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Abstract

As GAN-based video and image manipulation technolo-

gies become more sophisticated and easily accessible, there

is an urgent need for effective deepfake detection technolo-

gies. Moreover, various deepfake generation techniques

have emerged over the past few years. While many deepfake

detection methods have been proposed, their performance

suffers from new types of deepfake methods on which they

are not sufficiently trained. To detect new types of deep-

fakes, the model should learn from additional data without

losing its prior knowledge about deepfakes (catastrophic

forgetting), especially when new deepfakes are significantly

different. In this work, we employ the Representation Learn-

ing (ReL) and Knowledge Distillation (KD) paradigms to

introduce a transfer learning-based Feature Representa-

tion Transfer Adaptation Learning (FReTAL) method. We

use FReTAL to perform domain adaptation tasks on new

deepfake datasets, while minimizing the catastrophic forget-

ting. Our student model can quickly adapt to new types of

deepfake by distilling knowledge from a pre-trained teacher

model and applying transfer learning without using source

domain data during domain adaptation. Through experi-

ments on FaceForensics++ datasets, we demonstrate that

FReTAL outperforms all baselines on the domain adapta-

tion task with up to 86.97% accuracy on low-quality deep-

fakes.

1. Introduction

Synthetic multimedia is becoming increasingly common

on the Internet and social media [4, 34]. Its popularity

is being driven by the widespread availability of simple

tools and techniques for creating realistic fake multime-

dia information [23, 25, 45]. Recent advances in deep

learning have aided in the generation methods for creat-
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Figure 1. Performance of domain adaptation task. We use

Face2Face (F2F) as the source and FaceSwap (FS) as target

dataset. Xception is used as the backbone model. Here, we

demonstrate two cases: 1) high-quality deepfakes (top) for source

and target. 2) low-quality (bottom) deepfakes for source and target.

Our FReTAL performs significantly better than zero-shot and fine-

tuning on low quality deepfakes (more comparison in Section 5).

ing synthetic images and videos that look remarkably close

to real-world images [37, 38, 12] and videos [14, 35, 69].

Especially, deepfakes are manipulated multimedia gener-

ated using such techniques, which generally involve neural

networks such as Autoencoders (AE) [26] and Generative

Adversarial Networks (GAN) [27]. Although such tools

can help in automating game design [57], photorealistic

scenery generation [61], film making [5], human face gen-

eration [37] or virtual and augmented reality rendering [62],

they can also be very dangerous and misused if utilized for

malicious purposes [16, 20, 36, 22]. The line between real

and fake media is becoming increasingly blurred as manipu-

lation techniques become more available, practical, and dif-

ficult to be detectable.

For example, using face swaps-based deepfakes, an at-
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tacker can put the victims in place and setting where they

have never been. This type of deepfakes is easily used

to generate pornographic videos of celebrities and masses

alike [56]. Also, by manipulating the lip movement with fa-

cial reenactment techniques and the associated speech sig-

nal, deepfake videos of people speaking words that they

never said can be produced. For example, many fake pro-

paganda videos are generated by reanimating real videos of

political figures [82, 63, 19].

Among the most famous deepfake forgeries are hu-

man facial manipulations [67, 80, 45, 23, 79, 37]. How-

ever, due to a lack of data, detecting these deepfakes or

forged images/videos is challenging in a real-world set-

ting. To increase data availability, the research commu-

nity has recently released a slew of deepfake datasets to

assist other researchers around the world in developing de-

tection mechanisms for such deepfakes. The FaceForen-

sics++ [67] dataset is one of the earliest and most popular

benchmark deepfake datasets. Many other deepfake bench-

mark datasets are recently released, such as Deepfake De-

tection Challenge [21] from Facebook and CelebDF [52].

As a result, these benchmark datasets facilitate improv-

ing performance and diversifying detection approaches.

Many deepfake detection methods achieve high test accu-

racy on a single deepfake dataset [67, 1, 75]. However, they

perform poorly on deepfakes created from novel methods

that were not introduced during the training process [78].

