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Abstract

In recent years, significant progress has been made

within human face synthesis. It is now possible, and easy

for anyone, to generate credible high-resolution images of

non-existing people. This calls for effective detection meth-

ods. In this paper, three state-of-the-art deep learning-

based methods are evaluated with respect to their robust-

ness and generalizability, which are two factors that must

be taken into consideration for methods intended to be de-

ployed in the wild. The robustness experiments show that it

is possible to achieve near-perfect performance when dis-

criminating between real and synthetic facial images that

have been post-processed heavily with various perturba-

tion techniques; especially when similar perturbations are

incorporated during training of the detection models. The

generalization experiments show that already trained de-

tection models can achieve high performance on images

from sources not known during training, provided that the

models are fine-tuned on such images. One model achieved

an average accuracy of 96.8% after being fine-tuned on 3

training images from each unknown source considered (one

real and one synthetic source). However, additional im-

ages were required when fine-tuning using a different ap-

proach aimed at preventing catastrophic forgetting. Fur-

thermore, in general, no method generalized well without

fine-tuning. Hence, the limited generalization capability re-

mains a shortcoming that must be overcome before the de-

tection methods can be utilized in the wild.

1. Introduction

The rapid development of new Generative Adversarial

Network (GAN) architectures [9, 10, 11] has pushed state-

of-the-art for image synthesis to levels where synthetic im-

ages are often perceived as authentic by humans [18, 13].

One well-known example is images of faces generated by

StyleGAN2 [11] (see Figure 1). The process of creating

these images is commonly referred to as entire face synthe-

sis since the GAN generates portraits of people who have

never existed in the real world. While image synthesis

Figure 1: Synthetic images generated by StyleGAN2.

brings many benefits, such as the possibility to artificially

augment datasets, it also poses a threat when people no

longer are able to assess the authenticity of images. GAN-

generated images might be used by malicious actors to de-

ceive and take advantage of others; both individuals and or-

ganizations. An example is fake profiles on social media

platforms, which can be used for fraudulent purposes and

facilitate the spread of false information [24]. Hence, it is

important to develop effective methods to spot fake images.

Several existing deep learning-based methods do achieve

near-perfect results for synthetic face detection when eval-

uated on images held-out from the datasets used for train-

ing [5, 18, 13]. However, a classifier should ideally general-

ize to out-of-distribution images from unknown sources as

well. Otherwise, it will fail to detect images from GANs

not encountered during training, or return false positives

when fed with real images from arbitrary sources. It should

also be robust to image perturbations such as noise, blur,

compression, and resizing. Perturbations do occur natu-



rally, e.g., when editing and uploading images to social me-

dia platforms, but could as well be the result of thought-

ful attempts to deceive detection systems. In other words,

the usefulness of a detection method might be diminished

in real-world applications, i.e., in unconstrained in-the-wild

scenarios, if it lacks sufficient robustness and generalizabil-

ity. In this paper, the following contributions are made:

• An extensive study of three existing state-of-the-art detec-

tion methods based on Convolutional Neural Networks

(CNNs) is presented, focusing on their perturbation ro-

bustness and generalizability when discriminating be-

tween real facial images and synthetic facial images gen-

erated by high-resolution GANs, including StyleGAN2.

• The generalizability of detection methods is evaluated in

settings where all test images have been collected from

out-of-distribution datasets; not only the synthetic im-

ages. So far, most existing work has primarily focused

on generalization experiments where all or part of the real

test images originate from a held-out subset of the dataset

used for training each detection model.

• The experiments show that it is possible to fine-tune mod-

els on a limited number of out-of-distribution images, and

significantly increase detection performance on the corre-

sponding target datasets, while still maintaining high per-

formance on held-out images from the datasets originally

used for training.

2. Related Work

Several deep learning-based methods have been devel-

oped to detect fake images. This section summarizes ex-

isting work relevant to this paper, i.e., studies which pro-

pose novel detection methods or investigate the robustness

or generalizability of such methods. Section 2.1 is dedi-

cated to studies that partly, or entirely, focus on the detec-

tion of entire face synthesis. Section 2.2 describes studies

that focus on related forgeries such as face swapping, fa-

cial attribute manipulation, facial expression manipulation,

image-to-image translation not involving faces, and entire

image synthesis not involving faces.

2.1. Detection of Entire Face Synthesis

Recent studies suggest that each GAN leaves a unique

fingerprint in the images that it generates, and that the fin-

gerprint depends on parameters such as GAN architecture,

training set, and random initialization seed [28, 15]. Yu

et al. [28] train a fingerprint-based attribution classifier to

distinguish between real and synthesized images, and at-

tribute the latter to their GAN sources. The authors suggest

a learning-based fingerprint formulation, as opposed to the

hand-crafted one suggested by Marra et al. [15]. Yu et al.

also show that their classifier becomes more robust to vari-

ous perturbations, but not perfect, after fine-tuning on per-

turbed images. For entire face synthesis, they only consider

GANs trained on the CelebA dataset [12].

