
Adversarial Threats to DeepFake Detection: A Practical Perspective

Paarth Neekhara

UC San Diego

Brian Dolhansky

Facebook AI

Joanna Bitton

Facebook AI

Cristian Canton Ferrer

Facebook AI

Abstract

Facially manipulated images and videos or DeepFakes

can be used maliciously to fuel misinformation or defame

individuals. Therefore, detecting DeepFakes is crucial to

increase the credibility of social media platforms and other

media sharing web sites. State-of-the art DeepFake de-

tection techniques rely on neural network based classifica-

tion models which are known to be vulnerable to adver-

sarial examples. In this work, we study the vulnerabili-

ties of state-of-the-art DeepFake detection methods from a

practical stand point. We perform adversarial attacks on

DeepFake detectors in a black box setting where the ad-

versary does not have complete knowledge of the classifi-

cation models. We study the extent to which adversarial

perturbations transfer across different models and propose

techniques to improve the transferability of adversarial ex-

amples. We also create more accessible attacks using Uni-

versal Adversarial Perturbations which pose a very feasible

attack scenario since they can be easily shared amongst at-

tackers. We perform our evaluations on the winning entries

of the DeepFake Detection Challenge (DFDC) and demon-

strate that they can be easily bypassed in a practical attack

scenario by designing transferable and accessible adver-

sarial attacks.1

1. Introduction

DeepFakes are artificial videos that contain realistically

swapped faces mostly created with off-the-shelf neural net-

work based methods. While DeepFakes are sometimes used

for humorous or entertainment purposes, these videos are an

emerging threat, especially within the realms of politics and

misinformation [43]. DeepFakes are especially convincing

and have caused harm by making it appear that a promi-

nent person said or did something that they never said or

did. Accordingly, effort has been devoted towards training

DeepFake classifiers and detectors, which attempt to deter-

mine if a video contains a fake face via a variety of meth-

ods [42].

1Video Examples: https://deepfakeattacks.github.io/

The state-of-the-art DeepFake detection methods rely on

Convolutional Neural Networks (CNNs) to classify a given

video as Real or Fake [11]. The best performing methods

model the DeepFake detection problem as a per-frame clas-

sification problem. While such methods achieve promising

results in terms of detection accuracy, they are vulnerable

to adversarial examples [40] and can be evaded by adding a

carefully crafted perturbation to each frame of a given input

video [5, 13, 24]. Since DeepFakes have the potential to be

very damaging, attacks designed to evade DeepFake detec-

tors can cause outsized harm when compared to other attack

scenarios. In addition, as DeepFakes are rare compared to

the set of all videos, detection of DeepFakes is already an

extremely difficult problem.

While adversarial examples pose a threat to DeepFake

detectors, designing such examples usually requires com-

plete access to the victim detector model architecture and

parameters. In a practical threat scenario, the model weights

can be kept secret to prevent such white-box attacks. While

past works have also proposed black-box attacks to Deep-

Fake video detectors [24], they require a large number of

queries and access to the model prediction scores for each

frame in the video that they aim to misclassify. Such an at-

tack can easily be thwarted by limiting query access and not

providing the raw detection scores to the user.

Adversarial examples can pose a practical threat to

DeepFake detection if they are transferable across different

models. Past works have shown that adversarial examples

designed to fool a particular network can also fool other

networks (with the same or different architecture) trained

for the same task [14, 39]. By exploiting this property, an

adversary can design attacks on an open source DeepFake

detection model and potentially fool a DeepFake detection

system in production. However, in a real-word scenario,

different detection mechanisms employ different input pre-

processing steps which can nullify many adversarial attacks.

