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Abstract

We present a novel architecture for comparing a pair
of images to identify image regions that have been sub-
jected to editorial manipulation. We first describe a robust
near-duplicate search, for matching a potentially manipu-
lated image circulating online to an image within a trusted
database of originals. We then describe a novel architec-
ture for comparing that image pair, to localize regions that
have been manipulated to differ from the retrieved original.
The localization ignores discrepancies due to benign image
transformations that commonly occur during online redis-
tribution. These include artifacts due to noise and recom-
pression degradation, as well as out-of-place transforma-
tions due to image padding, warping, and changes in size
and shape. Robustness towards out-of-place transforma-
tions is achieved via the end-to-end training of a differen-
tiable warping module within the comparator architecture.
We demonstrate effective retrieval and comparison of be-
nign transformed and manipulated images, over a dataset
of millions of photographs.

1. Introduction

Images tell compelling stories, but are often manipulated

to change those stories and spread misinformation. We ur-

gently need tools to support users in making informed trust

decisions on images encountered online.

This paper contributes a novel technique for matching an

image circulating online to a trusted database of originals,

and intuitively visualizing image regions that have been ma-

nipulated to differ from the original.

Robustly matching and comparing images is challeng-

ing, as image content may be also modified for non-editorial

reasons during redistribution. Images are commonly sub-

ject to ‘benign’ transformations such as changes in size,

shape, quality or format by the platforms upon which they

are shared. Images may also be ‘manipulated’ for edito-

rial reasons, including to alter or falsify their stories. We

therefore cannot rely on cryptographic (bit-level) hashing

for matching, nor can simple pixel difference operations be

used to visualize changes due solely to manipulation. We

propose two technical contributions:

Figure 1. Our deep image comparator is trained to highlight the
differences between a pair of images due to editorial manipula-
tion (here, hands up vs. down), whilst ignoring change due to be-
nign transformations of the image during online distribution (here,
warping and blurring). Output in green, ground-truth in yellow.

Robust Near-Duplicate Image Search. We learn a vi-

sual search embedding that exhibits improved robustness

to minor manipulations or benign modifications of images.

We apply contrastive training to train a convolutional neu-

ral network (CNN) using a dataset of original photographs

modified in Adobe PhotoshopTM, combined with data aug-

mentations simulating benign image modifications. This

yields a search embedding for robustly matching a near-

duplicate query image circulating ‘in the wild’ to a trusted

database of original images.

Deep Image Comparator. We propose a novel CNN ar-

chitecture for comparing a pair of images, ignoring any non-

editorial (benign) change. The network incorporates both a

de-warping and image correlation module, and is trained

end-to-end to ignore out-of-place transformation of content

e.g. due to padding or warping as well as in-place corrup-

tion due to noise. Given a query, and an original image

(retrieved from a trusted database via our near-duplicate im-

age search) the network produces a heatmap that localizes

visual discrepancies due to editorial manipulation (Fig. 1).

Further, the network predicts a probability that the query

image has undergone benign manipulation, editorial manip-

ulation, or whether the input pair are completely different.

We show the image comparator to be effective both at

discriminating between changes due to benign transforma-

tion and image manipulation, and at rejecting false positive

results returned via the near-duplicate image search for a



Figure 2. Architecture of the proposed image comparator network. A candidate match to the user queried image is obtained from near-
duplicate search (subsec.3.1, not shown). Image alignment is performed via differentiable de-warping unit (DWU) based on a dense
optical flow estimate provided by the flow estimator. The resulting image pair are separately encoded via a feature extractor fE(.) and the
concatenated features passed through fS(.) to obtain the combined feature z, and via further MLP layers to output a heatmap and a 3-way
classification score (indicating if the pair are different images, or that change is due to either manipulation or benign transformation).

corpus of millions of images.

2. Related Work

Visual content authenticity has been explored from the

perspectives of both detection, and attribution.

Detection of visual tampering or generative (‘deep

fake’) content [10] is typically a ‘blind’ detection problem.

Given a single image, statistics may be learned to localize

manipulated regions [34, 36], identify the use of a genera-

tive adversarial network (GAN) [35] or even determine (fin-

gerprint) which GAN synthesized an image [38]. Detection

of video manipulation similarly exploits temporal anoma-

lies [37] or GAN limitations such as lack of blinking [26].