Neves et al. [18] remove the GAN fingerprint from im-

ages by passing them through an autoencoder trained to re-

construct real images. Consequently, some detection meth-

ods classify synthetic images as real. The authors also show

that the detection performance decreases when the test set

contains images of lower resolution than the training set,

JPEG compressed images, or out-of-distribution images.

Wang et al. [25] monitor layer-wise neuron behavior in

deep facial recognition systems with a shallow binary clas-

sifier. Specifically, the input to the classifier consists of

feature vectors, in which each element corresponds to the

number of activated neurons in a specific layer of the facial

recognition system. In other words, the classifier is fed with

“the general neuron behavior rather than the ad-hoc raw pix-

els” [25]. This improves robustness since the method does

not rely on easily perturbed raw pixels as input. However,

the performance is not satisfactory when discriminating be-

tween unperturbed StyleGAN2 [11] and FFHQ [10] images,

where StyleGAN2 has been trained on the FFHQ dataset.

Cozzolino et al. [4] show impressive results when eval-

uating their autoencoder-based detection method on out-of-

distribution images. The latent space of the autoencoder

is split into two parts to disentangle real and fake images.

One model achieves high accuracy when tested on Style-

GAN [10] and CelebA-HQ [9] images (where StyleGAN

has been trained on the CelebA-HQ dataset), after being

trained on CycleGAN [30] images (image-to-image trans-

lation) and the corresponding real images. The generaliza-

tion capability is further improved after fine-tuning on just a

few images from StyleGAN and CelebA-HQ. However, the

transferability between GANs used for entire face synthesis

is not investigated, nor how fine-tuning affects performance

on the original test set containing CycleGAN images.

Marra et al. [16] propose an incremental learning method

for detecting fake images from new GAN architectures

without reducing performance on already known architec-

tures. The focus is not on detecting samples from com-

pletely unknown GAN architectures, but rather on prevent-

ing catastrophic forgetting when an already trained classi-

fier is adapted to handle additional architectures from which

training samples are available. Hence, the experiments are

not conducted in zero- or few-shot settings. Adaptation to

new classes, without the need to re-train the classifier on the

entire dataset, is enabled by keeping a relatively small num-

ber of training samples from the old classes while includ-

ing additional samples from the new classes. The authors

use an Xception network [3] (pre-trained on the ImageNet

dataset [6]) as feature extractor and train an incremental

classifier based on a version of the iCaRL algorithm [20].

Liu et al. [13] insert Gram blocks into a backbone CNN

(ResNet-18 [7] pre-trained on ImageNet), where a Gram-



matrix layer extracts global texture features. This suppos-

edly helps increase detection performance since the authors

show that image textures, such as regions containing skin

and hair, provide the most discriminative information for

detection, as opposed to shape and color artifacts. Simi-

lar to most CNNs, Gram-Net outperforms human subjects

in detecting images generated by ProGAN [9] and Style-

GAN. It is also rather robust against various perturbations

and generalizes well to synthetic images from unseen distri-

butions. However, the validation set used for model selec-

tion contains 100 images from each GAN and real source

considered in the study. Despite this, the detection method

does in general not achieve satisfactory performance when

evaluated on test sets containing both synthetic and real im-

ages from unseen distributions. For high-resolution GANs,

training on FFHQ and StyleGAN (trained on FFHQ) and

testing on CelebA-HQ and StyleGAN (trained on CelebA-

HQ) gives the best accuracy, which is still rather low [13].

Hulzebosch et al. [8] compare the Xception network and

the method proposed by Cozzolino et al. [4] in more realis-

tic scenarios. In some cases, the latter method does general-

ize to samples from unknown GAN architectures. However,

in those experiments the real test images originate from the

same distribution as the real images used for training. The

authors do conduct one experiment where both real and syn-

thetic test images are out-of-distribution. Specifically, the

methods are trained on CelebA-HQ and StyleGAN (trained

on CelebA-HQ) and then tested on FFHQ and StyleGAN

(trained on FFHQ), and vice versa. In both cases, no method

achieves satisfactory performance. The authors also investi-

gate how performance, measured on out-of-distribution im-

ages and held-out images post-processed with JPEG com-

pression or blur, is affected by training on images post-

processed using high-pass filters, co-occurrence matrices,

or color transformations. In general, none of these post-

processing techniques renders good performance in multi-

ple experimental settings, although performance improve-

ment (and impairment) can be observed in some cases.

