLOT(K = 1) [31] 0.2502 0.1530 0.3965 0.6608 0.6625

PointPWC-Net [53] 0.1953 0.1552 0.4160 0.6990 0.6389

Ours 0.1634 0.1217 0.5518 0.7767 0.5180

KITTI

ICP [5] 0.3801 - 0.1038 0.2913 0.8307

FlowNet3D [23] 0.1834 - 0.0980 0.3945 0.7993

HPLFlowNet [13] 0.3430 - 0.1035 0.3867 0.8142

FLOT(K = 1) [31] 0.1303 - 0.2788 0.6672 0.5299

PointPWC-Net [53] 0.1180 - 0.4031 0.7573 0.4966

Ours(without ft) 0.0751 - 0.7060 0.8693 0.3277

Ours(with ft) 0.0333 - 0.8913 0.9517 0.1915

Table 1: Performance on Flyingthings3D and KITTI. All the models in the table are trained on the occluded Flyingthings3D using 8192

points. We test it on KITTI (with occlusion) using 8192 points from each frame without any fine-tuning. Notice that we outperforms all

other methods by a large margin. In the last column, we also present our fine-tuned results on KITTI.

By further fine-tuning on KITTI, we show improvements

in the results and present visualization on KITTI. In the

previous works, there are two versions of FlyingThings3D

and KITTI that have been proposed. The first one is sug-

gested by [13], where the occluded point is removed from

the processed point cloud and many difficult examples in

the Flyingthings3D have been removed. The second ver-

sion is suggested by FlowNet3D [23]. The occluded region

remains and the occlusion map for FlyingThings3D is pro-

vided. Since our work is highly related to the occlusion,

we adopt the FlyingThings3D and KITTI proposed by [23],

which is more challenging than the first version. Secondly,

in the ablation study, we test our design choices and show

the effectiveness of all the novel components in our work.

Finally, we evaluate our occlusion estimation. To the best

of our knowledge, we are the first one to evaluate the occlu-

sion on scene flow estimation on point clouds. We present

here state-of-the-art results compared to those of previous

reported methods.

Evaluation Metric. We first adopt the four evaluation met-

rics used in [13, 23, 53, 31]: averaged end point error (EPE);

two accuracy measurement with a different threshold on

EPE; outlier ratio with a threshold on the EPE. In [23, 31],

the above metrics are evaluated on the non-occluded points

only, while in our work, we evaluate results for all the

points, include occluded and non-occluded ones. The de-

tails of the evaluation metrics are as follow:

⋆ EPEfull(m):
∥

∥fi − f ′

i

∥

∥

2
averaged over all pi ∈ S.

⋆ EPE(m):
∥

∥fi − f ′

i

∥

∥

2
averaged over all non occluded

points.

⋆ ACC05: percentage of points whose EPEi < 0.05m

or EPEi /
∥

∥f ′

i

∥

∥

2
< 5%

⋆ ACC10: percentage of points whose EPEi < 0.1m or

EPEi /
∥

∥f ′

i

∥

∥

2
< 10%

⋆ Outlier: percentage of points whose EPEi > 0.3m

or EPEi /
∥

∥f ′

i

∥

∥

2
> 10%

Implementation Details. Our OGSF-Net utilizes the same

feature pyramid structure as in [53] to process the in-

put point clouds, while the number of points we used in

each downsampled point cloud is [2048, 512, 256, 128]. We

choose the weight α in the Eq. 8 to be α = [αl]
3
l=0 =

[0.02, 0.04, 0.08, 0.16]. The weight β in Eq. 9 is set to be

βl = 1.4αl for every pyramid level l. The number of fea-

tures d at each level is set to be [64, 96, 192, 320] and dcv at

each level is [32, 64, 128, 256]. All hyper-parameters are se-

lected according to the validation set of Flyingthings3D. We

trained our model with 2×GTX2080Ti GPU on FlyingTh-

ings3D with batch size of 8 and 120 training epochs, and it

took one day to train. We start with a learning rate of 0.001
and reduce it after every 10 epochs with a decay rate 0.85.

We further reduce the decay rate to 0.8 after 75 epochs. The

balancing weight λ is 0.3 initially. In order to improve the

occlusion accuracy, we increase the λ gradually to 0.6 in the

first 45 epochs.