Image Attribution methods bind an image to data on its

provenance, via embedded metadata [3, 11], watermarking

[21, 9, 30, 1], or perceptual hashing [29, 27, 4, 22]. Emerg-

ing standards securely transport a cryptographically signed

edit history within image metadata [3, 11]. Yet image meta-

data is often stripped by social platforms, and may be re-

placed to misattribute an image [7]. Watermarking meth-

ods similarly embed provenance information, within image

content. Both metadata and watermarking methods may in-

stead embed a link to a trusted database (in some cases a

blockchain [6]) containing the provenance data.

Perceptual hashing also keys into a trusted database us-

ing a robust content-aware hash for visual similarity search

[33]. Classical approaches sample the spectral domain

using wavelets or DCT coefficients [40, 29]. More re-

cently, deep learning has been applied to learn robust vi-

sual hashes. Deep Hashing Networks (DHNs) [41] ex-

tended an ImageNet-trained AlexNet [23] feature encoder

[14] with a quantization loss, to obtain hashes that retained

semantic discrimination. CSQ [39] treats hashing as a re-

trieval/attribution optimization problem. Both DHN and

CSQ but require pairwise labels or semantic annotation un-

available in our use case. Deep Supervised Hashing (DSH)

[27] and HashNet [4] train CNNs to learn visual hashes, us-

ing a siamese network and ranking loss; such losses are used

extensively in visual search [13]. DSDH [25] learns metric

ranking and classification directly from the hash code. Our

approach is aligned in the sense that we also apply deep

metric learning, but differs in that we use contrastive train-

ing [5] and data augmentation to learn invariances relevant

to benign and editorial image transformation.

Localization of image manipulation focuses on blind

detection tasks e.g. identifying image splicing [28] or use

of photo-retouching tools [34]. Uniquely we approach the

problem as a combination of perceptual hashing and pair-

wise comparison. Our image comparator (the second con-

tribution of this paper) assumes that a trusted ‘original’ im-

age may be first uncovered by a visual search (the first con-

tribution). Our comparator learns to ignores discrepancies

due to benign image transformations, but is sensitized to ed-

itorial manipulations. This is achieved through a differential

optical flow [31] and dewarping module into our two-stream

architecture. Two-stream networks have been employed to

predict the kinds of edit operation applied to a pair of im-

ages [19]. We differ by producing a heatmap of edit oper-

ations, de-sensitized to particular transformation classes. A

further feature of our method is a classification score also

available at inference to determine whether an image is a

benign or manipulated version, or a different image.

3. Methodology

We first describe the process to learn a representation for

near-duplicate image search (subsec. 3.1). We assume the

existence of a trusted database containing original images

and their associated provenance information (e.g. curated

by a trusted publisher, or via a decentralized immutable

data-store such as a blockchain). Images are encoded into a

256-D feature embedding, and binarized into a 128-bit hash

for scalable search [20]. The search is used to identify a



shortlist of the most similar images to a users’ query image.

Next, the top few hundred results are passed to our image

comparator network (each in turn, paired with the query im-

age). The classification branch of the comparator is used to

cull false positive matches from the shortlist (subsec. 3.2).

We then visualize the heatmap for the top ranked remaining

result, which informs the user of differences between that

image and the query that are due to image manipulation.

The classification branch of the comparator is also used to

indicate the likelihood of the query image being a manipu-

lated version of that result.

3.1. Near­Duplicate Visual Search

Representation learning. We train a single CNN model

to encode a whole image into a compact embedding space.

The model architecture is ResNet50 with the N-way clas-

sifier layer replaced by a 256-D fully connected (fc) layer

as the embedding; an image I is encoded to descriptor

z = f(I) ∈ R
256. The model is initialized with the Deep-

AugMix pretrained weight [17] and trained with loss:

L(z) = − log

∑
i e

d(z,z+

i
)/τ +

∑
t e

d(z,z+

t )/τ

∑
z− ed(z,z−)/τ

(1)

where d(u, v) =
Eb(u) · Eb(v)

|Eb(u)| |Eb(v)|
(2)

where Eb(.) is a fc layer which serves as a buffer be-

tween the embedding and loss; d(u, v) measures the cosine

similarity between the intermediate embeddings Eb(u) and

Eb(v); τ is the contrastive temperature (per [5]). z+i and

z+t refer to the embeddings of the benign-transformed and

manipulated (also subjected to benign transformations) ver-

sions of image I respectively; while z− is the embeddings

of other images and its transformed versions in the mini-

batch. Our loss resembles SimCLR [5] with 2 key differ-

ences: (i) our loss leverages multiple positive images for

a given input image I instead of just one pair in [5]; and

(ii) we adapt SimCLR in a near-duplicate retrieval problem

treating manipulated images as positives. During training,

we ensure there is at least one benign-transformed and one

manipulated versions for any given image I in a mini batch.