StyleGAN2 is not considered in the experiments, and model

adaptation through fine-tuning is not investigated.

2.2. Detection of Other Forgeries

Rössler et al. [21] suggest using transfer learning with an

Xception network pre-trained on ImageNet and fine-tuned

on domain-specific data, i.e., real and manipulated images

of faces extracted from video frames. In this case, fine-

tuning is performed using large datasets. The network out-

performs human subjects, achieves state-of-the-art perfor-

mance on raw videos and maintains reasonable performance

on compressed videos. Marra et al. [14] conduct similar

experiments and show that robustness can be increased by

training detection models on compressed images.

Nataraj et al. [17] feed a CNN classifier with pixel co-

occurrence matrices computed on the RGB channels of the

input. The proposed method exhibits near-perfect perfor-

mance both when tested on held-out images and out-of-

distribution images. However, the transferability is only

tested between two architectures [30, 2] used for image-to-

image translation. Finally, the authors show that training on

JPEG compressed images improves performance when the

held-out test images also have been compressed.

Zhang et al. [29] improve the generalization capability

of a binary classifier (ResNet-34 [7] pre-trained on Ima-

geNet) by using the image frequency spectrum as input in-

stead of RGB pixels. They also train a GAN simulator, Au-

toGAN, to synthesize artifacts common for similar GAN

architectures. Hence, the classifier does not rely on fake

images during training since real images instead can be fed

through AutoGAN. The classifier also becomes more ro-

bust to JPEG compression and resizing after being trained

on images incorporating these perturbations. Although the

proposed method shows promising results when tested on

architectures similar to AutoGAN, it does not generalize as

well to drastically different architectures.

Dang et al. [5] utilize learned attention maps to local-

ize manipulated regions in images of faces, which makes

it possible for detection networks to focus on the most dis-

criminative regions. Specifically, an attention-based layer

is inserted into a backbone Xception network that has been

pre-trained on ImageNet (and is later fine-tuned on domain-

specific data). The input features to the attention-based

layer are multiplied with an estimated image-specific at-

tention map, and then fed back into the backbone. In

other words, the attention-based layer produces refined fea-

ture maps which supposedly help increase detection perfor-

mance. The authors do consider detection of entire face

synthesis, but the attention mechanism seems to be most

effective for other forgery methods where only parts of im-

ages have been manipulated.

Wang et al. [26] train a binary classifier (ResNet-50 [7]

pre-trained on ImageNet) on real images from 20 LSUN ob-

ject categories [27], and synthetic images generated by 20
ProGAN models; each one trained on one of the LSUN cat-

egories. In general, aggressive post-processing of the train-

ing images improves the generalization capability and also

makes the classifier robust when tested on images, includ-

ing out-of-distribution images, incorporating perturbations

similar to those imposed during training. For entire image

synthesis not involving faces, the classifier does generalize

to StyleGAN and StyleGAN2 with high average precision

but slightly lower accuracy. However, these GANs have in

most cases been trained on one of the LSUN categories used

for training the classifier, where images from the same cat-

egory are used as real samples at test time. In other words,

some of the real image sources are used during both training

and testing of the classifier.



3. Detection Methods

In this paper, three deep learning-based detection meth-

ods shown to perform well in previous studies were selected

for experimental assessment. This section provides a brief

description of each method. More details about the network

architectures and training procedures can be found in Sec-

tion A of the Supplemental Material.

3.1. Fingerprintbased Network

The proposed method of Yu et al. [28] is designed to uti-

lize fingerprints, since it has been suggested that each GAN

leaves a unique fingerprint in the images that it generates.

They train a model to visualize both GAN model finger-

prints and image fingerprints as images. The fingerprints

are then multiplied pixel-wise to measure their correlation.

This makes it possible to attribute an image to a specific

GAN model without having access to the model itself, since

all fingerprints are learned directly from images.

Although the detection model is able to both visualize

fingerprints and classify images, the authors use another

CNN-based attribution network for classification since it is

faster to train. The learned GAN model fingerprints are

represented by the weights of the fully-connected output

layer (one 1× 1× 512 weight tensor for each real and syn-

thetic class), while the image fingerprint is represented by

the input features to the output layer (one 1 × 1 × 512 ten-

sor). In this paper, the attribution network (referred to as

the fingerprint-based network, or simply Fingerprint) was

selected for experimental assessment.

