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Abstract

Forensic DNA analysis has been critical in prosecut-

ing crimes and overturning wrongful convictions. At the

same time, other physical and digital forensic identifica-

tion techniques—used to link a suspect to a crime scene—

are plagued with problems of accuracy, reliability, and re-

producibility. Flawed forensic science can have devastat-

ing consequences – the National Registry of Exonerations

identified that flawed forensic techniques contribute to al-

most a quarter of wrongful convictions in the United States.

Even some of the most basic, general-purpose forensic tech-

niques for measuring a person’s height and weight are un-

reliable. We propose using recent advances in 3D body-

pose estimation to estimate height and weight from a sin-

gle, unconstrained image. The reliability of this method is

assessed using large-scale simulations and an in-the-wild

dataset, bounding the expected accuracy with which height

and weight can be estimated, and providing a road map for

further improvements.

1. Introduction

In 2005, the U.S. Congress authorized the National

Academy of Sciences (NAS) to conduct a study of foren-

sic science. Published in 2009, the committee’s report [20]

called for a broad and deep restructuring of how forensic

techniques are validated and applied, and how forensic an-

alysts are trained and accredited. One of the report’s key

findings was “[w]ith the exception of nuclear DNA analysis,

however, no forensic method has been rigorously shown to

have the capacity to consistently, and with a high degree of

certainty, demonstrate a connection between evidence and a

specific individual or source.” A decade later, Judge Harry

Edwards, co-chair of the original committee, wrote “We are

still struggling with the inability of courts to assess the effi-

cacy of forensic evidence. When a forensic expert testifies

about a method that has not been found to be valid and reli-

able, the expert does not know what he does not know and

cannot explain the limits of the evidence. This is unaccept-

Figure 1. Can we accurately determine how tall this person is?

able” [12].

With digital devices in nearly every hand, photographic

evidence is playing an increasingly important role in iden-

tifying people. The field of photographic forensic identifi-

cation, however, is under-studied and, as the NAS found,

riddled with flawed forensic techniques (e.g., [22]).

In the summer of 2008, for example, George Powell III

was identified as a possible suspect in a string of conve-

nience store armed robberies, Figure 1. A store clerk ini-

tially told police the robber was approximately 167 cm (5
ft, 7 in), and went on to identify Powell in a lineup. Pow-

ell stands at 190 cm (6 ft, 3 in). A former police officer,

turned expert witness, testified in court that a photogram-

metric analysis of video surveillance showed the robber was

at least 185 cm tall. Powell was convicted and sentenced to

28 years in prison.

After his conviction, Powell’s family hired two other

experts, one of whom concluded the video surveillance

showed the robber was 171 cm, and the other bracketed the

robber’s height at between 167–176 cm. In light of these

measurements, the original expert revisited his findings and

adjusted his estimate to a range of 178–185 cm. Due in part



to these photogrammetric inconsistencies, Powell’s convic-

tion was vacated in 2018, and he was granted a new trial.

The field of photogrammetry, dating back to 1867, is ma-

ture and the underlying techniques are well understood [18,

26]. Yet, as the Powell case showed, even the seemingly

straight-forward task of measuring a person’s height can be

wildly inaccurate. One of the most significant challenges

in assessing even the most basic measurement of a person’s

height is contending with the inherent loss of information

resulting from a 3D to 2D image projection, along with of-

ten low image resolution, perspective distortion, and the re-

ality of measuring a person’s height when they are not nec-

essarily standing up straight.

Many factors add to the complexity of measuring the hu-

man body. Due to spinal compression throughout the day,

a person’s reference height can change by as much as 1.9
cm [13]. A person’s apparent height can change by as much

as 6 cm while they are walking [9]. This type of appar-

ent height difference is even more exaggerated for extreme

poses or actions. Weight similarly fluctuates in the span of

weeks as well as throughout a single day. And, clothing,

shoes, and head-wear can further complicate both height

and weight measurements.

While not all of these complexities can be easily over-

come, we hypothesize that recent advances in 3D human

pose estimation [15, 24] can reduce some of the ambiguities

and uncertainty inherent to height and weight estimation

from a single, reference-free image. With this approach,

and through large-scale simulations and in-the-wild experi-

ments, we evaluate the accuracy and reliability with which a

person’s height and weight can be measured. We also eval-

uate the accuracy and reliability as a function of body size

and pose, camera angle, and image resolution and quality.