In other words, they lack generalizability, especially on

low-quality (compressed) deepfake videos, which are the

focus of our paper as deepfakes shared on social media

typically goes through compression. Therefore, such ap-

proaches trained on high quality videos generally perform

poorly in the real world.

The successful demonstration of the deepfake imperson-

ation attack on commercial and open-source face recog-

nition and authentication APIs by Tariq et al. [74] high-

lights the importance of developing a generalized classifier

that consistently performs well on various types of deep-

fakes. In particular, it is of paramount importance in the

face authentication domain, and not much research has been

conducted in that direction. Furthermore, it would also

be unrealistic to generate a large dataset tailored toward

each deepfake generation method to train a deepfake de-

tector. Therefore, a more widely applicable generalized so-

lution to the problem of deepfake detection is required. In

this work, we aim to explore such an approach by keep-

ing data scarcity and domain adaptation into consideration.

Note: it is relatively easy for the model to detect high-

quality (uncompressed) deepfakes, as shown by previous re-

search [78, 67, 1], thereby we focus more on low-quality

deepfakes than high-quality in our work.

In recent years, several Knowledge Distillation (KD)-

based methods are proposed for domain adaptation tasks [6,

48, 58, 59, 60]. However, none of them have studied KD

for domain adaptation in the media forensics domain, es-

pecially for deepfake detection. To this end, we propose

Feature Representation Transfer Adaptation Learning (FRe-

TAL), a Knowledge Distillation-based method for deepfake

detection using representation learning (ReL) to transfer

representations between the source (teacher) and target (stu-

dent) domains.

The main contributions of our work are summarized as

follows:

1. We propose a novel domain adaption framework,

Feature Representation Transfer Adaptation Learning

(FReTAL), based on knowledge distillation and repre-

sentation learning that can prevent catastrophic forget-

ting without accessing the source domain data.

2. We show that leveraging knowledge distillation

and representation learning can enhance adaptability

across different deepfake domains.

3. We empirically demonstrate that our method outper-

forms baseline approaches on deepfake benchmark

datasets with up to 86.97% accuracy on low-quality

deepfakes.

Our code is available here1. The rest of this paper is or-

ganized as follows. We discuss related work of deepfake

detection, KD, and ReL in Section 2. We explain our FRe-

TAL in Section 3 and describe our experimental settings in

Section 4. Section 5 presents the results, and Section 6 pro-

vides a discussion and limitations of our work. Finally, we

offer our conclusions in Section 7.

2. Background and Related Work

This work spans different fields, such as deepfake detec-

tion, domain adaptation, knowledge distillation, and repre-

sentation learning. In this section, we will briefly cover the

background and related research in aforementioned areas.

2.1. Deepfakes

While several sophisticated algorithms for creating re-

alistic synthetic face videos have been developed in the

past [9, 17, 72, 80, 44, 73, 37, 42, 10, 39, 79], most of these

studies have not been widely available as open-source soft-

ware applications so that the public can use. On the other

hand, a much more straightforward approach focused on

neural image style transfer [54, 24] has emerged as the pre-

ferred method for creating deepfake videos on a large scale.

Now, many open-source implementations are now publicly

available in the form of FakeApp [18], DeepFaceLab [64],

FaceApp [25], and many others [23, 45]. Even though the

1https://github.com/alsgkals2/FReTAL
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core idea is the same, each method has a slightly different

implementation, resulting in different types of deepfakes.

And, these methods are continuously improving over the

years.