3.2. Xception Network

The Xception architecture, introduced by Chollet [3], is

inspired by the Inception network [22] and based on the idea

of mapping cross-channel correlations and spatial correla-

tions independently with multiple filters instead of jointly

with a single filter. The Inception modules [23] are replaced

with modified depthwise separable convolutions, in which a

1×1 pointwise convolution is followed by a depthwise con-

volution (channel-wise spatial convolution). In this paper,

the Xception network was fine-tuned on domain-specific

data (large datasets of real and synthetic faces) after orig-

inally being trained on the ImageNet dataset [6] of 1,000
classes. This transfer learning approach has proven to be

successful in previous studies [21, 14, 18, 5, 16].

3.3. ForensicTransfer Network

The autoencoder-based detection method, Forensic-

Transfer, proposed by Cozzolino et al. [4] has shown

promising results regarding generalizability. Each input

sample to the encoder is represented by a six-channel resid-

ual image, which is obtained from the original and trans-

posed input image by applying a high-pass filter to each

RGB color channel. The encoder outputs a latent represen-

tation h (128 feature maps), which is split into the disjoint

parts h0 and h1, where each part contains 64 feature maps.

Here, each feature map is associated with a class k ∈ {0, 1}.

In this paper, h0 would represent the real class (k = 0), and

h1 the synthetic class (k = 1).

During training, the output from the encoder is fed to a

custom selection layer, which fills all feature maps in h1−k

with zeros provided that the input sample belongs to class

k. Hence, the decoder has to reconstruct the residual only

from the information in hk. Consequently, the encoder is

trained to encode samples in that part of the latent space.

Put differently, hk should be activated by the encoder if

and only if the input sample belongs to class k. Based on

the activations in the feature maps of each part, it is possible

to determine whether unseen test samples are closer to the

real or synthetic images of the training set.

4. Experiments

A number of experiments were undertaken to study the

robustness and generalizability of the methods described in

Section 3. In each experiment, the precision, recall, accu-

racy, F1-score, AUROC, and average precision were com-

puted to quantify the performance. The accuracy and AU-

ROC are presented in the main paper, while the other met-

rics can be found in Section B of the Supplemental Material.

4.1. Datasets

As shown in Table 1, real images were collected from

the CelebA-HQ [9] and FFHQ [10] datasets, while synthetic

images were generated by officially released ProGAN [9],

StyleGAN [10], and StyleGAN2 [11] models. Specifi-

cally, ProGAN had been trained on CelebA-HQ while both

StyleGAN and StyleGAN2 had been trained on FFHQ. For

StyleGAN and StyleGAN2, the amount of variation is con-

trolled by adjusting the style scale ψ ∈ [0, 1] [10]. ψ = 0
generates the average face while ψ = 1 generates images of

high variation, many of which tend to look unrealistic since

they are not well-represented in the training data. Therefore,

ψ = 0.5 was used since this is a good trade-off between

quality and variation. All CelebA-HQ and FFHQ images

have a resolution of 1024× 1024, which is also the default

resolution when generating faces with ProGAN, StyleGAN,

Dataset Real Synthetic # Training # Validation # Test

CelebA-HQ X 15,750 5,250 9,000
FFHQ X 15,750 5,250 9,000
ProGAN X 15,750 5,250 9,000
StyleGAN X 15,750 5,250 9,000
StyleGAN2 X 15,750 5,250 9,000

Table 1: Real and synthetic data, with no overlap between the sets.



and StyleGAN2. Therefore, 1024×1024 was chosen as the

default resolution in the experiments.

4.2. Perturbation Robustness

Augmentations in the form of perturbations were applied

to the test sets listed in Table 1 to evaluate detection model

robustness in unconstrained scenarios where post-processed

images occur. Two different types of experiments were con-

ducted: one using random augmentations, thus introducing

a variety of low- and high-intensity perturbations, and the

other using gradually increasing perturbation intensities.

Random Perturbations. The dataset combinations con-

sidered in each random perturbation experiment are shown

in Table 2. Here, all collected images were used. Hence,

each training, validation, and test set contained 31,500,

10,500, and 18,000 images, respectively. Four augmenta-

tion techniques were applied in isolation to all test images

(i.e., one augmentation technique per experiment):

• I.i.d. Gaussian noise with zero mean was added. The

standard deviation was randomly sampled from U [8, 16],
and all pixel values were clipped to the [0, 255] range.

• Gaussian blur was applied using OpenCV [1]. The kernel

size was randomly sampled from {7, 9, 11, ..., 19}.

• JPEG compression was applied using OpenCV. The qual-

ity was randomly sampled from U [10, 75], where 0 and

100 are the lowest and highest qualities, respectively.

• Resizing was performed using bilinear interpolation in

OpenCV. The resolution was randomly sampled from

{752, 762, 772, ..., 2992}. 299 × 299 was chosen as the

upper bound since it is the highest input resolution of any

of the detection networks studied.