Hashing. Although our 256-D embedding z is already com-

pact, it is difficult to scale search to millions of images while

retaining interactive speed. Inspired from [20], we further

binarize the embedding features via a 2-step quantization:

b = q1(z) + q2(z − q1(z)) ∈ {0, 1}D (3)

where q1(.) is a coarse quantizer to allocate the feature z
into one of several clusters, and q2(.) is a fine quantizer

encoding the residual of z and its corresponding centroid.

q1(.) behaves like an inverted list enabling search within a

fraction of the database, while q2(.) delivers a compact bi-

nary code efficient for search in the Hamming space. We

use KMeans with 1024 clusters for q1(.) also extending the

search to nearby 10 clusters, and Product Quantization for

q2(.) resulting in total a 128-bit descriptor.

3.2. Detecting and Localizing Editorial Change

We propose an Image Comparator Network (ICN) that

accepts a pair of images as input: the query image, and

an original image retrieved by the near-duplication search

model (subsec. 3.1). The ICN outputs both: (i) a heatmap

highlighting areas of the pair that mismatch due to ma-

nipulation; and (ii) a 3-way classification, indicating the

probability that the query image has been subject to benign

transformation (non-editorial change), manipulation (edito-

rial change), or that they are completely different (distinct).

The ICN architecture consists of 2 modules: a geometri-

cal alignment module, FA, followed by a prediction mod-

ule, FP (Fig. 2). Below we describe our designs for FA and

FP as well as the learning objectives.

Geometric alignment module FA. In practice, the

query (hereafter, q) may undergo through arbitrary trans-

formations some of which alter the pixel placement e.g.

affine transformations or padding. It is important to cor-

rect its alignment prior to detection. FA comprises an opti-

cal flow estimator and a de-warping unit (DWU). We build

our flow estimator based on RAFT [31] which was origi-

nally designed to the estimate optical flow between video

frames; here we determine the alignment between two im-

ages instead. Supposed the query image q and the retrieved

original image I are both resized to a fixed height (H) and

width (W), RAFT identifies a dense pixel displacement field

{ρx, ρy} ∈ R
H×W from q to I by computing correlation

between the per-pixel features from all pairs of pixels. See

[31] for detail.

Our DWU then applies the predicted optical flow to the

query for the best alignment to the candidate image:

M : (x, y) 7→ (x+ ρx(x), y + ρy(y)) (4)

DWU (q|ρx, ρy) = S(M) ∈ R
H×W (5)

where (x, y) refers to the pixel coordinates in the query

q which are mapped into its estimated correspondence M
according to the optical flow {ρx, ρy}. S(.) is a bilin-

ear sampler that effectively fits a local grid around M :

S(M) = {M + ∆M |∆M ∈ R
2, |∆M | <= 1} where

output coordinates are computed by linear interpolation.

Prediction module FP . Given the candidate I and the

aligned query, q′ = FA(q|I), we first extract local features

of each image using a shared CNN module:

zq = fE(q
′); zI = fE(I) ∈ R

H′
×W ′

×C (6)

where H ′, W ′ and C are the new height, width and fea-

ture dimension respectively. Our feature extractor fE(.) is

3 convolution layers separated by ReLU, batch norm and



Method Benign Manip Manip+Benign Average

IR@1 IR@10 IR@100 IR@1 IR@10 IR@100 IR@1 IR@10 IR@100 IR@1 IR@10 IR@100

Ours (stage 1 + 2) 0.9003 0.9331 0.9408 0.9206 0.9300 0.9300 0.8028 0.8312 0.8412 0.8745 0.8981 0.9039
Ours (stage 1) 0.7585 0.8788 0.9408 0.8108 0.8817 0.9300 0.5723 0.7323 0.8412 0.7138 0.8309 0.9039