Deepfake Detection. As deepfakes have become a

worldwide phenomenon, there has been a surge of inter-

est in deepfake detection methods. The majority of cur-

rent deepfake detection methods [78, 67, 66, 1, 74, 49]

rely on deep neural networks (DNNs). These methods in-

clude splice detection [88, 89, 8, 7, 30, 70], abnormal eye

blinking [50], signal level artifacts [55, 51], irregular head

poses [84], peculiar behavior patterns [3, 2], and many other

data-driven methods that do not rely on particular traces

or artifacts in the deepfake videos [75, 76, 77, 47, 46, 41,

31, 32, 33]. However, to the best of our knowledge, except

for the work of Cozzolino et al. [15] and Tariq et al. [78],

not much research is conducted to apply domain adaptation

on deepfake detection tasks. Furthermore, Tariq et al. [78]

used high-quality deepfakes, and Cozzolino et al. [15] used

medium-level compression (c23) on deepfake videos for do-

main adaptation. Our work is different from these works in

that we use high-level compression (low-quality) because

such deepfake videos are most common on social media.

2.2. Representation Learning

Representation learning (ReL) is the process of learning

representations of input data, usually by transforming or ex-

tracting features from it, making a task like classification

or prediction easier to perform. For feedforward networks,

ReL is simply representing the hidden layers by applying

some conditions to the learned intermediate features [26].

Transfer Learning and Domain Adaptation. Trans-

fer learning and domain adaptation apply to the situations in

which the information learned in one context (for example,

distribution P1) is used to enhance generalization in another

setting (say, distribution P2). In domain adaptation (DA),

a subcategory of transfer learning, we apply an algorithm

trained on the source domain to a different but related tar-

get domain. The source and target domains have the same

feature space but different distributions in DA. In compar-

ison, transfer learning encompasses cases where the target

domain’s feature space is different from the source feature

space [26].

As deepfake video generation techniques are continu-

ously evolving, more types of deepfake videos will emerge

in the future. Collecting and producing a large number of

new deepfake samples for each dataset would be impracti-

cal. In this work, we use feature-based domain adaptation

to detect deepfakes generated using various methods. It also

reduces the time cost. In order to perform domain adapta-

tion, the model is initialized with the pre-trained weights

on the source dataset. That model is then used to learn a

new target dataset. Furthermore, if the source and the target

domains are similar, we can improve the performance over

existing models. However, if they are not then, it can lead to

catastrophic forgetting [40, 43]. Catastrophic forgetting is

the tendency of a DNN to entirely and abruptly forget pre-

viously learned information upon learning new information.

We solve this problem by using knowledge distillation.

Domain Adaptation using Knowledge Distillation.

Hinton et al. [29] propose Knowledge distillation (KD). It

is a method to compress knowledge of a large model to a

small model. The main idea is that the student model can

mimic the knowledge of the teacher model. Inspired by

mimicking the teacher model, Li et al. [53] propose “Learn-

ing without forgetting”. It is a method to maintain the

source domain’s knowledge by applying the knowledge dis-

tillation loss while transferring knowledge to the target do-

main. By adopting the principle of rehearsal [11], Rebuffi

et al. [65] propose to stores the information of the source do-

main (i.e., storing exemplars) to overcome catastrophic for-

getting in class-incremental learning using KD loss. How-

ever, it requires a large amount of memory storage to store

the features of the source domain. This may lead to privacy

breaches, such as inversion attacks. To prevent this, we pro-

pose a Representation Learning-based method that does not

need to store or use source data in the model while transfer

learning.

3. FReTAL

In this section, we provide details about our Feature

Representation Transfer Adaptation Learning (FReTAL)

method, including our motivation, and the pre-processing

details.

Motivation. Catastrophic forgetting is a big hurdle dur-

ing domain adaptation tasks [81, 83]. To overcome catas-

trophic forgetting, Tariq et al. [78] use few data samples

from the source domain during transfer learning. However,

in practice, for most pre-trained models, either the source

domain data is not available or retaining source domain

data may raise privacy concerns. Therefore, to encourage

maximum applicability in real-world scenarios, we only use

the target domain’s data and apply knowledge distillation to

learn from the pre-trained model (Teacher).

Pre-processing. First of all, we extract the frames (x)

from real and deepfake videos using a custom code written

on top of the FFmpeg library. Then, we use the MTCNN

library [87] for face landmark detection. The faces are

cropped and aligned to the center. We set 128 × 128 × 3
to be the resolution of x. Note: Instead of stretching x to

match the square aspect ratio (1:1), we crop a bounding box

of 128× 128 from x with the face at the center of the frame.