Note that the standard deviation, kernel size, quality, and

resolution were sampled for each individual test image.

In a final experiment, the test images were randomly aug-

mented with combinations of the four techniques mentioned

above. Specifically, each augmentation operation was ap-

plied with 50% probability in random order. When apply-

ing Gaussian blur, the minimum and maximum kernel sizes

(7x7 and 19x19, respectively) were scaled by the downsiz-

ing factor of the image resolution and then rounded to the

nearest odd integer. For Gaussian noise and JPEG compres-

sion, a basic linear interpolation scheme was introduced to

ensure reasonable perturbation intensities at all resolutions.

Training Validation Test

Real Synthetic Real Synthetic Real Synthetic

CelebA-HQ ProGAN CelebA-HQ ProGAN CelebA-HQ ProGAN

CelebA-HQ StyleGAN CelebA-HQ StyleGAN CelebA-HQ StyleGAN

CelebA-HQ StyleGAN2 CelebA-HQ StyleGAN2 CelebA-HQ StyleGAN2

FFHQ ProGAN FFHQ ProGAN FFHQ ProGAN

FFHQ StyleGAN FFHQ StyleGAN FFHQ StyleGAN

FFHQ StyleGAN2 FFHQ StyleGAN2 FFHQ StyleGAN2

Table 2: Datasets used when evaluating model robustness.

Lower Bound Upper Bound

Augmentation Parameter 1072 10242 1072 10242

Gaussian Noise Standard Deviation 3.3 8 6.5 16
JPEG Compression Quality 75 75 17 10

Table 3: Bounds set for the noise and compression augmentation

operations. Intermediate lower bounds were obtained by interpo-

lating between the lower bounds at 107 × 107 and 1024 × 1024,

while intermediate upper bounds were obtained by interpolating

between the upper bounds at 107× 107 and 1024× 1024.

Specifically, upper and lower bounds were set at the mini-

mum resolution (in this case 107 × 107) in addition to the

bounds already set at the default resolution of 1024× 1024.

The bounds at the intermediate resolutions were obtained

by interpolating between the corresponding bounds at the

minimum and maximum (default) resolutions. Table 3 sum-

marizes this information.

In general, real images incorporate more detail and va-

riety in their background compared to synthetic images.

Therefore, all images were cropped by a face detector [19]

to prevent the detection models from potentially relying too

much on this information. It is also reasonable to work with

limited background information since one cannot expect to

only find uncropped images in the wild. As shown in Fig-

ure 2, a rather conservative crop was used in order to include

as much of the head as possible while excluding the major-

ity of the background. It should be kept in mind that image

augmentation was performed before cropping, which would

CelebA-HQ FFHQ ProGAN StyleGAN StyleGAN2

(a) Original unperturbed images.

(b) Cropped images.

Figure 2: Random samples from the experimental datasets.



also be the case if the detection models were to be deployed

in the wild. Hence, the minimum image resolution was even

smaller than 75× 75 in practice.

All detection networks were trained separately on unper-

turbed images (no augmentation) and randomly augmented

images (cropping was used in both cases). In the latter case,

the training and validation images were augmented with

combinations of the four operations as described above.

The results of the experiments are presented in Figure 3.

As expected, on average, all networks achieved near-perfect

performance on unperturbed images (No Aug.). One can

also observe that the fingerprint-based network proved to be

robust against all perturbations no matter how it was trained.

On average, the accuracy of the Xception network trained

on unperturbed images deteriorated significantly for noise,

compression, and random combinations of perturbations.

However, AUROC always remained rather high. In other

words, the Xception models still separated the classes well,

but not always at the desired probability threshold. The ac-

curacy was completely recovered after training on randomly

augmented images. Finally, the performance of Forensic-

Transfer trained on unperturbed images was impaired by

noise, blur, compression, and random combinations; both

with respect to accuracy and AUROC in most cases. How-

ever, the performance improved significantly after training

on randomly augmented images, although ForensicTransfer

could not match the robustness of the other two methods.

The performance on each individual test set of Table 2,

and additional evaluation metrics, are presented in Ta-

bles B1–B12 in Section B of the Supplemental Material.

Fingerprint Xception ForensicTransfer
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Figure 3: Performance on held-out images augmented in various

ways, averaged over all test sets of Table 2. The detection netw-

orks shown were trained separately on unperturbed and randomly

augmented (*) images. Comb. stands for Random Combinations.

