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Abstract

Manipulated videos, especially those where the identity

of an individual has been modified using deep neural net-

works, are becoming an increasingly relevant threat in the

modern day. In this paper, we seek to develop a general-

izable, explainable solution to detecting these manipulated

videos. To achieve this, we design a series of forgery detec-

tion systems that each focus on one individual part of the

face. These parts-based detection systems, which can be

combined and used together in a single architecture, meet

all of our desired criteria - they generalize effectively be-

tween datasets and give us valuable insights into what the

network is looking at when making its decision. We thus

use these detectors to perform detailed empirical analysis

on the FaceForensics++, Celeb-DF, and Facebook Deep-

fake Detection Challenge datasets, examining not just what

the detectors find but also collecting and analyzing useful

related statistics on the datasets themselves.

1. Introduction

The past few years have seen a sharp rise in the avail-

ability of technology for creating and distributing digital

forgeries, specifically those where one individual’s iden-

tity is replaced with that of a another. These forgeries,

known as “Deepfakes,” represent an important and grow-

ing threat to information integrity on the web. A variety of

techniques have been proposed to combat the risks inher-

ent in the widespread availability of this technology, many

of which are known to perform very well on the datasets on

which they are trained, but perform worse when they are ap-

plied to different datasets, particularly those which generate

fakes using different algorithms.

For this reason, it is vital that video forgery detection

systems be able to generalize effectively to novel datasets.

Improving performance in this regard requires a strong un-

derstanding of both the detectors used and the data itself. To

this end, a lot of approaches have been explored [20, 5, 21].

In this paper, we seek to add one more approach to this

Figure 1. In order to detect manipulated images in an explainable

way, we divide the face into four regions - nose, mouth, eyes and

chin/jawline - and train separate classifiers for each region. The

resultant classifiers generalize well and provide valuable insights

into the image manipulation process.

list, analyzing the problem of digital forgery detection from

another angle. Rather than focus on a single architecture for

forgery detection, we break the problem down into smaller

pieces, dividing the face into several distinct regions of in-

terest and training separate classifiers for each one. Specif-

ically, we divide the face into four main regions - the nose,

mouth, eyes and chin - and learn separate detectors for the

individual artifacts left behind in each region.

Despite the fact that these classifiers are designed to re-

strict their attention only to their specific assigned regions,

some of them still generalize quite well. This suggests that

the regions we are training on may contain powerful clues

for forgery detection, powerful enough to let these restricted

classifiers out-perform more conventional systems.

These parts-based detectors are also fertile ground for

deeper empirical analysis. They are explainable because

they make decisions based on limited, easily understood cri-

teria, and we can use their strengths or weaknesses to make

inferences about the underlying data they are trained and

evaluated on. They thus allow us to gain further insights into

the comparative structure of different forgery algorithms.

Using FaceForensics++ [30] as our main dataset, our em-

pirical analysis is broken down as follows: first, we train

and evaluate the generalizability of parts-based detectors



for each of the four regions of the face that we designate -

nose, mouth, eyes and chin/jawline. We then perform the

same experiments with a combined parts-detector, which

uses multiple branches within the same network to compute

parts-based detection separately before recombining. Hav-

ing trained these parts detectors, we perform comparative

analysis of their strengths and weaknesses, looking at both

the performance of our detectors and the statistics of altered

regions in manipulated images in an effort to develop new

insights into the problem of forgery detection. We finish

with cross-dataset analysis, comparing generalization per-

formance not just between different algorithms of the Face-

Forensics++ dataset but also across datasets, preforming

transfer experiments on the Celeb-DF [22] and Facebook

Deepfake Detection Challenge [10] datasets.

2. Related Works

2.1. Deepfake Algorithms

Computers have long been used to generate forged im-

agery, but until recently most quality digital forgeries would

need to be carefully designed by hand. However, since

the invention and widespread use of Generative Adversarial

Networks (GANs) [11], it has become considerably easier

to use computers to convincingly modify images. In this pa-

per, we are particularly concerned with digital forgery tech-

niques that use deep learning or other modern techniques to

transfer the face of one individual to another.