2. Background

The heights of adult women/men in the U.S. are nor-

mally distributed with a mean of 161/175 cm, and a standard

deviation of 7.0/7.4 cm [1]. If we were to simply estimate a

person’s height as this average, gender-specific height, the

average height estimation error for women/men would be

5.6/5.6 cm, or 3.5%/3.2%.

Similarly, the average U.S. adult female/male weight is

78.7/90.8 kg with a standard deviation of 19.7/19.8 kg [1].

If we were to estimate a person’s weight as this average,

gender-specific weight, the average weight estimation error

for women/men would be 15.8/15.8 kg, or 20.0%/17.3%.

We report these numbers as a baseline against which height

and weight estimation should be considered.

Many classic approaches to forensic height estimation

require the presence of a reference object in the scene

(e.g., a door frame of known size). Criminisi et. al [9, 8], for

example, leverage insights from projective geometry and

computer vision to extract height measurements from im-

ages and videos in which the person in question is standing

next to a reference object of known height. The authors

note that when a person is standing upright they can mea-

sure a person’s height, although no large-scale studies were

performed to determine the accuracy or reliability. In con-

trast, our proposed 3D body pose estimation should be able

to accommodate different body poses, a necessary, but not

necessarily sufficient step to accurate height estimation.

A few approaches for estimating human height that do

not rely on reference objects have been proposed. BenAb-

delkader et. al [4] combine classical single-view metrology

with statistical knowledge of human anatomy to estimate

height. This approach is significantly less accurate than

reference-based, single-view metrology, and is only slightly

better than guessing a gender-specific average height. Zhu

et. al [27] use priors learned by a neural network to perform

geometric camera calibration and recover the absolute scale

of a scene from a single image. With a mean absolute er-

ror (MAE) of 8.3/12.1 cm (for people in neutral/non-neutral

poses), this approach is worse than guessing a gender-

specific average height. Bieler et. al [5] use explicit knowl-

edge of gravity to measure a person’s height from a video

sequence. With a MAE of 3.9 cm, this approach is bet-

ter than, for example, guessing a gender-specific average

height. This approach, however, is limited to video in which

the person being measured is in free fall, subject to the grav-

itational force.

There have also been a few approaches to estimating

weight from images and video. Velardo and Dugelay [25]

estimate weight from seven, manually-extracted, anthropo-

morphic measurements. Using a pair of frontal and side

view images, with a known reference object, they achieve a

MAE of 7.2 kg. Arigbabu et. al [3] estimate weight by train-

ing a feedforward neural network with 13 measurements of

the human body across multiple video frames, yielding a

MAE of 6.4 kg. Nguyen et. al [21] estimate weight from a

single RGB-D image, incorporating color, depth, and gen-

der information in their estimate, yielding a MAE of 4.6 kg.

In contrast to these approaches, our method uses a single

image in the absence of a reference object.

3. Methods

We begin by describing our forensic measurement

pipeline. The process starts with estimating a 3D model

from a single image [24], from which direct height and

weight measurements are made. Although the resulting 3D

model is estimated in real-world units, we describe three

alternate approaches for determining absolute scale. The

first approach can only be used in simulation, the second

approach can be used in simulation and in real-world foren-

sic scenarios with a known suspect, and the third approach

can be used in all real-world scenarios. We then describe

the creation of a large-scale simulated dataset that allows us



Figure 2. Overview of 3D model fitting on a sample image from

the IMDB-23K dataset. Shown from left to right is: the input im-

age; the estimated 2D skeletal keypoints; and the estimated 3D

model. The 3D model is then reposed into a neutral pose, from

which height is estimated as the distance from the top of the head

to the plane of the feet, and a proxy for weight is estimated as the

volume of the 3D model.

to evaluate the accuracy and reliability of measuring height

and weight across a broad range of imaging and human-

body configurations. We also apply our height estimation

method to images from an in-the-wild dataset, allowing us

to evaluate accuracy in more challenging real-world foren-

sic scenarios.