This way, we can avoid stretching the face on the horizontal

axis and keep the face in more natural ratio (see Fig. 1).

Teacher. The first step of FReTAL is to train a base

model. We will refer to this base model as the pre-trained
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Figure 2. The architecture of our Feature Representation Transfer Adaptation Learning (FReTAL). The teacher model is trained with

the Xception. Before transfer learning, we set the teacher model as untrainable. Then, we initialize the student model with the weights of

the teacher model. Target domain data is provided to both teacher and student models to calculate the features for feature storage. We set

the teacher as untrainable so that these features are fixed throughout the whole process. Whereas for the student, they will change in each

iteration as training progress. We calculate KD loss between teacher and student models and a separate cross-entropy loss function just for

the student model. Here, D1-D5 represents the square distance between feature storage of teacher and student. Note: for the first iteration

of transfer learning, the teacher and student model will be the same.

or teacher model (fT ). For the deepfake detection task, this

teacher model is trained on the source domain as a binary

classifier to distinguish between real and deepfake images

(e.g., Pristine and Face2Face). We set the teacher as un-

trainable for the whole domain adaptation process, and only

the student model is trained from the step onwards.

Student. Once the teacher model is fully trained on the

source domain, we copy the weights of teacher model (fT )

to the student model (fS). The student model is then trained

on the target domain using KD loss and feature-based rep-

resentation learning. As illustrated in Fig. 2, this process

is different from the usual teacher-student model. We pro-

vide the details of KD loss and feature-based representation

learning in the following sections.

Feature-based Representation Learning. We assume

that similar features must exist between different types of

deepfakes. Therefore, a model trained on the source do-

main (Teacher) can help the student learn the target domain

with fewer data samples. Before training on the target do-

main, the student model is just a copy of the teacher model.

Then, we provide both the teacher (untrainable) and student

model with the target domain’s data to obtain its feature rep-

resentation (Φt
n for teacher and Φs

n for student), as shown

in Figure 2. Instead of storing features of all of the target

domain’s data, we only store distinguishable features. To do

so, we apply softmax to both models’ output. The softmax

function takes as input a vector v of K real numbers, and

normalizes it into a probability distribution consisting of K

probabilities proportional to the exponentials of the input

numbers (i.e., between 0 and 1). Using this output, we cre-

ate a feature storage from λa to λb in i unit intervals, as

shown in Figure 2. It helps to minimize the domain shifting

in the learning process by segmenting the features. As the

distribution between real and fake data is different, we store

the features of real and fake data separately. We calculate

the difference between Φs and Φt using our feature-based

square loss LFSL, as follows:

LFSL =

λb
∑

n=λa
step i

∥

∥Φs
n − Φt

n

∥

∥

2

2
(1)

Domain Adaptation with Knowledge Distillation. To re-

duce the impact of catastrophic forgetting and domain shift,

we apply cross-entropy loss and KD loss proposed by Hin-

ton et al. [29] while training the student model on the target

domain. Class probabilities are usually generated by neural

networks using a softmax output layer that transforms the

logit, xi, computed for each class into a probability, σ(x)i,
by comparing xi with the other logits xj , as follows:

σ(x)i =
exp(xi

T
)

∑N

j=1
exp(

xj

T
))
, (2)

where T is the temperature that helps the student model

mimic the teacher model by softening the probability dis-
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tribution over the classes. The softmax function’s probabil-

ity distribution becomes softer by increasing T , revealing

which classes the teacher considered to be more similar to

the predicted class. In general, KD loss is commonly ex-

pressed as minimizing the objective function:

∑

xi∈X

L(fT (xi), fS(xi)), (3)

where xi is the input, fT is the teacher, fS is the student, and

L is a loss function that penalizes the difference between

teacher and the student. In this work, we use cross-entropy

for the loss function L. Therefore, from Eq. (2) and (3), we

can express our KD loss LKD, as follows:

LKD =
∑

xi∈X

σ(fT (xi, yi)) log σ(fS(xi, ŷi))), (4)

where σ is the softmax with temperature, yi is the output

label, and ŷi is the output of the teacher fT . In addition

to KD loss, we also use cross-entropy loss in our student

model fS given as:

LCE =
N
∑

n=1

yi log σ(fS(xi, yi); T = 1) (5)

Therefore, the loss function of our Feature Representation

Transfer Adaptation Learning method can be written using

Eq. (1), (4), and (5), as follows:

LFReTAL = ρ1LFSL + ρ2LKD + ρ3LCE , (6)

where ρ1, ρ2, and ρ3 are scaling factors to control the three

loss terms.

4. Experiment

We compared FReTAL with several transfer learning

methods. In this section, we will describe the implemen-

tation details of FReTAL, as well as training and testing de-

tails of all detection models.

4.1. Dataset Description

To compare our method with several baselines, we used

DeepFake (DF), Face2Face (FS), FaceSwap (FS), and Neu-

ralTextures(NT) datasets from FaceForensics++ [66]. The

pristine videos from [66] are used as real videos. In Ta-

ble 1, we describe all the datasets used for base training

(Teacher) and transfer learning (Student). We used the 750

videos for training the teacher model and only ten videos

for training the student model during domain adaptation (or

transfer learning for brevity). The remaining 125 videos are

used for validation and 125 for testing. In contrast to Tariq

et al. [78], we do not use the source domain dataset during

transfer learning.

Table 1. The details of datasets used for training and testing.

Datasets
Total

Videos

Training

Videos

Transfer

Learning

Testing

Videos

Pristine (Real) 1,000 750 10 250

DeepFake (DF) 1,000 750 10 250

FaceSwap (FS) 1,000 750 10 250

Face2Face (F2F) 1,000 750 10 250

Neural Textures (NT) 1,000 750 10 250

4.2. Baselines

We explored several baselines for comparison. The fol-

lowing is a brief detail on them.

1. Güera et al. [28]: deployed a stack of CNN on top of

an LSTM network to detect deepfake. The CNN mod-

ule outputs the feature vector fed to the LSTM mod-

ule that generates the sequence descriptors and passes

them to a fully connected layer with softmax to gener-

ate probabilities.

2. Sabir et al. [68]: used DenseNet with a bidirec-

tional RNN to achieve high accuracy on DeepFake,

FaceSwap, and Face2Face datasets.

3. ShallowNet: Tariq et al. [76] demonstrated that Shal-

lowNet [75] detects GAN-generated images with high

accuracy. We developed ShallowNet using Python and

TensorFlow.

4. Xception [13]: is considered as the state-of-the-art

deep learning model for image classification task.

Also, Rössler et al. [67] demonstrated that Xcep-

tion achieves the best accuracy on FaceForensics++

dataset. We used the PyTorch implementation of

Xception.

The code for CNN+LSTM and DBiRNN are not pub-

licly available; therefore, we implemented them and tried

our best to match the original paper’s experimental settings.

4.3. Domain Adaptation Methods

In addition to the baselines experiments, we explored

several domain adaptation methods as follows:

1. FT: We apply general transfer learning (fine-tuning)

on aforementioned baseline methods without layer

freezing.

2. T-GD: Jeon et al. [31] propose T-GD that can achieve

high performance and prevent the catastrophic forget-

ting by combining with L2-SP and self-training. We

use T-GD to perform transfer learning with Xception

model.

3. KD: We only use KD loss LKD component from our

LFReTAL loss function to perform domain adaptation

on Xception.
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Table 2. Teacher model performance on source dataset (HQ).

Xception performs the best among the baselines. All the results

are in percentages (%) and best are highlighted in bold.

Method DF FS F2F NT Avg.