These forgeries, colloquially known as “Deepfakes,” can

be generated in a variety of ways. Some of these methods

predate the invention of GANs, such as [13], which per-

forms swaps by identifying landmarks on faces, and then

warping one individual’s face onto the other. Still, many

Deepfake methods have GANs at their core. FSGAN [24]

uses a GAN to reenact one person’s pose with another’s

face, while the NTH model [34] produces Deepfakes by

pre-training meta-variables and swapping faces in a few-

shot setting. Similarly, techniques like StyleGAN [15] al-

low Deepfake generation by projecting one image into the

latent space of another.

These techniques are especially easy to use because

many of them have been made available as software pack-

ages. Software such as DeepFaceLab [25] and FaceSwap 1

are easy to download and use, making Deepfakes available

to many people outside the research community.

2.2. Forgery/Deepfake Detection

As techniques for generating forged images have im-

proved, so too have techniques for identifying them. Some

techniques identified forgery by looking at metadata [14]

or other low level artifacts. For instance, techniques such

1https://github.com/deepfakes/faceswap

Figure 2. Mask generation pipeline. First parts are detected us-

ing dlib, then the masks are created from the convex hulls of the

detected regions. Finally, masks are post-processed with morpho-

logical dilations and gaussian blur.

as [26, 33, 27, 21, 20] try to identify forgeries by look-

ing for specific artifacts, e.g. by searching for repeated re-

gions, or stitching or warping artifacts in transferring one

face to another body. Patch-based techniques are also pop-

ular [35, 28]; for instance, [5] uses patch-based techniques

to analyze and improve the generalizability of video forgery

detection systems.

Many techniques take advantage of the strength of deep

networks directly, by training image classifiers with vari-

ous architectures to identify forgeries, either through RGB

[4, 2, 23, 7] or optical flow [3]. Our work continues in the

same vein as many of these other works, taking key intu-

itions from other methods. In particular we take inspiration

from the patch-based approach of [5], extending their patch-

based approach to train specific parts-based detectors.

There have also been many new datasets introduced to

evaluate forgery detection systems. These range from the

smaller but varied Deepfake TIMIT [18] and FaceForen-

sics++ [30] datasets, to the larger, more recent Facebook

Deepfake Detection Challenge (DFDC) [10] and Celeb-DF

[22] datasets, the last three of which we use in this work.

3. Method

We seek to develop an explainable infrastructure for de-

tecting manipulated images and videos. Below, we explain

our approach for building separate part-based classifiers for

each region of the face. These classifiers - which must make

their decisions by looking at only a limited portion of the

image - allow us to get the explainable detectors we desire,

which will be critical in performing our analysis.

3.1. Creating the Parts Masks

In order to train parts-specific detectors, we must cre-

ate individual masks for each region of the face so that

they can be used during training. Figure 2 illustrates this

straight-forward process. We first acquire facial landmarks

using the dlib [16] software library. These detected land-

marks are subsequently grouped into four categories: nose,

mouth, eyes, and chin/jawline. To convert these landmarks

into masks, we simply take the convex hulls of each region

separately, except for the chin which we keep as a series



of line segments. We then perform 8 iterations of morpho-

logical dilation and apply a gaussian filter to create the fi-

nal high resolution masks. Since these masks will be used

to train low-resolution filters within the network described

below, the final step in our mask generation pipeline is to

downsample the mask to a resolution that matches the maps

produced by our network.

3.2. Parts Detection

Single Part-Based Classifier We first describe our de-

tector in the context of a single fixed facial region R, such

as the mouth or eyes, which we will refer to as an R-based

detector. Since we are only interested in a small portion of

the face at a time, we opt to use a patch-based detector with

a small receptive field. Thus, as a backbone for our network

we use a standard Xception [6] neural network, truncated

after the second Xception block and given a single channel

of output using a 1 × 1 convolution layer. This is the same

architecture used in [5], and we adopt it in part because the

authors of [5] demonstrated that a truncated Xception net-

work generalizes more effectively than the full, deeper net-

work.

Unlike [5], however, we do not directly classify from the

output of the truncated Xception network. Instead, in the

case of fake images, we use these truncated outputs in order

to learn a mask for the region R. Specifically, if x is our

input image, f(x) is the output of our truncated neural net-

work, and MR is the binary mask for region R constructed

as described in Section 3.1, then we train an R-based clas-

sifier by minimizing standard binary cross-entropy loss:

LM (x,MR) =−
∑

i,j

MR,ij log(σ(f(x)ij))

−
∑

i,j

(1−MR,ij) log(1− σ(f(x)ij))

(1)

where i and j are the horizontal and vertical indices of a

given map, and σ(·) is the sigmoid function.

