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1. Radar Data Representations
In this section, we would like to introduce the two radar

data representations, i.e., radio frequency (RF) image and
radar points, in detail. The examples of an RGB image, an
RF image, and a frame of radar points are shown in Fig. 1.

(a) RGB Image (b) RF Image (c) Radar Points

Figure 1. Examples for RGB image, RF image, and radar points.
(a) Three cars in the RGB image; (b) Annotation is extremely dif-
ficult on the corresponding RF image; (c) Radar points are sparse
but have relative precise locations.

RF images are in radar range-azimuth coordinates and
can be described as a bird’s-eye view (BEV) representation,
where the x-axis denotes azimuth (angle) and the y-axis de-
notes range (distance). For an FMCW radar, it transmits
continuous chirps and receives the reflected echoes from the
obstacles. After the echoes are received and pre-processed,
we implement the fast Fourier transform (FFT) on the sam-
ples to estimate the range of the reflections. A low-pass
filter (LPF) is then utilized to remove the high-frequency
noise across all chirps in each frame at the rate of 30 FPS.
After the LPF, we conduct a second FFT on the samples
along different receiver antennas to estimate the azimuth
angle of the reflections and obtain the final RF images.
The radar points can then be derived from these frequency
images through the peak detection algorithm. This pre-
processing pipeline is shown in Fig. 2. After being trans-
formed into RF images, the radar data become a similar
format as image sequences, which can thus be directly pro-
cessed by an image-based CNN.

2. Derivation for Camera-Radar BCP
We start from projecting a point (r, θ) ∈ R to xc =

(xc, yc, zc). Before that, we first do a polar to Cartesian
coordinate transformation,

xr = r sin(θ),

zr = r cos(θ).
(1)

This point can be transformed to Wc by sensor cali-
bration of the translation from camera to radar tcr =
[tcr,x, tcr,y, tcr,z]

>,

xc = xr + tcr,x,

zc = zr + tcr,z.
(2)

Here, we ignore the rotation transformation between Wr

andWc since both sensors are well-calibrated with the same
orientation.

To calculate yc, we first consider the ground plane with
only pitch rotation angle ϕ. Assuming a small ϕ, which is
a valid assumption in driving scenarios, ycϕ can be approxi-
mated by the similar triangles rule as

ycϕ =

(
h

sin(ϕ)
− r
)
· tan(ϕ) ≈

(
h

sin(ϕ)
− r
)
· sin(ϕ)

= h− r sin(ϕ).
(3)

By taking the second rotation angle γ into consideration, we
then have

ycγ = xc tan(γ). (4)

Therefore, the overall yc can be represented as

yc = ycϕ − ycγ = h− r sin(ϕ)− xc tan(γ)

= h−
√

(xc)2 + (zc)2 · sin(ϕ)− xc tan(γ).
(5)

Finally, we project xc ∈ Wc to C by the camera intrinsic

1



Peak 
Detection

Radar PointsFMCW Radar Signals Range Estimation RF Images

B

A

Range

C

Range

B

A

C

Range 
FFT

Angle 
FFT

LPF

Peak 
Detection

Figure 2. The workflow of the RF image generation from the raw radar signals.

matrix K,

s
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1
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xcyc
zc

 (6)

Thus, we have

u = fx
xc

zc
+ cx,

v = fy
yc

zc
+ cy.

(7)

Put it together, we can project a point (r, θ) ∈ R to
(u, v) ∈ C by the following R → C projection, denoted
as P (·),

[u, v]> = P (r, θ), (8)

where

u = fx
r sin(θ) + tcr,x
r cos(θ) + tcr,z

+ cx,

v = fy
h− r sin(ϕ)− (r sin(θ) + tcr,x) tan(γ)

r cos(θ) + tcr,z
+ cy.

(9)
After the R → C projection is properly derived, we

would like to consider the other direction, i.e., C → R pro-
jection. Since the projection in Eq. 8 is a 2D-to-2D projec-
tion without losing any degrees of freedom (DoF), it can be
reversed. Therefore, we define the C → R projection as

[r, θ]> = P−1(u, v). (10)

Here, the C → Wc projection can be derived as

xc =
hx̂√

1 + x̂2 sin(ϕ) + x̂ tan(γ) + ŷ
,

zc =
h√

1 + x̂2 sin(ϕ) + x̂ tan(γ) + ŷ
,

(11)

where
x̂ =

xc

zc
=
u− cx
fx

,

ŷ =
yc

zc
=
v − cy
fy

.
(12)

Note that Wc → R projection just contains the camera to
radar translation and a Cartesian to polar coordinate trans-
formation, which is trivial and will not be elaborated in de-
tail.

3. Object Location Similarity Details
We propose the object location similarity (OLS) to repre-

sent the similarity between a detection i and a ground truth
j to be

OLS(i, j) = exp

{
−d2ij

2(sjκcls)2

}
, (13)

where d is the distance (in meters) between the two points in
an RF image; s is the object distance from the sensors; and
κcls is a per-class constant that represents the error tolerance
for class cls, which can be determined by the object average
size of the corresponding class. Since OLS is reasonably
distributed between 0 and 1, we treat it as a good represen-
tation of the localization error, and use it as the matching
threshold for the following evaluation metrics, i.e., i and j
are matched if OLS(i, j) > 0.5.
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Figure 3. Illustration of the proposed point-based similarity OLS
between a detection i and a ground truth j.

Fig. 3 is an illustration of the above OLS metric, where
the blue dot represents a detection point and green triangle
represents a ground truth. The key parameters are shown in
Fig. 3.
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