MSResNet fine. 0.7203 0.8499 0.9202 0.8162 0.8905 0.9314 0.5582 0.7147 0.8289 0.6982 0.8184 0.8935
ImageNet fine. 0.6691 0.8226 0.9084 0.7858 0.8676 0.9128 0.4801 0.6614 0.7902 0.6450 0.7839 0.8705
DeepAugMix [17] 0.4899 0.5907 0.6743 0.8885 0.9402 0.9611 0.3828 0.4962 0.5965 0.5870 0.6757 0.7439
MSResNet [24] 0.1548 0.2567 0.3885 0.8807 0.9358 0.9662 0.1020 0.1898 0.3108 0.3792 0.4608 0.5552
ImageNet [15] 0.220 0.3113 0.4056 0.8797 0.9260 0.9527 0.1640 0.2498 0.3441 0.4212 0.4957 0.5675
CSQ [39] 0.0353 0.0873 0.2286 0.3274 0.4257 0.6179 0.0222 0.0611 0.1818 0.1283 0.1914 0.3428
HashNet [4] 0.0635 0.1274 0.2310 0.4611 0.5618 0.6726 0.0349 0.0797 0.1606 0.1865 0.2563 0.3547
pHash [40] 0.3218 0.3282 0.3321 0.3662 0.3743 0.3760 0.1529 0.1612 0.1658 0.2803 0.2879 0.2913

Table 1. Retrieval performance (on 2M images, PSBat-Ret) reported as IR score at ranks [1,10,100], for query images subjected to benign
transforms, manipulation, or both. Stage 1 refers to nearest-neighbor search only. Stage 1+2 is the search reranked via the ICN classifier.

Figure 3. Re-ranking using ICN Classifier. The query image is shown left. Top: Stage 1 near-duplication retrieval (top 8 ranked results).
Bot.: Stage 1+2 ranked results, due to rerank on ‘distinct’ score from ICN classifier. The correct result is promoted to rank 1.

max pooling. It outputs features at 1
4 resolution (H ′ =

H/4,W ′ = W/4 and we set C = 128). The combined

features feed another CNN to learn a combined feature z:

z = fS([zq, zI ]) ∈ R
256 (7)

where [, ] is a concatenation, and fS(.) is formed from 4

ResNet residual blocks [15] followed by average pooling

and a FC layer outputting 256-D features.

Learning objectives. To predict the query-candidate re-

lationship and visualize the possible manipulated regions,

we apply two losses on top of the fusion feature z. The first

loss is a 3-way cross entropy predicting whether the pair is

benign (i.e. the query q is either identical or a benign trans-

formed version of the candidate I), manipulated (i.e. z is a

manipulated version of I) or of distinct images (i.e. z and q
are two different instances):

c = Ec(z) ∈ R
3 (8)

LC = − log
ecy

∑3
i=1 e

ci
(9)

where Ec(.) is a FC layer projecting z to a 3-D feature c,
and y is the classification target of the pair (q, I).

The second loss minimizes the cosine distance between

the manipulation heatmap derived from z and the ground

truth heatmap. We produce the heatmap at resolution t × t

from z via a FC layer, Et(z) ∈ R
t2 , and compute loss:

LT = 1−
Et(z) · T

|Et(z)| |T |
(10)

Figure 4. Recall accuracy versus top-k in retrieving: (i) benign; (ii)
manipulated and (iii) both manipulated and transformed images.

where T is the ground truth manipulation heatmap. T is a

matrix of zeros if the pair (q, I) is benign, ones if different

(distinct), and if a manipulated pair T ∈ [0, 1] derived from

human ground truth annotations (subsec. 4.1). We define

the output heatmap resolution t = 7 during training. At

test time, the 7 × 7 heatmap is interpolated to the original

resolution H ×W and super-imposed on the query image.

The heat map is continuous but can be thresholded for more

intuitive visualization.

The total ICN loss is L(.) = wcLC(.) + wtLT (.) where

loss weight wc = wt = 0.5 is set empirically.