3.1. 3D pose estimation

The SMPLify-X optimization approach is used to fit 3D

SMPL-X models to a single image, capturing 3D pose,

body shape, and expression [24]. The SMPL-X model,

M(θ, β, ψ), is defined by three sets of parameters: the body

pose, θ, the body, face, and hand shape β, and the expres-

sion ψ. As part of the shape information, the β parame-

ter contains metric reconstruction information in real-world

units. The SMPL-X model extends the widely-used SMPL

model [17], allowing for articulated hands and more accu-

rate and detailed face modeling.

The first step in fitting a 3D SMPL-X model to an im-

age consists of automatically detecting 2D body, face, hand,

and feet keypoints, Figure 2, using OpenPose [6]. The full

3D body model is then estimated by optimizing for the pa-

rameters θ, β, and ψ by minimizing the difference between

the 2D keypoints and the posed 3D model keypoints repro-

jected into 2D [24]. This optimization incorporates several

priors on human-body shape and pose. The body pose prior,

VPoser, is represented as a 32D latent vector [24]. VPoser

can also be used to interpolate between poses or generate

novel valid human poses. We, for example, use VPoser in

our simulations to generate a wide range of body poses, Fig-

ure 3.

In order to estimate height, the estimated 3D model is

reposed into a neutral pose, Figure 3 (top right) from which

height is measured as the distance from the top of the head

to the plane formed by three points on the bottom of the feet.

The volume of the 3D model, computed using Python’s

trimesh package, is used as a proxy for weight.

3.2. Scale estimation

Although the estimated body model is estimated in real-

world units, we will see that this metric reconstruction can

be highly inaccurate, even though the underlying pose is

quite accurate. As such, we describe three different ap-

proaches to extracting more accurate metric measurements.

Working on the assumption that a scene may not always

contain reference objects of known size, we leverage the

fact that the adult inter-pupillary distance (IPD) is relatively

similar for women and men [11]: the average adult IPD for

women is 6.17 cm with a standard deviation of 0.36 cm, and

6.40 cm for men with a standard deviation of 0.34 cm.

Clinically, IPD is measured as the distance between the

center of the two pupils as a participant is looking directly

forward. Because our 3D models do not have pupils, we

measure the center of the eye as the midway point between

the left and right corners of the eye. We observe empirically

that this definition of IPD is slightly larger than the clinical

definition, and therefore scale all measured IPDs by 0.975.

While using an average IPD will lead to added uncer-

tainty in our measurements, when a surveillance photo is

being compared to a specific suspect, then the suspect’s

measured IPD can be used instead. This scenario is mim-

icked in our simulations by measuring the IPD of both the

ground truth 3D model and the fitted 3D model, from which

the fitted model can be appropriately scaled.

In order to disentangle the impact of the underlying 3D

model estimation and the resolution of the scale ambiguity,

we adopt, in our simulations, another approach to estimat-

ing absolute scale. In particular, we align the estimated 3D

model to the ground-truth 3D model using coherent point

drift (CPD) [19]. CPD is a point-set registration algorithm

that estimates the 3D rotation, isotropic scale, and trans-

lation between two arbitrary point clouds (in our case, the

point clouds correspond to the vertices of the underlying

3D models). After aligning the estimated 3D model to the

ground-truth model, the height and weight can be estimated

in the units of the ground-truth model.

3.3. Datasets

We describe the creation of a large-scale simulated

dataset, allowing us to assess the reliability of height and

weight estimation across a range of body sizes and poses,



Figure 3. Representative examples of neutral (top) and action (bot-

tom) poses used in our simulated dataset.

camera angles, and image resolutions and qualities. We also

analyze images from an in-the-wild dataset allowing us to

assess the reliability in real-world imaging situations where

we must rely on only the average IPD to resolve the scale

ambiguity.

3.3.1 Simulation

We created a large-scale, simulated dataset with known

ground-truth height and weight (i.e., volume). This dataset

is constructed from 3D SMPLX models of varying shape

and pose, rendered with a range of camera angles, and post-

processed with a range of resolutions and compression qual-

ities. By starting with the same underlying 3D model used

by the SMPLify-X pose estimation, we can disentangle the

errors introduced by the 3D pose estimation and the scale

disambiguation.

More specifically, our dataset is constructed by sam-

pling three body shapes (small, medium, and large) from

the SMPLX shape space. VPoser [24] is used to position

the 3D model into one of 12 random poses, a subset of

which is shown in Figure 3. For purposes of later analy-

sis, these poses are categorized into neutral or action. These

3× 12 = 36 posed models are rendered with a virtual cam-

era positioned at one of 11 azimuths (−150◦ to 150◦ in

steps of 30◦) and one of 4 elevations (0◦ to 54◦ in steps

of 18◦), for a total of 1, 584 rendered images at a resolution

of 800× 800 pixels.