If the image being classified is real, then MR in equation

1 is set to all zeros, teaching the network not to activate

when given a real image. Thus, LM teaches the network

to only look for artifacts of forgery in the specific region

targeted by MR.

Once f(x) has been generated, we produce a final clas-

sification label ŷ by performing average pooling over f(x)
and feeding the result through a classification layer. We

denote this operation as ŷ = g(f(x)). ŷ is trained by mini-

mizing binary cross entropy as well, this time over a single

value only:

LC(x) = −y log(σ(ŷ))− (1− y) log(1− σ(ŷ)) (2)

where y is the ground truth label of the image. The fact that

the network must make its prediction solely from the pooled

results of the part detector ensures that only the activations

of the part detector are used in the final classification.

Thus, for an R-based classifier over a single region, our

final loss is:

LR(x) = LC(x) + λLM (x,MR) (3)

where λ is a learning weight parameter set to 10 in all of

our experiments.

We take a moment here to remark on the small recep-

tive field of our classifier. [5] argued that this smaller re-

ceptive field helps with generalization, but it also provides

another advantage in our analysis. Namely, it ensures that

our network is only looking at the regions we want it to. If

the receptive fields were large enough to see the whole im-

age, then it would conceivably be possible that the network

might perform classification in an implicit two step process

that bypasses looking for artifacts in its assigned region:

first identify if the image is real or manipulated, then detect

the appropriate part. With a small receptive field, though,

the network can make its decision only by looking in the

area local to whichever region it is focused on classifying.

Thus, in all our following analysis, we can be confident that

the classifier is making its decision solely from observing

the specific region we have trained it to examine.

Multiple Parts-Based Classifier In addition to perform-

ing experiments with single-parts based classifiers, we also

perform analysis on detectors that combine multiple re-

gions. Since we do not wish to train multiple networks

from scratch in order to perform this recombination step,

we seek a way to reuse as much computation as possible

without having the networks interfere with each other.

Our proposed solution to this problem is illustrated in

Figure 3. When using multiple parts, instead of simply trun-

cating at the second block of the Xception architecture, we

add an additional Xception block, identical to the previous

one, for each of the four parts of the face we are detect-

ing. None of these additional blocks share weights, thus

ensuring that they are each performing their detections sep-

arately. We then average the results of all four maps to make

our final predictions.

Our final loss for the multiple parts-based classifier is

thus:

Lmulti(x) = LC(x) + λ
∑

R

LM (x,MR) (4)

4. Experiments

4.1. Data

The main dataset we use in this paper is FaceForen-

sics++ [30]. This dataset consists of 5000 videos broken



Figure 3. Overview of the architecture used in our experiments.

We truncate the Xception architecture after two blocks, then di-

vide the network into separate branches for each part of the face,

learning a separate parts mask for each branch. We then concate-

nate and pool all of the masks into a single value. Finally, we feed

this into a fully connected layer to make a prediction.

into three splits: a training split of 3600 videos (720 real

and 2880 fake), a validation split of 700 videos (140 real

and 560 fake), and a test split of 700 videos (140 real and

560 fake). FaceForensics++ labels the algorithms used to

generate each manipulated video, and for each real video

fakes are designed using one of the the following algo-

rithms: FaceSwap2 (FS), Deepfakes3 (DF), Face2Face [32]

(F2F), and NeuralTextures [31] (NT). For the bulk of our

experiments, we will train a system on one of these algo-

rithmic splits, and evaluate on the other three.

For experiments measuring the transfer between

datasets, there are two other datasets we use. The first of

these is the Celeb-DF v2 dataset [22], which contains 6229

videos, of which 518 are in the test split that we use in

our experiments. These videos were generated using an

improved version of the standard Deepfake synthesis algo-

rithm from 590 different YouTube videos of celebrities.

The second is the Facebook Deepfake Detection Chal-

lenge dataset [10], which at the time of this writing is the

largest publicly-available Deepfake dataset collected. We

will only be performing our evaluation on the publicly avail-

able test set of 5000 videos, which were created using the al-

gorithms DFAE [25], MM/NN Face Swap [13], NTH [34],

and FSGAN [24].