Güera et al. [28] 78.51 77.75 71.87 90.54 77.80

Sabir et al. [68] 80.54 80.56 73.12 94.38 82.21

ShallowNet 88.97 93.33 75.26 99.45 87.08

Xception 99.00 99.29 99.26 99.46 99.25

Table 3. Teacher model performance on source dataset (LQ)

and zero-shot performance. We are only presenting the results

of Xception model on low quality as it is the best performer on

HQ dataset. The source dataset results (diagonal) are highlighted

in bold.

Method DF (%) F2F (%) FS (%) NT (%)

Xception (DF) 99.41 56.05 49.93 66.32

Xception (F2F) 68.55 98.64 50.55 54.81

Xception (FS) 49.89 54.15 98.36 50.74

Xception (NT) 50.05 57.49 50.01 99.88

4.4. Implementation Details of FReTAL

Due to the consistent performance of Xception in many

face classification and deepfake detection tasks [67, 76, 75,

47, 31], we select Xception as the backbone model for our

FReTAL method. We use the PyTorch implementation of

Xception, pre-trained on the ImageNet dataset. We set the

value of hyper-parameter values as follows: λa = 0.5,

λb = 1.0, i = 0.1, T = 20, ρ1 = 1.0, ρ2 = 1.0,

and ρ3 = 1.0. Therefore, the range for feature storage is

{(0.5−0.6), (0.6−0.7), . . . , (0.9−1.0)}. For training, we

used the stochastic gradient descent (SGD) with a learning

rate of 0.05 with a momentum of 0.1, and the number of

iterations is set to 100. We applied early stopping with a

patience of 5.

Machine Configuration. We run our experiments us-

ing P100 and TITAN RTX GPUs, with 24 GB of dedicated

memory. We use Intel Xeon Gold 6230 CPUs with 8 cores

each and 256 GB of RAM. The under-lying OS is Ubuntu

18.04.2 LTS 64 bit. We use PyTorch v1.7.0 with CUDA

11.0 and Python 3.8.

Evaluation Metrics. We use F1-score metric to evaluate

the model performance using 125 real and 125 deepfake test

videos.

Preprocessing and Data Augmentation. We extract 16

samples such that each sample of origin and manipulated

video contain five consecutive frames (16×5 = 80 images

per video). To extract the face landmark information from

extracted frame, we use multi-task CNN (MTCNN) [87].

We apply the following normalization settings using Py-

Torch Transform: [0.5,0.5,0.5]. We use CutMix [85] for

data augmentation.

4.5. Configuring Training Models

Teacher Model Training. We use any source domain

to train the teacher model fT using 750 real (pristine) and

750 deepfake (e.g., Face2Face) videos. After this process,

we set the fT as untrainable.

Student Model Training. We initialize the student

model fS by copying the weight from the teacher model.

Then, we train fS on any target domain (e.g., FaceSwap).

We do not use any source domain data (e.g., Face2Face)

when transfer learning to target domain. To compare gen-

eral transfer learning, we also train T-GD and KD using the

same settings. We perform single source to single target

transfer learning using several configuration, as shown in

Table 4 and 5.

5. Results

In this section, we present the results for base training

(Teacher) and Transfer learning (Student) on both high- and

low-quality datasets.

5.1. Performance of Teacher

We evaluate the teacher model fT using four baseline

methods on the high-quality deepfake dataset. As shown in

Table 2, we find that Xception is the best performer among

all baselines across all datasets. This result is consistent

with [77, 67]. Therefore, based on this result, we selected

Xception as the best candidate to perform further experi-

ments. This time we train Xception on low-quality deep-

fake datasets and additionally check zero-shot performance.

As shown in Table 3, the model does not perform well ex-

cept for the source domain. These results are also consistent

with the high-quality zero-shot performance result of [78].

This result shows that deepfake detectors such as Xception

only perform well against the type of deepfakes on which

they are trained. Therefore, there is a need for a domain

adaptation-based method that can perform well against all

kinds of deepfakes.

5.2. Performance of Student using FReTAL

Following the same settings is the previous experiment.