3.3. Robust Search and Re­Ranking using ICN

Manipulation may introduce substantial change in an im-

age. For a corpus of millions of images, our near-duplicate

search model may not always retrieve the correct original

image as the top ranked (top-1) result. Therefore we apply



Method
Accuracy (IoU) Interp. (%)

T No T No T T

ICN (Ours) 0.551 0.563 77.8 85.2
ResNetConv+Geo. Align. FA 0.243 0.243 7.84 3.87
ResNetConv [15] 0.238 0.239 5.88 2.58
SSD+Geo. Align. FA 0.231 0.231 1.31 3.23
SSD 0.149 0.154 3.27 0.65
ErrAnalysis+Geo. Align. FA 0.143 0.011 1.31 0.00
ErrAnalysis [36] 0.109 0.025 1.31 0.00
MantraNet+Geo. Align. FA 0.061 0.091 0.65 1.29
MantraNet [37] 0.027 0.036 0.65 3.23

Table 2. Evaluating heatmap accuracy and intrepretability for
thresholded (T) and non-thresholded (No T) methods. Our pro-
posed ICN is compared against baselines both objectively for ac-
curacy (IoU) and subjectively via users to determine which ex-
hibits best intrepretability (% method preference). +FA indicates
geometric alignment module applied.

a re-ranking to the top-k candidate images obtained from

the initial (stage 1) near-duplicate retrieval search.

Typical visual search pipelines apply second stage (stage

2) processing via geometric verification (GV) to discard

false positives within the top-k results (stage 2). This pro-

cess is slow (typically up to one second per image doing GV

via MLESAC [32]). For interactive search speeds, choice of

a low k is therefore forced. Instead, we propose to use our

ICN classifier for second stage processing. We re-rank our

top-k results based on the probability of the image pair be-

ing distinct. Inference takes around 4 ms per pair, enabling

larger k. As we later show (subsec. 4.5.2), the accuracy at

detecting ‘distinct’ images is 98.95% and we pick k = 100.

4. Experiments and Discussion

We evaluate both the near-duplicate search and the per-

formance of the ICN heatmaps and classification.

4.1. Datasets and Augmentation

We train and evaluate on PSBattles [16]; a dataset of im-

ages manipulated in Adobe PhotoshopTM, collected from

the ‘Photoshopbattles’ forum on Reddit. The dataset con-

tains more than 10k original images and, for each, of

these, several manipulated variants; in total 102,028 vari-

ants contributed by 31K artists. To make our task chal-

lenging, we remove the original-manipulated pairs that

are obviously different, retaining only similar pairs D =
{(Oi, Pi)| ||f(Oi)− f(Pi)||2 < β} where f(.) is a pre-

trained ImageNet ResNet50 feature extractor and β = 150
is the distance threshold. That leaves 7,171 originals and

24,157 manipulated images. The data is split into train-

ing (PSBat-Train) and test (PSBat-Test) sets, the for-

mer has 6,364/21,197 and the latter has 807/2,960 origi-

nal/manipulated images. The PSBat-Train is used to train

both our image retrieval and ICN models (sec. 3.1-3.2)

while PSBat-Test is used for the two benchmarks below.

PSBat-Ret. We construct a database of 807 original images

from PSBat-Test plus 2 million diverse distractor images

scraped from the Adobe Stock website. Next we created 3

query sets: (i) Manip contains 2,960 manipulated images in

PSBat-Test; (ii) Benign contains 29.6k images created by

transforming the PSBat-Test original images; and (iii) Ma-

nip+Benign also contains 29.6k images but via transform-

ing the manipulated set instead. To obtain Benign and Ma-

nip+Benign, we applied a suite of benign transformations

common in online image re-distribution. These include

JPEG compression (40%-90%), random crop (90% area),

padding (max 10% each side), rotation (max 15 degree),

flipping and ImageNet-C [18] transformations containing

various additive noise (e.g. Gaussian, shot, impulse noise)

and blur (e.g. Gaussian, motion, defocus blur) and enhance-

ment (e.g. brightness, contrast, snow) for all 5 severity lev-

els in ImageNet-C [18]. We divide benign transforma-

tions to 3 groups: the primary group contains resize and

JPEG re-compression; the in-place group contains in-place

transformations from ImageNet-C transformations; and the

out-place group contains those transformations that change

pixel coordinates such as padding and affine warps. When

transforming an image we apply all those in the primary

group, followed by a random transformation in either the

in-place group, or out-place group, or both.

PSBat-Pair. To evaluate ICN capability in detecting ma-

nipulation as well as generating heatmap, we create 4

evaluation sets out of PSBat-Test, each has 2,960 query-

candidate image pairs. In the first set, Benign, each original

(candidate) image is paired with a benign transformation of

itself (the same transformation settings in PSBat-Ret are ap-

plied). The second set, Manip, has the queries made from

the corresponding manipulated images. We also transform

these manipulated images to create queries for the third set,

Manip+Benign. In the fourth set, Distinct, each original

image is paired with a random different image which is also

subjected to benign transformations.