4.2. Implementation Details

For all of our experiments, we use an Xception backbone

[6], pretrained on ImageNet [8]. The networks are trained

on 2 Nvidia GeForce RTX 2080 Ti GPUs for 40,000 steps

each with Adam [17] using a batch size of 128, a β1 value

of 0.928, weight decay of 0.00005 and an initial learning

rate of 0.0001. Every 10000 steps of training, the learning

2https://github.com/MarekKowalski/FaceSwap
3https://github.com/deepfakes/faceswap

rate is reduced by a factor of 10. All of our code is written

in the Tensorflow [1] python library for Deep Learning.

For every video in each dataset, we randomly select 40

frames to use for training. For all images, we use the Dual

Shot Face Detector (DSFD) [19] method to detect the faces

within each frame. We then take a crop of this face and re-

size it to 288× 288 using nearest neighbor interpolation for

all of our Xception training. When training the ResNet50

baselines, we use images of size 224 × 224 instead. No

augmentation is used during training or testing, and all im-

ages are compressed as high-quality JPEGs before being fed

through the system.

4.3. FaceForensics Generalization

We first explore the effectiveness of each of our parts

detectors individually. With this analysis, the purpose is

to see what can be achieved with networks trained only to

identify fake imagery with respect to a specific location in

the image, as described in Section 3.2.

Table 1 shows our performance on these methods. Here,

our parts detectors are trained individually on each of

the four algorithm-specific splits of the FaceForensics++

dataset, then evaluated on the other three algorithms. For

each system we report the Area Under Curve (AUC) of

the Receiver-Operating Characteristic (ROC) curve. We use

AUC in part because we found that accuracy can be an un-

stable metric when measuring forgery detection generaliza-

tion, since during transfer it is not uncommon for a system

to be much better at classifying real images than fake im-

ages.

We compare our parts detector to 4 other baseline sys-

tems. Two of these systems are the standard Xception [6]

and ResNet50 [12] architectures, each pretrained on Ima-

geNet [9]. For each of these architectures, we also com-

pare to a truncated variant, where we end the architecture

after the second block (which is either a ResNet or Xcep-

tion block) similar to [5], and compute our prediction as

the average of all the logits. This is effectively the same as

training the parts-based classifier without LC , and assign-

ing MR to be either all zero or all one if the image is real or

fake, respectively.

We find from Table 1 that certain parts detectors are

superior to others. For instance, the mouth-based detec-

tor rarely out-preforms the Xception based detectors, gen-

erally performing much worse. This can be seen, for in-

stance, when observing the performance in transferring

from Face2Face to Deepfakes or NeuralTextures. As we

will see in Section 4.3.1, this may be correlated to different

patterns of artifacts in those regions.