Additionally, DeepFake detectors also use face detection

techniques prior to image classification CNNs which can

differ across various detection methods. This makes it chal-

lenging to craft perturbations that are transferable across

different detection methods.
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The goal of our work is to study the practical threats

posed by adversarial examples to the current state-of-the art

DeepFake detection systems. To this end, we first study the

commonalities between different DeepFake detection meth-

ods and gain insight by interpreting the model decisions us-

ing gradient-based saliency maps. We then study the vul-

nerability of these detection methods to adversarial exam-

ples and the extent to which adversarial examples transfer

across different detection methods. Next, we propose attack

methods that significantly improve the transferability of ad-

versarial examples by designing perturbations that are ro-

bust to the differences between the various detection meth-

ods. Finally, we design more accessible adversarial attacks

by creating transferable universal adversarial perturbations

that can be universally added across all frames of all videos

to reliably fool a number of DeepFake detection methods.

2. Background

2.1. DeepFakes and DFDC

DeepFakes are a genre of synthetic videos in which a

subject’s face is swapped with a target face to simulate the

target subject in a certain scenario and create convincing

footage of events that never occurred [34, 24]. Recent video

manipulation methods operate end-to-end on a source video

and target face and require minimal human expertise to gen-

erate fake videos in real-time [16, 44, 26]. For expediting

research on DeepFake detection, there has been effort in cu-

rating datasets [11, 34] of real and fake videos using Deep-

Fake synthesis techniques.

To the best of our knowledge, the recently developed

DeepFake Detection Challenge (DFDC) dataset [12, 11] is

the largest collection of such real and fake videos, con-

sisting of over 1 million training clips of face swaps pro-

duced with a variety of methods. For synthesizing the

fake videos in the DFDC dataset, 8 different video manip-

ulation techniques were used, many of which are CNN-

based techniques. These methods include the traditional

DeepFake auto-encoder architecture, a non-learned mor-

phable mask face swap algorithm, and several Generative

Adversarial Networks (GAN) techniques like Neural Talk-

ing Heads [44], FSGAN [26] and StyleGAN [16]. In con-

junction with the dataset, a corresponding competition2 was

launched in which competitors were encouraged to submit

models trained for DeepFake detection on the training set.

These models were then ranked on a hidden, held-out test

set, and the winning competitors released their architectures

and training strategies publicly.

2.2. DeepFake Detection

Recent state-of-the-art methods for detecting manipu-

lated facial content in videos rely on Convolutional Neu-

2https://www.kaggle.com/c/deepfake-detection-challenge

ral Networks [1, 2, 19, 32, 34] to distinguish AI-generated

fake videos from real videos. These methods model the

DeepFake identification problem as a per-frame classifica-

tion problem. They employ typical image classification net-

works that either operate on the entire frame or on a cropped

portion of the frame that has domain specific information.

For example, state-of-the-art DeepFake classification sys-

tems [9, 15, 35] consist of a face-tracking method, follow-

ing by the cropped face passed on to a CNN-based classifier

for classification as Real or Fake [1, 8]. The final label of a

video is usually the aggregation of the labels for some can-

didate frames of the video.

While it seems intuitive that exploiting temporal depen-

dencies using sequence models should improve a detector’s

ability to spot manipulated videos, the insights from the re-

sults of the DFDC challenge [11, 12] show that the best

performing models operate on a frame level. In fact, the

winning team [35] of the DFDC challenge explicitly noted

that ideas besides the frame-by-frame detector did not im-

prove their performance on the public leader-board. One

reason we anticipate for this is that the recent DeepFake

generation techniques have improved temporal consisten-

cies in the videos; however creating plausible face-swaps in

images is still challenging due to the artifacts introduced by

upsampling methods in autoencoders.

In our work, we focus on the top three winning en-

tries [9, 15, 35] of the DFDC challenge. In order to un-

derstand their vulnerabilities, we first studied the common-

alities across these detection methods. Our objective was

to gain insight into what the detector is looking at when it

makes a decision about a video being Real or Fake. This

is typically done by obtaining the gradient of the score

of the predicted class with respect to the input image and

plotting the magnitude of these gradients as a heat-map.