6.1. Evaluation on Flyingthings3D

Since the acquisition of dense flow and occlusion mask

from the real scene is difficult, to the best of our knowledge,

there is no real-world large-scale scene dataset published

with ground truth flow and mask. Thus, by following the

similar evaluation process in [23, 31, 53, 13], we trained

our model on the synthetic FlyingThings3D [27] dataset.

As mentioned before, we use the same dataset suggested

by [23], it contains 20000 pairs of the point cloud in the

training set and 2000 in the test set.



Figure 5: Visualization on KITTI Scene Flow 2015. For the images on the left, we show the source (red) and target (blue) point cloud

on the same 3D space before the alignment. For the images on the right, we align the source towards the target by using the predicted flow

from OGSF-Net (source+scene flow). The zoom-in view for the region circled by black is shown. We also provide the zoom-in detail of

our predicted occlusion map for the region circled by green. We can see that our OGSF-Net can predict the map for the occluded points

(black) and non-occluded points(red) correctly, it can also estimate the accurate flow for both occluded and non-occluded regions.

Since both the ground truth scene flow and occlusion

mask are provided in this dataset, we use the loss function

in Eq.10 to train our model.

The detailed comparison results are shown in Table 1.

We compared our model with the previous state-of-the-art

methods on point cloud scene flow estimation. All the meth-

ods were trained on Flyingthings3D proposed by [23], we

use n1 = n2 = 8192 points for each point cloud for the

training and evaluation. It is clear to see that our method

outperforms the previous work in all evaluation metrics. As

mentioned in the related work, when compared the num-

bers in Table 1 to the reported results in their own paper, we

can see that the performance of [53, 13] is highly degraded

due to the existence of occlusion in the input. Notice that

the performance of FlowNet3D [23] and FLOT [31] is ac-

ceptable on the EPE, but they perform much worse on the

EPEfull. This is because they removed the errors for the

occluded region in their loss function and they are not able

to predict the flow for the occluded points.

6.2. Evaluation on KITTI

In order to test the generalization ability on real scans,

we first trained our model on Flyingthings3D then test it on

all the 150 examples with n1 = n2 = 8192 points from

KITTI Scene Flow 2015 [29, 30] without any fine-tuning.

Since they do not provide the ground truth occlusion map

for the source, we cannot evaluate the EPE on the KITTI.

As shown in Table 1, our model has the best generaliza-

tion ability compared to the previous work. On the last row

in the Table 1, we split the data to 100 training samples for

fine-tuning and 50 samples for test, we show a further im-

provement in the performance. Since there is no ground

truth occlusion mask, we only use
∑

αl

∑

∥

∥fi − f ′

i

∥

∥

2
(second term of the Floss(Θ)) as the loss function for the

fine-tuning.

6.3. Ablation Study

We performed several ablation studies to validate our

model’s design choices, occlusion guided mechanism, and

loss functions. In Table 2 (a), we report the EPE of a dif-

ferent combination of the design choices on the Flyingth-

ings3D dataset. When we use Max-pooling to aggregate the

matching cost in the Cost Volume layer, we obtain signifi-

cantly better results in terms of the EPE. By further using

our residual flow prediction design instead of the full scene

flow prediction, we got a 19% improvement in the perfor-

mance. In the last two rows, we show that our model’s

performance on the occluded dataset improved by a large

margin by utilizing the occlusion estimation mechanism.

In Table 2 (b), we train our model using the different loss

functions and present the EPE and EPEfull on the Flyingth-

ings3D and KITTI respectively. As shown in the bottom

row, OGSF-Net can distinguish between the occluded and

non-occluded regions by training with the occlusion loss.

It improves the performance on the Flyingthings3D and we

got a better generalization ability on KITTI.



a) b) c) d) e)gt gtpred pred
Figure 6: Flow/Occlusion Visualization on Flyingthings3D. An example from the test set of Flyingthings3D. a) shows the source (red)

and target (blue) frames, b) and c) show the alignment results by using the ground truth and predicted flow, d) and e) show the ground truth

and predicted occlusion map where the non-occluded region is marked in red and the occluded region is marked in black.

Aggregation
Occ.