In this experiment, first, the teacher model is trained on

the source domain (HQ), and then we fine-tune (FT) the

student using transfer learning to learn the target domain

(HQ). Furthermore, we apply T-GD, KD, and our FRe-

TAL on Xception. As shown in Table 4, Xception with

our FReTAL method performs the best in most scenarios

except for F2F→DF and FS→DF, where Xception + KD

demonstrates better performance. As Xception + (domain

adaptation method) provides the best performance on high-

quality deepfakes, we use it for further experiments with

low-quality deepfakes. Now instead of high quality, we

use low-quality images for both teacher and student mod-
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Table 4. Student model performance on target dataset (HQ). We evaluate all datasets with four baselines using four domain adaptation

methods. The top-row indicates the “Source →Target” dataset. Xception + FReTAL demonstrated the best and most consistent perfor-

mance. The best results are highlighted in bold. Note: Due to space limitation, we show only a selected Source →Target configurations.

Method Domain DF→F2F (%) DF→FS (%) F2F→DF (%) F2F→FS (%) FS→DF (%) FS→F2F (%)

Güera et al. [28]

+ FT

Source 70.21 72.35 71.87 72.41 70.32 73.15

Target 50.73 52.75 52.75 63.34 50.73 66.08

Avg. 60.47 62.55 62.31 67.88 60.53 69.62

Sabir et al. [68]

+ FT

Source 73.56 75.36 76.45 73.83 75.84 76.32

Target 59.81 55.62 55.25 51.39 50.45 55.17

Avg. 66.69 65.49 65.85 62.61 63.15 65.75

ShallowNet

+ FT

Source 75.26 75.85 74.84 77.85 73.31 75.19

Target 55.86 50.92 58.84 42.38 53.83 50.29

Avg. 65.56 63.39 66.84 60.12 63.57 62.74

Xception

+ FT

Source 93.65 70.00 95.10 90.35 93.77 94.91

Target 84.59 55.18 91.32 55.26 86.56 83.11

Avg. 89.12 62.59 93.21 72.81 90.17 89.01

Xception

+ T-GD

Source 92.96 73.92 96.89 90.42 92.55 94.85

Target 77.89 55.64 84.55 55.60 79.38 78.49

Avg. 85.43 64.78 90.72 73.01 85.97 86.67

Xception

+ KD

Source 95.58 82.77 96.91 84.57 95.65 96.28

Target 84.31 59.55 92.51 76.45 87.05 85.12

Avg. 89.95 71.16 94.72 80.51 91.35 90.70

Xception

+ FReTAL

Source 95.68 88.60 98.09 93.36 92.57 96.41

Target 84.54 76.23 89.90 80.63 86.45 88.64

Avg. 90.11 82.42 94.00 82.00 89.51 92.53

Table 5. Student model performance on target dataset (LQ). We evaluate all datasets with Xception using four domain adaptation

methods. The top-row indicates the “Source →Target” dataset. Xception + FReTAL demonstrated the best performance for all cases. The

best results are highlighted in bold. Note: Due to space limitation, we show only a selected Source →Target configurations.

Method Domain FS→F2F (%) F2F→FS (%) FS→DF (%) DF→F2F (%) F2F→NT (%) DF→NT (%)

Xception

+ FT

Source 40.93 84.78 80.56 89.84 87.12 88.29

Target 60.30 52.97 64.61 58.24 76.78 82.40

Avg. 50.62 75.05 72.59 74.04 81.95 85.35

Xception

+ T-GD

Source 36.08 84.70 85.98 88.07 83.22 81.23

Target 56.95 52.95 55.9 49.55 52.69 67.11

Avg. 46.52 68.83 70.94 68.81 67.96 74.17

Xception

+ KD

Source 48.07 84.84 80.48 82.59 86.07 89.61

Target 61.40 65.26 64.63 64.34 74.56 81.03

Avg. 54.74 75.05 72.56 73.47 80.32 85.32

Xception

+ FReTAL

Source 81.78 82.03 85.93 91.20 82.85 90.56

Target 64.45 68.79 65.78 62.09 83.87 83.38

Avg. 73.12 75.41 75.86 76.65 83.36 86.97

els. As shown in Table 5, Xception + FReTAL performs

the best on all source to target configurations across all

datasets. This result demonstrates that our FReTAL is a bet-

ter domain adaptation method for deepfake detection than

the other baselines. The low performance of fine-tuning in

some scenarios, such as FS→F2F in Table 7, is due to catas-

trophic forgetting. In contrast, our FReTAL method shows

robustness against catastrophic forgetting.