Back-propagating gradients naively does not result in inter-

pretable visualizations. This is because we only care about

pixels which activate a neuron rather than suppress it (sup-

pression is indicated by negative gradients) [38]. Therefore,

we use guided backpropagation which defines custom gra-

dient estimates for activation functions like ReLU and sup-

presses negative gradients during the backward pass [38].

We then standardize the gradient obtained with respect to

the input and overlay the heat-map on the frame to visual-

ize the areas of the image that trigger the network’s output.

Figure 1 shows some examples of the saliency maps ob-

tained while analyzing two different detectors on DeepFake

videos.

!

Our initial observations on these saliency maps sug-

gested that different CNN-based detection methods attend

to similar aspects of the input frame for predicting the la-

bel. These aspects include the edges of the face, the eyes,

lips, teeth etc. These similarities across different detection
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Figure 1. Gradient saliency maps obtained on DeepFake videos

using guideded-backpropogation on a CNN-based detector [35].

The highlighted areas indicate the image regions that strongly in-

fluence the detector’s predictions.

methods indicate that adversarially modifying such aspects

of the image could potentially fool multiple detection meth-

ods. We validate this hypothesis in our work by studying the

transferability of adversarial examples (Section 4) across

different detection methods and proposing techniques (Sec-

tion 3.4) that improve the transferability.

2.3. Prior Work on Fooling DeepFake Detectors

Neural network-based classification systems have been

known to be vulnerable to adversarial examples. Adver-

sarial examples are intentionally designed inputs to a ma-

chine learning (ML) model that cause the model to make a

mistake [40]. Prior work has shown that gradient-based at-

tacks can effectively fool neural networks [6, 14, 22, 29, 30,

36, 37] with a minimal amount of perturbation added to the

original input.

Recently, gradient-based adversarial attacks have also

been applied on CNN-based DeepFake detection systems to

expose their vulnerabilities to adversarial examples [5, 13,

24]. While some of this past work [5, 13] focuses on attacks

on image classification models, the authors of [24] study the

vulnerability of video DeepFake detection methods which

follow the same detection pipeline as the methods studied in

our work. While this past work demonstrates that adversar-

ial examples can fool video DeepFake detectors, designing

such adversarial videos requires complete access to the vic-

tim model architecture and parameters (white-box attack).

This assumption makes the threat very limited in a real-

world scenario since the model architecture and parameters

can be kept hidden by the service provider. The black-box

attacks proposed in [24] require querying the victim model

multiple times and access to the raw scores given by the

classifier for each frame the attacker wishes to misclassify.

The number of queries and access to raw classifier scores

can be restricted to thwart the adversary thereby preventing

this black-box attack.

Adversarial examples pose a practical threat to Deep-

Fake detection if they are transferable across different de-

Face Detection

Video Frame Cropped Face

Input Transformations

Transformed Face

CNN Real/Fake

Figure 2. A typical DeepFake detection pipeline. A face-tracking

model crops the face from all video frames, which is resized and

normalized appropriately to be fed as input to a CNN classification

model.

tection methods. That is, if adversarial videos designed

to fool some open source DeepFake detection method can

also reliably fool other unseen CNN-based detection meth-

ods, it poses a real security threat to deploying CNN-based

detectors in production. Several past works have studied

this transferability property of adversarial examples where

an attacker first generates an adversarial perturbation on a

(white-box) surrogate source model, and then transfers it to

the unknown target network [7, 14, 21, 27, 28, 39, 46].

In our work, we study the transferability of adversar-

ial examples across various DeepFake detection methods.

We find that differences in 1) input-preprocessing steps

and 2) face detection methods across DeepFake detectors

hamper the cross-model transferability of adversarial ex-

amples. We propose techniques to overcome these chal-

lenges in Section 3.4, and further propose more accessi-

ble attacks inspired from universal adversarial perturba-

tions [4, 20, 23, 25, 33]. Universal adversarial perturbations

pose a more practical threat to DeepFake detection since

they can be easily shared amongst attackers and require no

technical expertise in adversarial machine learning.