Predictor

Masked

C.V

Flow

branch
EPE↓

Weighted sum % % Full 0.1610

Weighted sum ! % Full 0.1541

Weighted sum ! ! Full 0.1512

Max-Pooling % % Full 0.1503

Max-Pooling % % Residual 0.1304

Max-Pooling ! ! Residual 0.1217

(a) Design choice

FLow loss Occlusion loss Flyingthings3D KITTI

! % 0.1337 0.0794

! ! 0.1217 0.0751

(b) Loss function

Table 2: Ablation Studies for the model design.(a) we show the

different combination of design choices, and ours can get the best

performance.(b) by training with the occlusion, we can get a much

better generalization on the real scans from KITTI.

6.4. Occlusion Estimation

An accurate occlusion prediction is important for our

occlusion-guided mechanism and important for some ap-

plications like 3D object reconstruction. In this section,

we evaluate the performance of occlusion estimation on the

Flyingthings3D only as there is no other public dataset on

point cloud that provides the ground truth occlusion mask.

We use the standard occlusion estimation metrics, accuracy

and F1-score, as our evaluation metrics. We first convert

the predicted occlusion probabilities to the label {0, 1} us-

ing threshold value 0.5. Then, we measure the two met-

rics and we get 94.91% and 0.824 respectively. We also

showed some visualization of the occlusion estimation re-

sults in Fig 5 and 6.

6.5. Outlier ratios

In the scene flow estimation, outlier ratios are important

as they measure the robustness of the model. In Table 3,

Method
Threshold for Outlier (m)

0.1 0.2 0.3 0.4 0.5

FlowNet3D [23] 67.87 29.15 14.41 7.83 4.46

FLOT [31] 37.34 16.69 9.22 5.37 3.37

Ours 13.82 6.54 4.78 3.85 3.27

Table 3: Outlier ratio. We measure the outlier ratios with dif-

ferent threshold values. We only compared our model with the

FlowNet3D and FLOT as they are the only models trained and

tested with occluded data in their works.

we show outlier ratios on KITTI Scene Flow 2015 [29, 30]

with different threshold values for different models. We

calculate the ratio by simply finding the percentage of the

point whose EPEfull is greater than the given threshold.

As we can see, the performance of [31] and ours is much

better than [23]. For all the threshold values from 0.1 to

0.5, our model has the smallest outlier ratio compared to

the FlowNet3D [23] and FLOT [31].

7. Conclusion

In this paper, we suggest a deep neural network called

OGSF-Net that can jointly estimate the scene flow and oc-

clusion map directly from the point cloud data. We are the

first to introduce the idea of occlusion estimation on the

point cloud scene flow estimation, and by using our mask-

ing operation inside the Cost Volume layer, we show a sig-

nificant improvement in the flow accuracy. Our occlusion

guided flow estimation not only provides an additional layer

of information but outperforms previously reported state-of-

the-art models by a large margin, on multiple datasets and

for different metrics.

8. Acknowledgment

This work is partially funded by the Zimin Institute for

Engineering Solutions Advancing Better Lives, the Israeli

consortiums for soft robotics and autonomous driving, the

Nicholas and Elizabeth Slezak Super Center for Cardiac Re-

search and Biomedical Engineering at Tel Aviv University

and TAU Science Data and AI Center.



References

[1] Yonathan Aflalo, Ron Kimmel, and Dan Raviv. Scale invari-

ant geometry for nonrigid shapes. SIAM Journal on Imaging

Sciences, 6(3):1579–1597, 2013. 1

[2] Michael Allen. Voxnet: Reducing latency in high data

rate applications. Wireless Sensor Networks, page 115–158,

2010. 2

[3] B. Amberg, S. Romdhani, and T. Vetter. Optimal step non-

rigid icp algorithms for surface registration. In 2007 IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–8, 2007. 1

[4] Aseem Behl, Despoina Paschalidou, Simon Donne, and An-

dreas Geiger. Pointflownet: Learning representations for

rigid motion estimation from point clouds. 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), 2019. 2

[5] Paul J. Besl and Neil D. McKay. Method for registration of

3-D shapes. In Paul S. Schenker, editor, Sensor Fusion IV:

Control Paradigms and Data Structures, volume 1611, pages

586 – 606. International Society for Optics and Photonics,

SPIE, 1992. 1, 6

[6] Bert De Brabandere, Xu Jia, Tinne Tuytelaars, and Luc Van

Gool. Dynamic filter networks, 2016. 2

[7] Jan Cech, Jordi Sanchez-Riera, and Radu Horaud. Scene

flow estimation by growing correspondence seeds. Cvpr

2011, 2011. 1

[8] R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J. Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. 2017 IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2017. 2

[9] Y. Chen and G. Medioni. Object modeling by registration

of multiple range images. Proceedings. 1991 IEEE Interna-

tional Conference on Robotics and Automation. 1

[10] A. Dewan, T. Caselitz, G. D. Tipaldi, and W. Burgard. Rigid

scene flow for 3d lidar scans. In 2016 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS),

pages 1765–1770, 2016. 2

[11] Jens-Malte Gottfried, Janis Fehr, and Christoph S. Garbe.