Training and evaluating ICN requires labelled manipu-

lated regions. We identify these regions via crowd sourced

annotation. For each original-manipulated pair in PSBat-

Train/Test, 3 workers draw bounding boxes around the ma-

nipulated areas, obtaining a binary heatmap each Gk =
{0, 1}H×W , k = 1, 2, 3 where Gk(x, y) = 1 if pixel (x, y)
is contained in a bounding box drawn by worker k. We nor-

malize Gk w.r.t 7x7 image size and combine to a ground

truth heatmap T = {
∑

k G
k(x, y)/3 ∈ R

7×7} (Fig. 6).

4.2. Training Details

Near-Duplicate Search is trained on the PSBat-Train

set (subsec. 3.1) for 20 epochs with SGD optimizer and

learning rate starting from 1e−3 and step decays after 60%

and 90% number of epochs. The training is terminated early

if the loss stops increasing. To create a batch, we randomly

sample 16 unique original images and 16 corresponding

manipulated images, then create 2 transformation versions

of each image via data augmentation. This leads to a batch



Figure 5. Comparison of heatmap visualizations (in green) from our ICN method, and baseline methods for thresholded (top) and non-
thresholded (bot.) heatmaps. The heatmap visualizes manipulation of an image (crown/rider added on bird).

Figure 6. Examples of the crowd-annotation we collected on PS-
Battles to identify ground-truth (g-t) manipulated regions: Origi-
nal image (top-left); manipulated image with MTurk annotations
via bounding boxes (top-right); 7x7 ground truth (bottom-left),
manipulated superimposed with the g-t heatmap (bottom-right).

of total size of 64 whose every image has 3 other positives

and the rest is negatives to be fed to our contrastive learning

eq. 1. Augmentation is via random ImageNet-C (in-place)

and padding/affine warps (out-of-place), see subsec. 4.1.

Image Comparator Network (ICN) is trained on

PSBat-Train. The flow estimation (RAFT) sub-module

is initialised with weights pre-trained on the KITTI[12]

dataset. We construct a training batch by randomly sample

8 original images from PSBat-Train, then for each image

I we pair it with an image randomly selected from three

sources with equal probabilities: (i) a manipulated version

of I , (ii) an original image different/distinct from I and (iii)

the image I itself. We then apply random augmentation on

the resulting 8 pairs (per our retrieval model). We train end-

to-end using ADAM and learning rate 10−4.

4.3. Metrics

To evaluate near duplicate search, we use Instance Re-

trieval IR@k metric which measures the ratio of queries

that returns the relevant images within top-k retrieval. For-

mally, IR@k = 1
N

∑N
i=1

∑k
j=1 r(qi, j) where N is number

of queries, relevance function r(qi, j) = 1 if the returned

image at rank j is relevant to the query qi (there is only one

such image in PSBat-Ret), otherwise 0.

To evaluate our ICN, we use Average Precision (AP) to

measure the accuracy of our ICN classifier (eq. 8-9). For the

generated heatmap, we up-sample the 7x7 heatmap to the

image resolution H × W , convert to binary with a thresh-

old and compute Intersection over Union (IoU) with the

ground truth, IoU = 1
N

∑N
i=1

S(Ui)∩Ti

S(Ui)∪Ti
where Ti is the

H × W binary ground truth heatmap, Ui is the predicted

heatmap after interpolation and thresholding. We leverage

the image pair classification result to improve the heatmap

with S(Ui) = Ui if the query is classified as manipulated,

{0}H×W if benign and {1}H×W if distinct.

4.4. Evaluating Near­Duplicate Search

We compare our retrieval method (both stages) against

8 baselines. ImageNet [15], MSResNet [24] and Deep-

AugMix [17] are 3 public pretrained CNN models, all use

ResNet50 architecture. The classic ImageNet model is

trained on ILSVRC2012 [8], MSResNet is built by Mi-

crosoft to power its Bing image search engine while Deep-

AugMix reports state of art performance on the ImageNet-

C benchmark. ImageNet fine. and MSResNet fine. are

the finetuned models on PSBat-Train using our training

strategy stated in subsec. 3.1, as compared with finetuning

DeepAugMix for Ours (stage 1). CSQ [39] and HashNet

[4] are two supervised class-level online hashing methods.