Strictly Controlled Perturbations. One should keep in

mind that the purpose of the previous perturbation experi-

ments was not to push the detection methods to their limits,

but rather to evaluate them on data incorporating perturba-

tions more representative of in-the-wild scenarios. There-

fore, the previous experiments were complemented with a

strictly controlled experiment in which perturbation inten-

sities were gradually increased for the test set. Only images

from two datasets were considered, namely FFHQ (real)

and StyleGAN2 (synthetic). They were assumed to con-

stitute the most difficult case for a human subject, with re-

spect to distinguishability, since FFHQ offers higher quality

than CelebA-HQ while StyleGAN2 yields state-of-the-art

results for image synthesis. Furthermore, StyleGAN2 had

been trained on FFHQ. Here, 1,000 test images were ran-

domly selected from each dataset. As shown in Figure 4, the

fingerprint-based network once again proved to be robust

no matter how it was trained; even when moving beyond

the upper bounds specified for each augmentation operation

in the previous experiments. The Xception network also

exhibited high performance when trained on randomly aug-

mented images. ForensicTransfer did not achieve as high

performance as the other two methods, although it became

more robust after being trained on augmented images.

4.3. Generalizability

The purpose of the generalization experiments was

to evaluate detection model performance on out-of-

distribution images from unseen datasets instead of held-out

images from the datasets used for training. In some of these

experiments, models were fine-tuned on a small number

of samples from a previously unseen training set in an at-

tempt to further improve performance on the corresponding

test set. This would provide insights about the possibility

of adapting models when only a few samples are available

from an undisclosed GAN which cannot easily be accessed

to generate more data. It would also help answer whether

models can be continuously fine-tuned to better handle real

images collected from arbitrary sources in the wild.

No Fine-tuning. In the first generalization experiment,

all models from the experiments in Section 4.2 were reused,

including those trained on randomly augmented images.

The same goes for the test sets containing 18,000 samples

each. However, none of the test images were augmented in

this experiment (except for cropping), and the models were

not fine-tuned. As shown in Table 4 and Table 5, on aver-

age, the detection networks did not generalize well to out-

of-distribution images; neither when trained on unperturbed

images nor randomly augmented images. The performance

was often even worse than random guessing; sometimes

with accuracy well below 0.5, which means that a signif-

icant number of both real and synthetic images were in-

correctly classified (Table B13 and Table B14 in Section B



Fingerprint Xception ForensicTransfer
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(a) Gaussian noise.
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(b) Gaussian blur.
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(c) JPEG compression.
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(d) Resizing.

Figure 4: Performance of models trained on FFHQ / StyleGAN2

and tested on held-out images augmented in various ways. The

detection networks shown were trained separately on unperturbed

and randomly augmented (*) images. Note that the scale of the

axis is not uniform for Resolution.

Training Test Accuracy AUROC

Real Synthetic Real Synthetic F.P. X.C. F.T. F.P. X.C. F.T.

CelebA-HQ ProGAN FFHQ StyleGAN 0.491 0.510 0.573 0.394 0.797 0.666

CelebA-HQ ProGAN FFHQ StyleGAN2 0.488 0.511 0.573 0.265 0.821 0.818

CelebA-HQ StyleGAN FFHQ ProGAN 0.417 0.318 0.134 0.205 0.099 0.108

CelebA-HQ StyleGAN FFHQ StyleGAN2 0.848 0.623 0.589 0.923 0.672 0.933

CelebA-HQ StyleGAN2 FFHQ ProGAN 0.461 0.224 0.281 0.235 0.053 0.259

CelebA-HQ StyleGAN2 FFHQ StyleGAN 0.796 0.672 0.755 0.892 0.737 0.927

FFHQ ProGAN CelebA-HQ StyleGAN 0.370 0.244 0.365 0.080 0.048 0.004

FFHQ ProGAN CelebA-HQ StyleGAN2 0.368 0.244 0.365 0.043 0.026 0.043

FFHQ StyleGAN CelebA-HQ ProGAN 0.503 0.515 0.500 0.539 0.831 0.842

FFHQ StyleGAN CelebA-HQ StyleGAN2 0.851 0.499 0.994 0.976 0.526 1.000

FFHQ StyleGAN2 CelebA-HQ ProGAN 0.507 0.501 0.500 0.579 0.685 0.982

FFHQ StyleGAN2 CelebA-HQ StyleGAN 0.705 0.501 0.736 0.902 0.412 0.985

Average 0.567 0.447 0.530 0.503 0.476 0.631

Table 4: Performance of detection models trained on unperturbed

images and tested on unperturbed out-of-distribution images. The

fingerprint-based network, Xception network, and ForensicTrans-

fer network are abbreviated as F.P., X.C., and F.T., respectively.

Training Test Accuracy AUROC

Real Synthetic Real Synthetic F.P. X.C. F.T. F.P. X.C. F.T.