3. Methodology

3.1. Threat Model

Given a video (Real or Fake), our task is to adversarially

modify the video such that the label predicted by a victim

DeepFake detection method is incorrect. That is, we want

to modify the videos such that the Fake videos are classi-

fied as Real and vice-versa. Misclassifying a Fake video as

Real can be used by the adversary to propagate false infor-

mation. Misclassifying a Real video as Fake can be used by

the adversary to cover up an event that did actually happen.

The goal is to also ensure imperceptibility of the ad-

versarial perturbation. In the image domain, Lp norms

are commonly used to quantify the amount of perturbation

added to create an adversarial input. The authors of [14]

recommend constraining the maximum distortion of any in-

dividual pixel in the image using the L∞ metric. In the

attacks discussed in this paper, the adversarial perturbation

is added to each frame of the input video to create the ad-

versarially modified video. Following past work on fooling

DeepFake detectors [24], we use the L∞ metric to con-
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strain the the amount of distortion added to each frame.

Notation: We follow the notation previously used in [6, 31,

24]; we define F to be the full neural network (classifier)

including the softmax function, Z(x) = z to be the output

of all layers except the softmax (that is z are the logits).

That is:

F (x) = softmax(Z(x)) = y

The classifier assigns the label C(x) = argmaxi(F (x)i) to

input frame x.

Problem Formulation: Mathematically, for each video

frame x, we aim to find an adversarial frame xadv such that:

C(xadv ) = y and ||xadv − x0||∞ < ǫ

where y is the target label. In our case the target label

is Real for Fake videos and Fake for Real videos. In the

upcoming sections, we study this attack goal in various at-

tacker knowledge settings and constraints.

3.2. Victim Models

The victim models we consider in our work model Deep-

Fake detection as a per-frame classification problem. These

models further decompose the frame classification problem

into the following two steps:

1. A face tracking model detects the bounding box of the

face in each frame.

2. The cropped face is then pre-processed using some in-

put transformations (e.g. resizing, center-cropping and

normalization) and fed as input to a CNN classification

model that scores the frame as Real or Fake.

Finally, the scores of all or a subset of the frames are ag-

gregated to obtain the final label of the video. The above

detection pipeline has been used by the top 5 winning en-

tries of the DFDC challenge. The CNN architectures and

data-augmentation procedures vary across different meth-

ods. Table 1 details various DeepFake detection methods

considered in our work with their respective face detection

methods and CNN architectures used for classification.

3.3. White-box attacks

In this setting, we assume that the attacker has complete

access to the detection model, including the face extraction

pipeline and the architecture and parameters of the classifi-

cation model. To construct adversarial examples using the

attack pipeline described above, we use the iterative gradi-

ent sign method [17] to optimize the following objective:

Minimize loss(x′) where

loss(x′) = max (Z(x′)o − Z(x′)y , 0)
(1)

Here, Z(x)y is the final score for target label y and

Z(x)o is the score of the original label o before the soft-

max operation in the classifier C. The loss function we

use is recommended by [6] because it is empirically found

to generate less distorted adversarial samples and is robust

against defensive distillation. We use the iterative gradient

sign method to optimize the above loss function while con-

straining the magnitude of the perturbation as follows:

xi = xi−1 − clipǫ(α · sign(∇loss(xi−1))) (2)

We continue gradient descent iterations until success or

until a given number number of maximum iterations,

whichever occurs earlier. We solve the optimization prob-

lem for each frame of the given video and combine all

the adversarial frames together to generate the adversarial

video. In our experiments, we demonstrate that we are able

to successfully fool all the detection methods studied in our

work in the white-box attack setting using the above attack.

However, the transferability of adversarial examples gener-

ated using this attack across different methods is limited.

In the next section we propose techniques to overcome this

challenge.

3.4. Black-box: Transfer attacks

Past works (Section 2.3) have studied that adversarial in-

puts can transfer across different models. That is, an ad-

versarial input that was designed to fool a particular victim

model can possibly fool other models that were trained for

the same task. This is because different models learn similar

decision boundaries and therefore have similar vulnerabili-

ties. However, for DeepFake detectors, the goal of making

transferable adversarial videos is more challenging due to

multiple steps involved in the DeepFake detection pipeline

and the differences in these steps across various methods.