In order to assess the impact of image resolution and

quality, each rendered image, at an azimuth and elevation

of 0◦, is downsized to 400× 400 and 200× 200 pixels, and

compressed with one of six JPEG qualities (100% (high-

est) to 0% (lowest) in steps of 20 using the Python Imaging

Library, PIL). Each downsized and compressed image was

then processed in the same way as the full resolution, un-

compressed image.

3.3.2 In-the-wild

We use a subset of the IMDB-23K dataset [14] to evalu-

ate the accuracy of height estimation in challenging real-

world images. This dataset consists of images of celebrities

annotated with their ground-truth height (but not weight).

As with our simulated dataset described above, these im-

ages are categorized into two broad categories: neutral im-

ages consist of those where the person is standing facing the

camera and with their entire body visible; and sitting/action

images consist of non-neutral poses or images where a por-

tion of the body is occluded. We selected a random subset

of the IMDB-23K test dataset, consisting of 869 images in

total, broken down as follows: 449 neutral female, 208 neu-

tral male, 120 action/sitting female, and 92 action/sitting

male.

4. Results

We begin by describing the accuracy with which height

and weight can be estimated in simulation (using the dataset

described in Section 3.3.1) for neutral and action poses, for

a range of camera orientations, and for both the baseline

SIMPLify, coherent point drift (CPD), and inter-pupillary

distance (IPD) absolute scale estimation. The sensitivity

to image resolution and compression is then explored. We

then describe the height estimation accuracy for the in-

the-wild dataset (Section 3.3.2). Finally, we briefly ex-

plore combining a classic single-view metrology analysis

of height with the proposed 3D human modeling.

4.1. Simulation

4.1.1 Height

Shown in Figure 4(a) is the accuracy with which height can

be estimated for neutral poses using only the SIMPLify met-

ric information. These errors are reported as absolute per-

cent deviation from the ground-truth height. The table rows

correspond to the camera azimuth and the columns corre-

spond to the camera elevation. Each cell is color coded

proportional to the magnitude of the error, with higher sat-

uration values corresponding to larger errors (all tables in

Figure 4 use the same color-coding scheme on the same

absolute scale). Shown in Figure 4(b) is the accuracy for

action poses.

By comparison to an average error of 18.3% across neu-

tral and action poses and across all camera orientations, if

we were to guess an average, gender-specific height, the av-

erage height estimation error would be 3.5% (i.e., 6 cm for

a 170 cm tall person). This shows that the metric informa-

tion from SIMPLify is not sufficient to accurately measure

metric height.



SMPLify (baseline)
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Figure 4. Shown in each table is the height estimation error (%)

as a function of the camera azimuth/elevation (rows/columns) for

baseline SMPLIify, CPD-, and IPD-based scale disambiguation,

and for neutral and action poses. Each cell is color coded propor-

tional to the magnitude of the error, with higher saturation values

corresponding to larger errors. In a real-world scenario, guessing

a gender-specific, average height would yield an average height

error of approximately 3.4%.

Shown in Figure 4(c) is the accuracy with which height

can be estimated for neutral poses using the full-reference

coherent point drift (CPD) scale disambiguation. With an

average error of only 0.5%, height estimation is most ac-

curate at a camera azimuth and elevation of 0◦. With this

camera configuration and at a height of 170 cm (5 ft, 7 in),

for example, the height of a person in a neutral pose can be

estimated to within 0.85 cm (0.33 in), considerably more

(a) CPD (b) IPD
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Figure 5. Shown in each table is the volume (i.e., weight) estima-

tion error (%) as a function of the camera azimuth (rows) and el-

evation (columns) for CPD- and IPD-based scale disambiguation,

and averaged over all neutral and action poses. In a real-world

scenario, guessing a gender-specific, average weight would yield

an average weight error of approximately 18.7%.

accurate than SIMPLify’s baseline or guessing a gender-

specific average height. As the camera azimuth and ele-

vation move away from a direct view, accuracy declines,

albeit fairly gracefully, eventually breaking down when the

camera elevation exceeds 54◦. This is because the more

extreme camera angles make it increasingly difficult to ac-

curately and completely extract all 2D skeletal features used

in the SMPLify-X 3D model fitting, Section 3.1.