CelebA-HQ ProGAN FFHQ StyleGAN 0.486 0.501 0.604 0.349 0.759 0.609

CelebA-HQ ProGAN FFHQ StyleGAN2 0.484 0.500 0.617 0.216 0.236 0.619

CelebA-HQ StyleGAN FFHQ ProGAN 0.419 0.487 0.141 0.208 0.283 0.042

CelebA-HQ StyleGAN FFHQ StyleGAN2 0.860 0.577 0.619 0.935 0.762 0.821

CelebA-HQ StyleGAN2 FFHQ ProGAN 0.447 0.480 0.255 0.256 0.160 0.087

CelebA-HQ StyleGAN2 FFHQ StyleGAN 0.804 0.752 0.706 0.884 0.900 0.836

FFHQ ProGAN CelebA-HQ StyleGAN 0.328 0.457 0.098 0.082 0.066 0.013

FFHQ ProGAN CelebA-HQ StyleGAN2 0.325 0.457 0.098 0.055 0.014 0.019

FFHQ StyleGAN CelebA-HQ ProGAN 0.504 0.509 0.484 0.549 0.742 0.393

FFHQ StyleGAN CelebA-HQ StyleGAN2 0.859 0.522 0.763 0.971 0.831 0.886

FFHQ StyleGAN2 CelebA-HQ ProGAN 0.516 0.501 0.497 0.580 0.614 0.481

FFHQ StyleGAN2 CelebA-HQ StyleGAN 0.747 0.597 0.699 0.897 0.927 0.814

Average 0.565 0.528 0.465 0.499 0.525 0.468

Table 5: Performance of detection models trained on randomly

augmented images and tested on unperturbed out-of-distribution

images.

of the Supplemental Material provide additional evaluation

metrics for analyzing the performance on real and synthetic

images, respectively). However, in some cases the networks

did achieve reasonable performance. For instance, this was

the case for all models trained on CelebA-HQ / StyleGAN2

and tested on FFHQ / StyleGAN (see Table 4 and Table 5).

ForensicTransfer even achieved near-perfect performance

when tested on CelebA-HQ / StyleGAN2 after being trained

on unperturbed FFHQ / StyleGAN images (see Table 4).

Target Fine-tuning. In the second experiment, models

originally trained on FFHQ / ProGAN (source) were fine-

tuned on CelebA-HQ / StyleGAN2 (target). As shown in

Table 4 and Table 5, all these models exhibited low perfor-

mance on the target test set before fine-tuning. Hence, the

chosen datasets offered room for improvement and consti-

tuted a realistic scenario in which models, given only a few

samples, had to be adapted to a new, possibly undisclosed,

GAN and real images of unknown origin. Since training on

randomly augmented images did not seem to improve gen-

eralizability in the previous experiment, only the three mod-

els (one for each detection network) that had been trained on

unperturbed FFHQ and ProGAN images were fine-tuned.

As before, the target test set only contained unperturbed im-

ages. Therefore, the models were fine-tuned on unperturbed

images from the corresponding target training set.
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Figure 5: Source and target performance of models trained on

FFHQ / ProGAN (source) and fine-tuned on CelebA-HQ / Style-

GAN2 (target), averaged over 10 runs. The metrics are plotted

with respect to the number of target training samples per class used

for fine-tuning. All detection models were trained and tested on

unperturbed images. Note that the scale of the axis is not uniform

for Number of Samples per Class.

The number of training and validation samples used for

fine-tuning was gradually increased. For each incrementa-

tion, all samples were replaced with new samples randomly

selected from the target training and validation sets. The

number of validation samples was set to three-fifths of the

number of training samples, rounded up to the nearest inte-

ger. Finally, the model performance was averaged over 10
runs, using new training and validation samples every time.

As shown in Figure 5, the models were evaluated on

both the source (FFHQ / ProGAN) and target (CelebA-

HQ / StyleGAN2) test sets. Here, 1,000 test images had

been randomly sampled from each dataset (i.e., 4,000 in to-

tal) to speed up evaluation. As shown in Figure 5a, the per-

formance on the target test set increased significantly when

fine-tuning the models. ForensicTransfer outperformed the

other methods with an average accuracy of 75.3% at 1 train-

ing sample per class, and 96.8% at 3 samples. At 2 samples,

its average AUROC reached 98.3%. However, as shown in

Figure 5b, the performance on the source test set deterio-

rated for all methods as a result of fine-tuning on target data.