• Different face detection methods result in different

face-crops.

• Different data-augmentation procedures during train-

ing result in different levels of robustness to adversar-

ial examples.

• Different input pre-processing pipelines, such as image

resizing, cropping and normalization parameters, vary

across different detection methods.

Therefore, to craft transferable adversarial videos, it is

important to ensure robustness to such differences across

various methods. To accomplish this, we craft adversarial

examples that are robust over a given distribution of input

transformations [3]. Given a distribution of input transfor-

mations T , input image x, and target class y, our objective

is as follows:

xadv = argmaxxEt∼T [F (t(x))y] s.t. ||x− x0||∞ < ǫ

That is, we want to maximize the expected probability of

target class y over the distribution of input transforms T . To
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solve the above problem, we update the loss function given

in Equation 1 to be an expectation over input transforms T
as follows:

loss(x) = Et∼T [max (Z(t(x))o − Z(t(x))y , 0)]

Following the law of large numbers, we estimate the above

loss functions for n samples as:

loss(x) =
1

n

∑

ti∼T

[max (Z(ti(x))o − Z(ti(x))y , 0)] (3)

Since the above loss function is a sum of differentiable

functions, it is tractable to compute the gradient of the loss

w.r.t. to the input x. We minimize this loss using the itera-

tive gradient sign method given by Equation 2. We iterate

until a maximum number of iterations is reached or until the

attack is successful under the sampled set of transformation

functions, whichever happens first.

Next, we describe the class of input transformation func-

tions we consider for the distribution T :

• Translation: We pad the image on all four sides by

zeros and shift the pixels horizontally and vertically

by a given amount. This transform ensures robust-

ness to different face-detection and cropping pipelines

across various methods. Let tx be the transform in

the x axis and ty be the transform in the y axis, then

t(x) = x′

H,W,C s.t x′[i, j, c] = x[i+ tx, j + ty, c]

• Downsizing and Upsizing: The image is first down-

sized by a factor r and then up-sampled by the same

factor using bilinear re-sampling.

• Gaussian Noise Addition: Addition of Gaussian noise

sampled from Θ ∼ N (0, σ) to the input image. This

transform is given by t(x) = x+Θ

The details of the hyper-parameter search distribution

used for these transforms can be found in Section 4.3. Em-

pirically, we find that ensuring robustness of adversarial ex-

amples significantly improves attack transferability across

various detection methods.

3.5. Universal attacks

While the transferability of adversarial perturbations

poses a practical threat to DeepFake detectors in produc-

tion, creating an adversarial video requires significant tech-

nical expertise in adversarial machine learning - the attacker

needs to solve an optimization problem for each frame of

the video to fool the detector.

To ease the process of fooling DeepFake detectors, we

aim to design more accessible adversarial attacks that can be

easily shared amongst attackers. Past works [22, 4, 25] have

shown the existence of universal adversarial perturbations

that can fool classification models in various input domains.

We aim to find a single universal adversarial perturbation

which when added across all frames of any video, will cause

the victim DeepFake Detector to classify the video to a tar-

get label.

That is, we aim to find a targeted universal perturbation

δ such that:

C(x+ δ) = y s.t ||δ||∞ < ǫ

for “most” x in our dataset
(4)

where y is the target class. We train separate perturba-

tions for Real and Fake target labels. In order to ensure

robustness to differences across detection methods, we in-

corporate the transformation functions described in Section

3.4. We train the universal adversarial perturbation on a

dataset of videos that are labelled opposite from our target

label. On this dataset of videos, we aim to maximize the

log-likelihood of predicting our target label y. Additionally

to ensure the imperceptibility of the adversarial perturbation

we penalize the L2 distortion of the perturbation by adding

a regularization term in our objective. Thus, our final ob-

jective to train the a universal perturbation for a target label

y is as follows:

Minimize
∑

x in D

Et∼T [L(F (t(x+ δ)), y)] + c||δ||2

such that ||δ||∞ < ǫ

(5)

Here, L is the cross-entropy loss between the predictions

and our target label, c is a hyper-parameter to control the

regularization loss and x is an input frame of a video from

our dataset D. Similar to Equation 3, we estimate the above

expectation using n samples as follows:

Et∼T [L(F (t(x+ δ)), y)] =
1

n

∑

ti∼T

[L(F (ti(x+ δ)), y)]

(6)

To ensure the constrain ||δ||∞ < ǫ, we express δ as fol-

lows:

δ = ǫ · tanh(p)

where p is a trainable unconstrained parameter having the

same dimensions as δ. We fix the size of the perturbation

vector p to be 3 × 256 × 256 in our experiments, but re-

size the perturbation using bilinear interpolation to match

the size of our input x. We iteratively optimize the objec-

tive given by Equation 5 using gradient descent. In our ex-

periments, we find that targeting certain DeepFake detectors

not only results in input-agnostic universal perturbations but

also model-agnostic universal perturbations.

4. Experiments

4.1. Experimental Setup

DeepFake detectors: In our work, we consider the Deep-

Fake detection methods proposed by the top three win-
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Model Team Name Classifier Face detection AUC

EN-B7 Selim [35] Selim EfficientNet B7 [41] MTCNN [45] 0.717

XN WM [15] Team WM XceptionNet [8] RetinaFace [10] 0.724

EN-B3 WM [15] Team WM EfficientNet B3 [41] RetinaFace [10] 0.724

EN-B7 NLab [9] NTech Lab EfficientNet B7 [41] DSFD [18] 0.717

Table 1. Different DeepFake detection systems studied in our work

with their respective classification models, face detection models

and detection AUC scores on the DFDC test set.

ning entries of DFDC [12]. All of these methods follow

the DeepFake detection pipeline described in Section 3.2.

However, these methods use different CNN model archi-

tectures for classification and face-tracking. Table 1 lists

the DeepFake detection methods studied in this work along

with their respective CNN architectures used for classifica-

tion and face detection. In our experiments we use the terms

victim model and test model and define them as:

• Victim model: The detection model that the at-

tack/adversarial perturbation is trained on, in the

complete-knowledge (white-box) attack scenario.

• Test model: The model on which we evaluate the attack

- Can be the same as the victim model (white-box) or

an unseen detection model (black-box).

Datasets: We craft adversarial videos for the first 100

Fake and 100 Real videos in the public DFDC validation

set [12]. These videos contain a total of 30,300 frames.

The videos are recorded in various lighting and background

conditions and include people with different skin-tones.

Evaluation Metrics: After performing our attacks

we combine the adversarial frames to create the adversarial

video. We report the following metrics for evaluating our

attacks:

Success Rate (SR): The percentage of videos for which

we are able to successfully flip the original correct label

predicted by a given detection method. Note that we

do not take into account the videos that are originally

mis-predicted by the classifier.

Mean distortion (L∞): The average L∞ distortion between

the adversarial and original frames. The pixel values are

scaled in the range [0,1], so changing a pixel from full-on to

full-off in a grayscale image would result in L∞ distortion

of 1 (not 255).

4.2. White-box attacks

In this section, we discuss the evaluation of the iterative

gradient based white-box attack described in Section 3.3.

Following past work [24], we set the max allowed L∞ norm

ǫ as 16/255 and continue the attack iterations until the pre-

dicted score of our target label is greater than 0.99.

As shown in Table 3, for a given victim model, we are

able to achieve 100% success rate for the same test model.

Original Label: Fake Prediction: Real Prediction: Real Prediction: Real Prediction: Real

Benign Frame Adversarial Frames
EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

Original Label: Real Prediction: Fake Prediction: Fake Prediction: Fake Prediction: Fake

Figure 3. Examples of benign and adversarial video frames gen-

erated using our simple white-box attack targeting different Deep-

Fake detection methods. It can be seen that the original prediction

and label of the video can be successfully flipped by adding an

imperceptible amount of adversarial perturbation in a white-box

attack setting.