For fair comparison, we train these models using the same

CNN backbone (ResNet50) with the same data augmenta-

tion strategy (sec. 4.1). pHash [2] is a classical image hash-

ing method using relative DCT coefficients. All methods

produce 128-bit hash code except pHash (64-bit).

Tab. 1 compares retrieval performance. The two online

hashing methods, CSQ [39] and HashNet [4], are among the

worst performers. CSQ and HashNet struggle to cope with

strong ImageNet-C transformations present during training

and test, resulting in lower performance than the classi-

cal pHash. ImageNet [15], MSResNet [24] and DeepAug-

Mix [17] perform strongly on the Manip set but poorly

when they undergo benign transformations. When trained

via our contrastive loss (eq. 1), all models gain with the



Figure 7. Characterizing the ICN classifier performance on PSBat-Pair. Left: Breakdown of classifier performance in the presence of
different benign transformation classes, both in-place (from Imagenet-C) and out of place transformations (e.g. warps, padding – shaded
in blue). Right: Overall classifier performance when comparing an original image with: itself, benign transformed, manipulated, be-
nign+manipulated, and entirely different (distinct) images.

Figure 8. ICN heatmaps showing manipulation of an original im-
age (inset) at threshold 0.35. The region of manipulation is cor-
rectly identified both without (top) and with (bottom) benign trans-
formation of the manipulated version.

finetuned DeepAugMix (Ours, stage 1) achieving 1.8× im-

provement on Benign IR@1 and 1.5× on Manip+Benign

versus the pretrained model. Our trained DeepAugMix also

outperforms the finetuned ImageNet/MSResNet by 1-7%

on all top-k scores and query sets. Re-ranking with ICN

(Ours stage 1+2) further helps to improve top-1 perfor-

mance (16% increase at IR@1 overall vs. stage 1). The

advantage of ICN is shown in Fig. 4 where our two-stage

retrieval reaches its upper bound performance within top-10

returned images across the 3 query sets. The curve justifies

a top-k shortlist of k = 100; at this level our end-to-end

system retains interactive speeds (stage 1: 40ms, stage 2:

400ms) on a GTX 1080 Ti GPU. Examples are in Fig.3.

4.5. Evaluating Image Comparator Network

We compare the localization performance of the pro-

posed method against four baselines. Sum of Squared Dis-

tances (SSD) - we simply compute SSD between two im-

ages at pixel level, resize it to 7×7 then resize it back before

thresholding to create continuity in the detected heatmap.

ResNetConv - we extract 7 × 7 × 2048 features from pre-

trained ImageNet ResNet50 model for both query and orig-

inal images. These are averaged across channels to produce

a 7× 7 heatmap. ErrAnalysis - inspired from the blind de-

tection technique in [36], we perform JPEG compression on

the query image and compare with itself. MantraNet - is a

supervised blind detection method [37] that detects anoma-

lous regions. Additionally we evaluate baselines with im-

ages passed through our alignment module.

4.5.1 Heatmap Localization and Interpretability

Heatmap Localization Accuracy. We compare the

heatmaps generated by our ICN with baseline methods.

Heatmaps are produced by upsampling the 7 × 7 heatmap

output of the ICN to the size of the image using bicubic

interpolation. Heatmaps may be presented on false-colour

scale (e.g. jet) in this form, or thresholded to produce an

outline of the predicted manipulated region (Fig. 5 shows

examples of thresholded and non-thresholded heatmaps). In

our experiments, we threshold the normalized heatmaps at

0.35 determined empirically (Fig. 8). Tab. 2 (first column)

reports the IoU metric between the predicted heatmap and

the ground truth, both with and without the thresholding.

Whilst most baselines are improved through use of our ge-

ometric alignment (FA) process, our ICN significantly ex-

ceeds baseline performances by at least 0.30.