Source and Target Fine-tuning. The third experiment

aimed at solving the problem of catastrophic forgetting by

also including images from the source training set during

fine-tuning. In other words, the exact same experiment was

repeated, but only after including randomly selected train-

ing and validation images from the original datasets in ad-

dition to the out-of-distribution images used in the previous
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Figure 6: Source and target performance of models trained on

FFHQ / ProGAN (source) and fine-tuned on both CelebA-HQ /

StyleGAN2 (target) and FFHQ / ProGAN (source), averaged over

10 runs. The metrics are plotted with respect to the number of

target training samples per class used for fine-tuning. All models

were trained and tested on unperturbed images. Note that the scale

of the axis is not uniform for Number of Samples per Class.

experiment. Hence, the models were fine-tuned on an equal

number of images from the source and target datasets.

As shown in Figure 6, the performance remained high

on the source test set after fine-tuning. However, Forensic-

Transfer needed more samples than before to achieve near-

perfect performance on the target test set.

5. Conclusion

In this paper, three methods were evaluated regarding

their ability to detect GAN-generated faces in the wild. All

methods proved to be rather robust against common image

perturbations, provided that similar perturbations were in-

corporated during training. One method (ForensicTrans-

fer) also exhibited high transferability when fine-tuned on

a small number of out-of-distribution images. However, no

method generalized well before fine-tuning. This is prob-

lematic since the number of image sources is large in the

wild, i.e., it is impractical to solely rely on fine-tuning other

than in clearly defined use cases where the number of im-

age sources is limited. Catastrophic forgetting also proved

to be a problem, and there is no guarantee that the less naive

fine-tuning approach will be able to prevent it if many more

image sources are to be considered. Hence, this paper con-

firms what has been indicated in previous studies; namely

that current detection methods tend to lack sufficient gener-

alizability. There is a need for further research about new

methods and training procedures to enhance performance.
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Riess, Matthias Nießner, and Luisa Verdoliva. Forensictrans-

fer: Weakly-supervised domain adaptation for forgery detec-

tion. arXiv preprint arXiv:1812.02510, 2018. 2, 3, 4

[5] Hao Dang, Feng Liu, Joel Stehouwer, Xiaoming Liu, and

Anil K. Jain. On the detection of digital face manipulation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2020. 1, 3, 4

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2009. 2, 4

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016. 2, 3

[8] Nils Hulzebosch, Sarah Ibrahimi, and Marcel Worring. De-

tecting cnn-generated facial images in real-world scenarios.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops, 2020. 3

[9] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of gans for improved quality, stability,

and variation. In Proceedings of the International Confer-

ence on Learning Representations (ICLR), 2018. 1, 2, 3, 4

[10] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2019. 1, 2, 4

[11] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,

Jaakko Lehtinen, and Timo Aila. Analyzing and improv-

ing the image quality of stylegan. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2020. 1, 2, 4

[12] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In Proceedings

of the IEEE International Conference on Computer Vision

(ICCV), 2015. 2

[13] Zhengzhe Liu, Xiaojuan Qi, and Philip H.S. Torr. Global tex-

ture enhancement for fake face detection in the wild. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2020. 1, 2, 3

[14] Francesco Marra, Diego Gragnaniello, Davide Cozzolino,

and Luisa Verdoliva. Detection of gan-generated fake im-

ages over social networks. In Proceedings of the IEEE Con-

ference on Multimedia Information Processing and Retrieval

(MIPR), 2018. 3, 4

[15] Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, and

Giovanni Poggi. Do gans leave artificial fingerprints? In

Proceedings of the IEEE Conference on Multimedia Infor-

mation Processing and Retrieval (MIPR), 2019. 2

[16] Francesco Marra, Cristiano Saltori, Giulia Boato, and Luisa

Verdoliva. Incremental learning for the detection and clas-

sification of gan-generated images. In Proceedings of the

IEEE International Workshop on Information Forensics and

Security (WIFS), 2019. 2, 4

[17] Lakshmanan Nataraj, Tajuddin Manhar Mohammed, Shiv-

kumar Chandrasekaran, Arjuna Flenner, Jawadul H. Bappy,

Amit K. Roy-Chowdhury, and B. S. Manjunath. Detect-

ing gan generated fake images using co-occurrence matrices.

Journal of Electronic Imaging (JEI), 2019(5):532–1–532–7,

2019. 3

[18] João C. Neves, Ruben Tolosana, Ruben Vera-Rodriguez,

Vasco Lopes, Hugo Proença, and Julian Fierrez. Ganprintr:

Improved fakes and evaluation of the state of the art in face

manipulation detection. IEEE Journal of Selected Topics in

Signal Processing (JSTSP), 14(5):1038–1048, 2020. 1, 2, 4

[19] Opencv face detector. GitHub [Online]. Available: https://

github.com/opencv/opencv/tree/master/samples/dnn/

face detector. [Accessed 6 April 2020]. 5

[20] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H. Lampert. icarl: Incremental clas-

sifier and representation learning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2017. 2
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