EfficientNet-B7 by NTech Lab requires the highest amount

of adversarial perturbation under the L∞ metric as com-

pared to other methods in this study. We also evaluate the

extent to which these perturbations transfer across differ-

ent methods. We find that perturbations trained to fool

EfficientNet-B7 by Team NTech Lab result in the most

transferable attacks as indicated by the higher success rates

on other test models. This suggests that EN-B7 NLab is rel-

atively more robust to adversarial perturbations in compari-

son to the other models used in this study (also indicated by

higher L∞ perturbation required to fool EN-B7 NLab).

Figure 3 shows examples of adversarial faces generated

to flip the original label of a given frame while targeting

different victim models. As indicated by the low L∞ norm

of the perturbation, the amount of added perturbation is

very imperceptible indicating that DeepFake detectors are

extremely vulnerable to adversarial examples and can be

easily fooled. Video examples are linked in the footnote

on the first page.

4.3. Transfer attacks

To improve the transferability of adversarial examples

across different methods, we perform our transfer attack de-

scribed in Section 3.4 and evaluate the adversarial videos

against unseen detection methods in a black-box setting.

The hyper-parameters of the transformation functions used

for the attack have been provided in Table 2. All other attack

hyper-parameters are kept the same as our simple white-box

attack.

As indicated by the results in Table 4, we are able to

significantly improve the transferability of adversarial per-

turbations across different detection methods as compared

to our simple white-box attack. The adversarial perturba-
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Transform Hyper-parameter search distribution

Translation dx ∼ U [−20, 20], dy ∼ U [−20, 20]
Gaussian Noise σ ∼ U [0.05, 0.07]
Down-sizing & Up-sizing Scaling factor r ∼ U [2, 5]

Table 2. Search distribution of hyper-parameters of different trans-

formations used for our transfer attack. During training, we sam-

ple three functions from each of the transforms to estimate the

gradient of our expectation over transforms.

Original Label: Fake Prediction: Real Prediction: Real Prediction: Real Prediction: Real

Benign Frame Adversarial Frames
EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

Original Label: Real Prediction: Fake Prediction: Fake Prediction: Fake Prediction: Fake

Figure 4. Examples of benign and adversarial video frames gener-

ated using our transfer attack targeting different DeepFake detec-

tion methods.

tions are most transferable across models with the same ar-

chitecture. For example, we are able to achieve high cross-

transferability between EN-B7 Selim vs EN-B7 NLab. Sim-

ilar to our observation in the previous section, attacking EN-

B7 NLab results in the most transferable adversarial attacks

- we are able to achieve at least 72% success rate across all

other detection methods when attacking EN-B7 NLab.

In order to ensure the robustness of the adversarial

perturbation to input transformations, a relatively higher

amount of perturbation is required as compared to our

white-box attack (Mean L∞ distortion 0.0135 vs 0.0077).

Figure 4 shows examples of adversarial faces generated to

flip the original label of a given frame while targeting differ-

ent victim models using our transfer attack. While a higher

amount of perturbation is required as compared to our sim-

ple white-box attack, visually the perturbation is still fairly

imperceptible.

4.4. Universal attacks

To create more accessible attacks, we train a universal

adversarial perturbation using the procedure described in

Section 3.5. We set the L2 regularization term c = 0.01
and use the Adam optimizer with a learning rate of 0.001.

For our initial experiments, we set the the L∞ threshold

ǫ = 40/255 for all victim models. Since the goal of find-

Test Models

Victim Model L∞ EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

EN-B7 Selim 0.007 100.0% 59.5% 57.0% 38.5%

EN-B7 NLab 0.013 94.0% 100.0% 66.5% 49.5%

XN WM 0.006 13.0% 12.5% 100.0% 12.0%

EN-B3 WM 0.005 21.0% 15.5% 22.0% 100.0%

Table 3. Attack success rates of the white-box attacks (Section 3.3)

on different victim models and their transferability to unseen de-

tectors (test models).