The eyes and chin-based detectors, on the other hand,

perform considerably better, often out-performing or at least

matching the baselines. In some cases, such as with trans-

fer from FaceSwap to Face2Face, or from NeuralTextures



Model DF F2F FS NT DF F2F FS NT

ResNet50 DF 0.98 0.51 0.48 0.57 FS 0.5 0.54 0.99 0.49

ResNet50 Block 2 DF 0.99 0.55 0.47 0.68 FS 0.54 0.65 1 0.42

Xception DF 0.98 0.52 0.49 0.61 FS 0.51 0.58 0.99 0.5

Xception Block 2 DF 0.91 0.6 0.43 0.79 FS 0.48 0.62 0.92 0.29

Nose DF 0.97 0.63 0.33 0.81 FS 0.52 0.54 0.99 0.41

Mouth DF 0.94 0.56 0.48 0.76 FS 0.45 0.63 0.96 0.22

Eyes DF 0.96 0.6 0.4 0.84 FS 0.5 0.62 0.97 0.38

Chin DF 0.96 0.59 0.33 0.85 FS 0.44 0.73 0.99 0.33

Eyes+Chin DF 0.97 0.58 0.42 0.76 FS 0.48 0.71 0.99 0.41

Combined DF 0.97 0.62 0.39 0.83 FS 0.52 0.56 0.98 0.32

ResNet50 F2F 0.57 0.98 0.5 0.56 NT 0.56 0.51 0.48 0.94

ResNet50 Block 2 F2F 0.66 0.99 0.54 0.65 NT 0.67 0.52 0.43 0.98

Xception F2F 0.58 0.98 0.52 0.54 NT 0.59 0.6 0.5 1

Xception Block 2 F2F 0.7 0.94 0.64 0.74 NT 0.69 0.55 0.42 0.98

Nose F2F 0.65 0.99 0.52 0.63 NT 0.67 0.63 0.55 0.98

Mouth F2F 0.53 0.98 0.65 0.52 NT 0.64 0.63 0.54 0.99

Eyes F2F 0.76 0.98 0.66 0.73 NT 0.64 0.51 0.47 0.99

Chin F2F 0.75 0.95 0.65 0.74 NT 0.84 0.68 0.38 0.99

Eyes+Chin F2F 0.56 0.98 0.62 0.48 NT 0.77 0.61 0.47 0.98

Combined F2F 0.76 0.95 0.53 0.77 NT 0.66 0.62 0.53 0.98
Table 1. AUC for the ROC curves of the parts-based detectors for each of the four parts of the face, as well as for the combined detector.

The second column indicates which split of FaceForensics++ was used to train the model, while the other columns show the performance

on each of those splits. Baselines are above the dotted lines and our parts-based detectors are below. Best results for each run are in bold,

while models evaluated on the same split they were trained with are in grey. The dataset abbreviations are as follows: FaceSwap (FS),

Deepfakes (DF), Face2Face (F2F), and NeuralTextures (NT).

to Deepfakes, we see significant improvements in perfor-

mance from using the chin detector alone. This strong per-

formance suggests that important artifacts of the forgery

process are left behind in these regions.

We observe as well that the nose-based detector falls

somewhere in between the others. It often performs poorly,

but on certain transfers it performs well, such as when trans-

ferring from Deepfakes to Face2Face, or from NeuralTex-

tures to FaceSwap.

The rows marked “Combined” show the performance

of our four-branch multi-headed parts detector using all

branches. In many cases, we see that the combined detector

falls somewhere in between the best and worst parts detec-

tors for each given split.

Since the chin and eyes-based detectors tend to perform

better than the other parts, we also include an “Eyes+Chin”

detector, which uses two branches instead of the four used

by the “Combined” method. Like the “Combined” method,

however, we see that combining the detectors does not nec-

essarily greatly improve performance.

4.3.1 Dataset Parts Breakdown

In order to better make sense of the performance discussed

in Table 1, and in an effort to provide some intuition for

certain results, we now perform pixel-level analysis on the

Figure 4. Histograms of absolute pixel difference in each of the

four regions of the face used in our analysis, broken down by al-

gorithmic split of the FaceForensics++ dataset.

FaceForensics++ dataset itself. To do this, we first compute,

for one frame per video per algorithm split, the absolute dif-

ference between the manipulated image and its real counter-



Nose Mouth Eyes Chin

Deepfakes 0.0217 0.0218 0.0479 0.0325

Face2Face 0.0218 0.0206 0.0450 0.0371

FaceSwap 0.0206 0.0239 0.0470 0.0313

NeuralTextures 0.0196 0.0239 0.0469 0.0410
Table 2. Average normalized absolute difference between real and

manipulated images, broken down by region of the face and ma-

nipulation algorithm used. We see that most algorithms have

somewhat similar distributions, with the largest changes occurring

in the eyes and chin.

part. We then take the same masks MR used to generate the

ground truth for the R-based part detectors, and multiply

them by this computed absolute difference. Specifically, for

each part R, given real image xr and manipulated image

xf , we compute a map DR as

DR,ij = MR,ij |xr,ij − xf,ij | . (5)

In Figure 4 and Table 2, we provide statistical summaries of

the maps DR for each part R and each data split.

We posit that these statistics tell us something about

where to find artifacts left over from the manipulation

process. Although these summary statistics leave out a

lot of important low-level information, some patterns do

emerge when comparing certain results from Table 1 to

the histograms in Figure 4. For instance, the Nose detec-

tor performs well on the transfer from NeuralTextures to

FaceSwap (.55 vs a .42 truncated Xception baseline and a

.5 Xception baseline), and we all see very similar histogram

shapes for pixel differences in the nose region on those two

datasets.

On the other hand, where distributions are very different,

we see more discrepancy in performance. For instance, be-

tween Face2Face and Deepfakes we see very different dis-

tributions around the mouth regions, where Face2Face has

a higher peak and Deepfakes is flatter. This may reflect

the poor transfer performance of the mouth-based detec-

tor when trained on Face2Face and evaluated on Deepfakes

(.53 vs a .7 baseline for truncated Xception).