Computing range flow from multi-modal kinect data. Ad-

vances in Visual Computing Lecture Notes in Computer Sci-

ence, page 758–767, 2011. 1

[12] Fabian Groh, Patrick Wieschollek, and Hendrik P. A. Lensch.

Flex-convolution (million-scale point-cloud learning beyond

grid-worlds). In Asian Conference on Computer Vision

(ACCV), Dezember 2018. 2

[13] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and

Panqu Wang. Hplflownet: Hierarchical permutohedral lat-

tice flownet for scene flow estimation on large-scale point

clouds. 2019 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2019. 2, 6, 7

[14] Evan Herbst, Xiaofeng Ren, and Dieter Fox. Rgb-d flow:

Dense 3-d motion estimation using color and depth. 2013

IEEE International Conference on Robotics and Automation,

2013. 1

[15] Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar

Vinacua, and Timo Ropinski. Monte carlo convolution for

learning on non-uniformly sampled point clouds. ACM

Transactions on Graphics, 37(6):1–12, Jan 2019. 2

[16] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-

wise convolutional neural networks. 2018 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, 2018.

2

[17] Frederic Huguet and Frederic Devernay. A variational

method for scene flow estimation from stereo sequences.

2007 IEEE 11th International Conference on Computer Vi-

sion, 2007. 1

[18] Junhwa Hur and Stefan Roth. Mirrorflow: Exploiting sym-

metries in joint optical flow and occlusion estimation. 2017

IEEE International Conference on Computer Vision (ICCV),

2017. 2

[19] Junhwa Hur and Stefan Roth. Iterative residual refinement

for joint optical flow and occlusion estimation. In CVPR,

2019. 2

[20] Eddy Ilg, Tonmoy Saikia, Margret Keuper, and Thomas

Brox. Occlusions, motion and depth boundaries with a

generic network for disparity, optical flow or scene flow es-

timation. Computer Vision – ECCV 2018 Lecture Notes in

Computer Science, page 626–643, 2018. 1, 2

[21] Joel Janai, Fatma G”uney, Anurag Ranjan, Michael J. Black,

and Andreas Geiger. Unsupervised learning of multi-frame

optical flow with occlusions. In European Conference on

Computer Vision (ECCV), volume Lecture Notes in Com-

puter Science, vol 11220, pages 713–731. Springer, Cham,

Sept. 2018. 2

[22] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan

Di, and Baoquan Chen. Pointcnn: Convolution on X -

transformed points, 2018. 2

[23] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.

Flownet3d: Learning scene flow in 3d point clouds. CVPR,

2019. 1, 2, 4, 5, 6, 7, 8

[24] Xingyu Liu, Mengyuan Yan, and Jeannette Bohg. Meteor-

net: Deep learning on dynamic 3d point cloud sequences. In

ICCV, 2019. 2

[25] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-

voxel cnn for efficient 3d deep learning. In Advances in Neu-

ral Information Processing Systems, 2019. 2

[26] Kunming Luo, Chuan Wang, Nianjin Ye, Shuaicheng Liu,

and Jue Wang. Occinpflow: Occlusion-inpainting optical

flow estimation by unsupervised learning, 2020. 2

[27] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. 2016 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2016. 5, 6

[28] Simon Meister, Junhwa Hur, and Stefan Roth. UnFlow: Un-

supervised learning of optical flow with a bidirectional cen-

sus loss. In AAAI, New Orleans, Louisiana, Feb. 2018. 2

[29] Moritz Menze and Andreas Geiger. Object scene flow for

autonomous vehicles. 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2015. 5, 6, 7, 8

[30] M. Menze, C. Heipke, and A. Geiger. Joint 3d estimation

of vehicles and scene flow. ISPRS Annals of Photogram-



metry, Remote Sensing and Spatial Information Sciences, II-

3/W5:427–434, 2015. 5, 6, 7, 8

[31] Gilles Puy, Alexandre Boulch, and Renaud Marlet. FLOT:

Scene Flow on Point Clouds Guided by Optimal Transport.