Test Models

Victim Model L∞ EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

EN-B7 Selim 0.010 100.0% 89.0% 72.5% 62.0%

EN-B7 NLab 0.018 99.0% 100.0% 72.0% 76.5%

XN WM 0.018 49.0% 33.5% 100.0% 46.0%

EN-B3 WM 0.008 46.5% 35.0% 47.5% 100.0%

Table 4. Attack success rates of the transfer attacks (Section 3.4)

on different victim models and their transferability to unseen de-

tectors (test models).

Test Models

Victim Model L∞ EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

EN-B7 Selim 0.156 100.0% 94.5% 65.0% 68.75%

EN-B7 NLab 0.156 94.5% 100.0% 75.0% 81.50%

XN WM 0.156 77.5% 61.0% 100.0% 20.0%

EN-B3 WM 0.156 66.5% 50.5% 60.0% 100.0%

Table 5. Attack success rates of the universal attacks (Section 3.5)

on different victim models and their transferability to unseen de-

tectors (test models).

ing a single input-agnostic perturbation is more challeng-

ing than finding one perturbation per video frame, a higher

amount of distortion is required for a successful attack as

compared to the per-frame attacks described earlier. We

train the universal perturbation on a dataset of 100 videos

from the DFDC train set which are separate from our eval-

uation dataset. We train the perturbation using a batch size

of 8 for 10, 000 iterations.

We target one victim model at a time and test the trans-

ferability of the universal perturbation on seen and unseen

detectors. Table 5 presents the results of performing the uni-

versal attack on different victim models at ǫ = 40/255 =
0.156. We are able to achieve 100% attack success rate

on the same test model as the victim model using a sin-

gle perturbation across all frames and videos of the same

label. Also, the universal perturbation is transferable to a

significant extent across different models which poses an

extremely practical threat to DeepFake detectors in produc-

tion. Attacking EN-B7 NLab results in the most transferable

perturbations where we are able to achieve at least a 75%
success rate across all unseen detectors.

Visually, the universal perturbations at ǫ = 0.156 are

more perceptible than our per-frame attacks discussed in

7
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Figure 5. Visualization of universal adversarial perturbations

trained on different DeepFake detection models.

the sections above. Figure 5 shows examples of universal

adversarial perturbations trained on different DeepFake de-

tectors and the resulting adversarial images obtained after

adding the perturbation to the face-crop of the benign frame.

We perform an additional experiment to study the ef-

fectiveness of universal adversarial perturbations at differ-

ent magnitudes of added perturbations. We choose EN-B7

NLab as the victim model and perform our universal attack

at different values of ǫ. The attack success rates across dif-

ferent models are shown in Figure 6. Figure 7 shows what

a perturbed image looks like at different values of ǫ. At

ǫ < 0.1, the perturbation is fairly imperceptible but can still

achieve high success rates on various test models.

5. Conclusion

We design transferable black-box attacks which pose

a practical threat to the security of DeepFake detection.

Through our design of universal adversarial perturbations,

we demonstrate the ease of accessibility of such attacks

since the same perturbation can be added to all the frames of

any video in order to bypass multiple detection systems. By
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Figure 6. Attack success rate on unseen detectors for a universal

perturbation trained on the EN-B7 NLab detector at different levels

of the L∞ norm of the perturbation.

𝟄 = 0.039    𝟄 = 0.078    Benign   

𝟄 = 0.235    𝟄 = 0.313    𝟄 = 0.156    

Figure 7. Visualization of the perturbed images using different

magnitudes (ǫ) of universal adversarial perturbations trained on

EN-B7 NLab.

bypassing recently proposed state-of-the-art DeepFake de-

tection networks with our proposed attack algorithms, this

work emphasizes the need for stronger detection methods

that are robust to adversaries.
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