5.3. Ablation Study: Feature Representation

We perform an ablation study by removing the feature-

based representation learning component LFSL and the stu-

dent’s cross-entropy loss LCE from our FReTAL method.

Without these components, our method becomes similar to

the KD. And as shown in Table 4 and 5, Xception + KD

performs worse than Xception + FReTAL in most scenar-

ios, which shows that these components are necessary to

achieve better performance.

6. Discussion

Evaluation of DFDC and CelebDF. Recently, more

sophisticated deepfake datasets such as DFDC [21] and

CelebDF [52] have been released. We plan to include these

7



datasets in our experiment in the future. However, it is

important to note that if a deepfake detector fails to per-

form well on low-quality images of FaceForensics++ [67]

dataset, they might also fail on more complex datasets such

as DFDC and CelebDF.

Performance on Low-quality Deepfakes. The perfor-

mance on low-quality deepfakes, especially for the trans-

fer learning task, is relatively lower (< 90%) than high-

quality deepfakes. It means that there is still a lot of

room for improvement in domain adaptation for low-quality

deepfake detection. We believe that applying the super-

resolution method as a data augmentation method on low-

quality deepfakes may reduce this gap.

Mixed LQ and HQ Deepfake Detection. As we know

that, models trained on high-quality deepfakes do not per-

form well on low-quality deepfakes. However, it is inter-

esting to note that the model trained on low-quality deep-

fakes does not perform well on high-quality deepfakes as

well unless we apply the same compression on the high-

quality deepfakes to convert them into low-quality. There-

fore, programmatically identifying the quality of deepfake

is another venue of research. We also want to focus on de-

tecting mixed quality deepfake datasets like DFDC.

Limitations and Future Work. Detecting talking head

types of deepfakes [86] are not explored in this work.

Also, recently, full-body gesture-based deepfakes have

emerged [71]. It would be interesting to see how FRe-

TAL can be generalized against talking head and full-body

deepfakes. For data collection, it is becoming challenging

to distinguish deepfake videos visually. Furthermore, it is

not easy to use or download these deepfake videos to train

a deepfake detector due to privacy and copyright issues.

Therefore, using a minimum amount of freely available data

to achieve high performance is preferable in such scenar-

ios. To solve these problems, we will explore an augmen-

tation method for few-shot learning to improve practicality

and performance with very few videos or images. Further-

more, we will utilize our feature-based representation learn-

ing framework to improving the domain adaptability and

generalization capabilities of other deepfake detectors. Fu-

ture work also includes exploring alternative training strate-

gies that can help improve performance and multi-domain

adaptation.

7. Conclusion

Performing domain adaptation for detecting deepfakes

is becoming more challenging for low-quality images than

high-quality ones. We find that similar features exist be-

tween the source and target dataset that can help in do-

main adaptation. Therefore, we propose a domain adapta-

tion method using feature storage and KD loss in a teacher-

student network, where the teacher is not trained on the tar-

get domain. Moreover, we demonstrate that applying KD

loss without even using the source dataset can reduce catas-

trophic forgetting, i.e., domain shifting in deepfake detec-

tion tasks. We show that by using FReTAL, we can quickly

adapt to new types of deepfakes with a reasonable perfor-

mance using as low as ten samples of the target domain. For

future work, we plan to explore more augmentation meth-

ods on the target domain data to improve practicality and

performance. We will also utilize our FReTAL framework

to improve domain adaptability and generalization capabil-

ities of other deepfake detection models such as CLRNet

and Mesonet.
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