Finally, when we look at Table 2 and observe the aver-

age absolute differences within regions, we see other dis-

tinct patterns. The most obvious pattern is that different

parts have similar amounts of changes even between splits

- there is far more variation between parts than between al-

gorithms, with eyes changing the most while the nose and

mouth change the least.

Beyond that, though, we observe other interesting pat-

terns with respect to the performance of parts detectors. For

instance, we see that in the NeuralTextures split the chin re-

gion changes far more than in the other splits, and in fact

in Table 1 we see that the chin-based detector trained on

NeuralTextures considerably out-performs the baseline in

the Deepfake and Face2Face dataset splits (.84 and .68 vs

Model DF F2F FS NT

Mean 0.601 0.486 0.643 0.597

Max 0.645 0.529 0.58 0.571

FC 0.573 0.519 0.583 0.555

Ensemble 0.587 0.462 0.576 0.61
Table 3. Different aggregation methods for the composite parts-

based model. “Mean” is the method used in the rest of the paper

which performs average pooling, “Max” performs max pooling,

“FC” adds a fully connected layer, and “Ensemble” runs a separate

network for each part, averaging the final logits.

.69 and .55, respectively). The one split where the chin-

based detector consistently under-performs the baseline is

FaceSwap (.38 vs .42), the split with the smallest changes

- and therefore presumably the fewest artifacts - in the chin

region.

4.3.2 Learned Masks

One advantage to using parts-based classifiers is their ex-

plainability. When a parts-based system identifies an image

or video as real or fake, one need only look at the predicted

masks (described in Section 3.2) for hints at what the sys-

tem was used to make its prediction. In Figure 5 we provide

two examples of these masks for each of the four facial re-

gions. On the left we have the relatively easy scenario of

identifying a fake from the same distribution as the network

was trained on, in this case the Deepfakes split of Face-

Forensics++. We see that the system easily identifies all of

the relevant regions as fakes.

On the right side of Figure 5, we have a sample of masks

generated by parts-based detectors trained on the Deepfakes

split and evaluated on Face2Face. Even transferring be-

tween splits, we see that the network is still able to find

enough artifacts of the forgery process to be effective. For

instance, the detector is still able to successfully pick up

the small discoloration on the individual’s nose, even if the

masks are less clean and more likely to miss certain regions,

such as the left eye.

4.3.3 Architecture Design

Choice of Aggregation Function In all of the experiments

we explored above, we chose to use an average pooling

layer for aggregation in order to aggregate the results of

our multi-headed parts detector. In Table 3, we explore

the choice of other aggregation methods, including a max

pooling layer and a trained fully connected layer. These

layers are all applied after the individual parts-maps are ag-

gregated separately in the spatial domain using an average

pooling layer. We also include one additional method of

aggregation labeled “Ensemble”, which is attained by train-

ing each part detector with a completely different network,

and then averaging the logits in an ensemble. Though this



Figure 5. Masks learned by individual part detectors. The top row shows the masks learned by the various parts detectors, while the bottom

row shows the ground truth masks constructed as described in Section 3.1 Left: a manipulated image from the Deepfakes FaceForen-

sics++ split, evaluated by parts-based models trained on the Deepfakes split. Right: A manipulated image from the Face2Face split of

FaceForensics++, evaluated on models trained on the Deepfakes split.

would of course be less practical since it involves training

and running multiple networks, and the performance gains

do not make it worthwhile, we do note that the final ensem-

ble has only 1.6 million parameters and uses 14.6 billion

FLOPS, which is still less than a full Xception architecture

containing over 20 million parameters and using over 15

billion FLOPS.

In order to compute the values in Table 3, we train and

evaluate each of our architectures on the same sixteen com-

binations of splits from the FaceForensics++ dataset that

we used in Table 1. We then average all the results for

a given split, ignoring results trained and evaluated on the

same split. For example, for the Deepfakes split, we average

the AUC results on the Deepfakes split for the architecture

trained on Face2Face, FaceSwap, and NeuralTextures. This

provides us with a good summary statistic for comparing

the performance of all three architectural options. The full

values obtained by all of these runs are included in the sup-

plementary material.

We find that average and max pooling perform similarly,

each out-performing the other in two out of the four cate-

gories. The fully-connected layer is generally an inferior

form of aggregation, perhaps because it can encode biases

for one part or another that do not transfer well between

dataset splits.