Heatmap Interpretability is assessed against baseline

methods via a crowd-sourced study on Amazon Mechani-

cal Turk (MTurk). Participants see an original image, and

an image subjected to both manipulation and benign trans-

formation. The latter is annotated with the ground truth as a

guide. The participants are shown a grid of heatmaps gen-

erated by 9 methods: ours, 4 baselines SSD, MantraNet, Er-

rAnalysis and ResNetConv, and 4 warp-corrected baselines

pre-applying FA for geometric alignment. Participants in-

dicate which of the 9 heatmaps best summarizes the image

modification; 200 such tasks are each annotated by 5 unique

participants. Tab. 2 (final col.) presents the results, which

favour our proposed method, even when the image pair are

pre-aligned. There is preference for the visually simpler,

thresholded heatmap, especially in presence of noisy trans-

formations (Fig. 9).



Figure 9. ICN heatmap results. Left col.: Original image. Middle
col.: Manipulated image also subjected to benign transformation.
Right col.: Heatmap output (green) ignoring benign transforma-
tion and highlighting manipulation (ground truth in yellow).

Method Detection (AP) Localization (IoU)

Full 0.989 0.6543
No Geo. Align. FA 0.860 0.4314
No Pred. Mod. FP 0.943 0.5652
Frozen Pred. Mod. FP 0.874 0.5333
Frozen Geo. Align. FA 0.929 0.5315
No LC 0.450 0.0000
No LT 0.955 0.1683

Table 3. Ablation study for the ICN exploring the effect of omitting
loss terms, modules, or end-to-end training.

4.5.2 ICN Classifier Accuracy

We evaluate the performance of the 3-way classification by

comparing each original image in the test set with: itself,

benign transformed version of itself, manipulated version,

manipulated as well as benign transformed and an entirely

different image, chosen at random. The first two cases are

expected to be classified as ‘not manipulated’, second two

as ‘manipulated’ and the last one as ‘distinct’. Fig. 7 (right)

shows the AP achieved for each. A non-modified original-

original pair is always correctly classified as not manipu-

lated. Introduction of benign transformations reduces the

accuracy slightly, as 3.6% of benign transforms are mis-

classified as manipulations. The most challenging case is

queries that are both manipulated and benign transformed,

with 11.5% being marked as not manipulated. Performance

for each benign manipulation class is analysed in Fig. 7.

4.5.3 Ablation Study

We perform ablations to determine the impact of each com-

ponent of the ICN. Results are shown in Tab. 3. Both de-

tection and localization performance are significantly de-

pendent on FA, dropping by 13% and 0.22, respectively

when it is omitted. In the ‘no FP ’ experiment, the pre-

diction module FP is replaced by a ResNet50 architecture

fR(.), and z = fR(q
′) − fR(I) (c.f. Fig.2). Training

with either FP or FA frozen also reduces both detection

and localization performances. Finally, we train ICN using

just one of the two losses by changing the weights of to-

Figure 10. ICN Limitations. Top-left: Spurious detections due to
benign degradation; Top-right: Mismatch due to annotators missed
the skeletal mouse in the ground-truth; Bot-left: Heatmap unable
to separate many small manipulations. Bot-right: Missed detec-
tions due to poor geometric alignment.

tal loss L(.) = wcLC(.) + wtLT (.) from wc = wt = 0.5
to wc = 1, wt = 0 and wc = 0, wt = 1. While LC(.)
alone still yields good detection performance with AP of

95.5%, localization IoU suffers significantly; both tasks are

required to train the ICN.

4.6. Limitations

Fig. 10 illustrates failure cases of the ICN. If the degra-

dation is very severe it will not be ignored by the model’s

trained invariance, and spurious additional detection (top-

left) or complete absence of detection (bot-right) may oc-

cur. The 7 × 7 heatmap activations are of insufficient reso-

lution to separate many small manipulations (bot-right). In-

accurate ground-truth (all 3 annotators missed the skeletal

mouse) gives an artificially low IoU (top-right).

5. Conclusion

We presented an Image Comparator Network (ICN) for

visually comparing a pair of images in order to detect and

localize manipulated regions. The ICN, when combined

with a robust near-duplicate search, enables users to match

images circulating ‘in the wild’ to a trusted database of

original images. Given a query and matched original, the

ICN visualizes areas of manipulation as a ‘heatmap’. The

heatmap ignores artifacts due to benign transformations that

commonly occur as images are reshared. We train and eval-

uate using a novel ground-truth annotation collected over

PSBattles [16], and validate heatmap interpretability via a

user study. The ICN classifier enables fast false positive re-

jection from the near-duplicate image search. Future work

could expand the dataset to include generative content, and

extend heatmap detection to video.
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