In European Conference on Computer Vision, 2020. 1, 2, 6,

7, 8

[32] Charles R. Qi, Hao Su, Matthias Niebner, Angela Dai,

Mengyuan Yan, and Leonidas J. Guibas. Volumetric and

multi-view cnns for object classification on 3d data. 2016

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2016. 2

[33] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-

net++: Deep hierarchical feature learning on point sets in a

metric space. arXiv preprint arXiv:1706.02413, 2017. 1, 2,

3

[34] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos.

Deep learning with sets and point clouds, 2016. 2

[35] Dan Raviv, Michael M. Bronstein, Alexander M. Bronstein,

Ron Kimmel, and Nir Sochen. Affine-invariant diffusion ge-

ometry for the analysis of deformable 3d shapes. Cvpr 2011,

2011. 1

[36] Dan Raviv, Anastasia Dubrovina, and Ron Kimmel. Hierar-

chical matching of non-rigid shapes. Lecture Notes in Com-

puter Science Scale Space and Variational Methods in Com-

puter Vision, page 604–615, 2012. 1

[37] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M.

Gelautz. Fast cost-volume filtering for visual correspondence

and beyond. In CVPR 2011, pages 3017–3024, 2011. 3

[38] Rishav, Ramy Battrawy, René Schuster, Oliver Wasenmüller,

and Didier Stricker. DeepLiDARFlow: A Deep Learning

Architecture For Scene Flow Estimation Using Monocular

Camera and Sparse LiDAR. In IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), 2020. 2

[39] Rishav, Ramy Battrawy, René Schuster, Oliver Wasenmüller,

and Didier Stricker. Deeplidarflow: A deep learning archi-

tecture for scene flow estimation using monocular camera

and sparse lidar, 2020. 2

[40] Rohan Saxena, René Schuster, Oliver Wasenmüller, and Di-

dier Stricker. PWOC-3D: Deep occlusion-aware end-to-end

scene flow estimation. In IEEE Intelligent Vehicles Sympo-

sium (IV), 2019. 2, 4

[41] Martin Simonovsky and Nikos Komodakis. Dynamic edge-

conditioned filters in convolutional neural networks on

graphs. 2017 IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2017. 2

[42] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

Splatnet: Sparse lattice networks for point cloud processing.

2018 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, 2018. 2

[43] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

SPLATNet: Sparse lattice networks for point cloud process-

ing. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2530–2539, 2018. 2

[44] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

Models matter, so does training: An empirical study of cnns

for optical flow estimation. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI). to appear. 1, 2,

3

[45] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-

Yi Zhou. Tangent convolutions for dense prediction in 3d.

2018 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, 2018. 2

[46] A. K. Ushani, R. W. Wolcott, J. M. Walls, and R. M. Eustice.

A learning approach for real-time temporal scene flow esti-

mation from lidar data. In 2017 IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 5666–5673,

2017. 2

[47] Nitika Verma, Edmond Boyer, and Jakob Verbeek. Feast-

net: Feature-steered graph convolutions for 3d shape anal-

ysis. 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2018. 2

[48] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and

Jie Shan. Graph attention convolution for point cloud se-

mantic segmentation. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019. 2

[49] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei

Pokrovsky, and Raquel Urtasun. Deep parametric continuous

convolutional neural networks. 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2018. 2

[50] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic

graph cnn for learning on point clouds. ACM Transactions

on Graphics (TOG), 2019. 2

[51] Yang Wang, Yi Yang, Zhenheng Yang, Liang Zhao, Peng

Wang, and Wei Xu. Occlusion aware unsupervised learn-

ing of optical flow. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2018. 2

[52] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep

convolutional networks on 3d point clouds. 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), 2019. 2, 3

[53] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li

Fuxin. Pointpwc-net: Cost volume on point clouds for (self-)

supervised scene flow estimation. In European Conference

on Computer Vision, pages 88–107. Springer, 2020. 1, 2, 3,

4, 5, 6, 7

[54] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes.

2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2015. 2