Number of Additional Blocks Another axis of variation

in our architecture is the choice of the number of additional

Xception blocks used. Adding these extra blocks is an es-

sential step, because they allow the different part detectors

to operate separately. We explore this in Table 4, where

we have trained the combined architecture using average-

pooling aggregation over 0, 1, and 2 additional Xception

blocks. Here, we aggregate values in the same manner as

Model DF F2F FS NT

0 Blocks 0.528 0.446 0.523 0.56

1 Block 0.601 0.486 0.643 0.597

2 Blocks 0.575 0.497 0.582 0.565
Table 4. Performance of the aggregated parts-based model, trained

with different numbers of Xception blocks included after trunca-

tion.

we did in Table 3, and once again note that the full exper-

iments can be found in the supplementary material. From

this analysis, we find that adding one additional Xception

block after truncation is optimal in most cases, with only a

small loss with respect to the Face2Face split (from .497 to

.486), which is easily outweighed by the larger gains made

in the other three splits. The poor performance of using zero

blocks in particular confirms our hypothesis that it is nec-

essary to have at least some degree of separate processing

for the individual parts-based models, as trying to detect all

parts in a single branch will cause the detectors to interfere

with one another and performance will degrade.

4.3.4 Failure Case Analysis

We can also find new insights by looking at the failure cases

for a given parts-detector. Figure 6 shows some examples

of false positives detected by our system for different part-

based detectors. More such false positives can also be found

in the supplementary material. While we find that these fail-

ures look generally how we would expect them to, show-

ing activations in areas where they should not exist, for

combined parts detectors the ability to observe these maps

when the algorithm fails would help an observer understand

which regions of the image caused the network to trigger in-



Figure 6. False positives for the eyes (left), chin (middle), and

mouth (right) detectors. All three are incorrectly firing on regions

within real images.

Model FF++ Celeb-DF DFDC

Xception 0.965 0.629 0.673

Xception Block 2 0.754 0.622 0.593

Nose 0.909 0.667 0.611

Mouth 0.914 0.658 0.617

Eyes 0.847 0.63 0.586

Chin 0.92 0.644 0.618

Average 0.931 0.633 0.627
Table 5. Performance of various systems when trained on the en-

tire FaceForensics++ dataset and evaluated on the Celeb-DF and

Facebook DFDC datasets. Our parts-based detectors are below the

dotted line. Best results are in bold.

correctly.

4.4. Cross­Dataset Generalization

We have shown that parts-based detectors generalize

well between splits of the FaceForensics++ datasets. In

this section, we evaluate the generalization performance of

parts-based detectors trained on the entirety of the Face-

Froensics dataset and evaluated on two other datasets,

Celeb-DF and Facebook DFDC. For both of these datasets,

our evaluation is only on the publicly-available test splits.

The results of these experiments are shown in Table 5,

using the same AUC metric used above. We observe that,

with respect to the Celeb-DF dataset, parts-based detectors

are generally superior to the Xception baselines, both trun-

cated and otherwise. This shows that our method remains

effective relative to other techniques even as the difference

between training and evaluation grows.

However, for the DFDC dataset, we find that parts de-

tectors are not sufficient to achieve state-of-the-art perfor-

mance over the Xception baseline. However, we still ob-

serve that all parts-based methods out-perform the truncated

Xception baseline, which itself outperformed the Xcep-

tion baseline in the vast majority of other transfer tasks.

Overall, this indicates that some of the data in the DFDC

dataset might require a more global approach in order to

perform proper detection, whereas more local approaches

with smaller receptive fields, such as truncated Xception

and parts-based classifiers, simply do not have sufficient re-

ceptive fields. This also opens up the possibility of future

work into parts-based detectors that use much larger recep-

tive fields, perhaps with variants of U-Net [29] or similar

architectures.

5. Conclusion

In this work, we have shown that it is possible to use neu-

ral networks trained only to look in specific regions of the

face to improve generalization performance between video

manipulation algorithms. This suggests that these individ-

ual parts of the face may in some cases actually be more

representative than the rest of the image as a whole, since

restricting the classifier’s attention to only these parts im-

proves generalization. Having observed this, we used these

parts-based detectors to perform extensive empirical analy-

sis, analyzing which parts are most discriminative between

datasets and examining the underlying distributions of our

data.
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