Shown in Figure 4(d) is the accuracy with which height

can be estimated for action poses, again, using the full-

reference CPD scale disambiguation. At relatively small

camera azimuths between [−30, 30] and elevations [0, 18],
the average accuracy is 1.3%, as compared to 0.6% for neu-

tral poses. This increase in error is due to the difficulty in ac-

curately extracting 2D skeletal features in action poses. As

with neutral poses, overall accuracy continues to degrade as

the camera azimuth and elevation increases.

Shown in Figure 4(e) is the accuracy with which height

can be estimated for neutral poses, using, this time, the mea-

sured inter-pupillary distance (IPD) to resolve the scale am-

biguity. As expected, there is an overall increase in errors

with this less precise scale estimation. Across all camera

azimuths and elevations, the IPD-based error is 5.5%, as

compared to an average CPD-based error of 2.5%. At rel-

atively small camera azimuths between [−30, 30] and ele-

vations [0, 18], however, the average error is only 2.5%. As

before, we see the same breakdown in accuracy for more

extreme camera angles, and action as compared to neutral

poses, Figure 4(f).

4.1.2 Volume/Weight

Shown in Figure 5(a) is the accuracy with which volume

can be estimated from neutral and action poses using the

full-reference CPD scale disambiguation. These errors are



reported as the absolute percent deviation from the ground-

truth volume. As in Figure 4, the table rows and columns

correspond to the camera azimuth and elevation. Each cell

is again color coded proportional to the magnitude of the

error.

Even with a direct camera view (azimuth and elevation

of 0◦), the average error in estimating volume is 20.6%. By

comparison, if we were to guess an average, gender-specific

weight, the average weight estimation error would be on the

order of 19%, (Section 2). As with height, these errors in-

crease with increasing camera azimuth and elevation. Using

an IPD-based scale disambiguation, yields similarly poor

volume estimation.

The failure to accurately estimate volume is due to the

fact that the underlying SMPLify-X model estimation only

uses the extracted 2D skeletal keypoints to estimate pose,

with no consideration to the underlying pixel-level appear-

ance. As a result, the pose estimation is biased towards its

prior of average-sized people, and appears unable to accu-

rately capture overall shape. This limitation does not, how-

ever, significantly impact the ability to measure height.

Because we are unable to accurately estimate vol-

ume/weight in these simulations, we abandon trying to es-

timate weight from an in-the-wild dataset. We do, however,

discuss in Section 5 possible remediations that may be con-

sidered to improve weight estimation.

4.1.3 Resolution and Compression

With an image resolution of 800 × 800, 400 × 400, and

200 × 200, and with the most direct camera view (cam-

era azimuth and elevation of 0◦), the average error using

CPD-based scale disambiguation is 0.7%, 0.7%, and 0.4%.

The average error using IPD-based scale disambiguation

over these three resolutions is 3.0%, 3.1%, and 3.2%. Over

changes in resolution spanning a factor of four, there is little

impact of image resolution on overall accuracy.

With a JPEG compression of 100% (best quality) to

20%, the average error using CPD-based scale disambigua-

tion remains low, with errors between 0.56% and 0.67%.

Only at the lowest quality of 0% is there a significant im-

pact of compression, with the error increasing to 2.1%.

JPEG compression had a slightly larger impact when us-

ing IPD-based scale disambiguation. With a compression

quality between 100% to 40%, the average errors are be-

tween 2.9% and 3.1%. At lower compression qualities of

20% and 0%, the errors rose to 3.4% and 4.6%.

JPEG compression has a more significant impact than

resolution because the compression artifacts interfere with

the ability to extract reliable 2D skeletal keypoints.

4.2. Inthewild

Shown in Figure 6 is the accuracy with which height can

be estimated from 869 IMDB-23K images, Section 3.3.2,

(this dataset does not contain ground-truth weight). In these

real-world images, only the average IPD-based scale disam-

biguation is applicable. These results are separated (top to

bottom) based on gender. Shown in each panel is the abso-

lute prediction error (cm) as a function of the ground-truth

height, binned by 2.5 cm. The values specified in each bar

correspond to the number of images at each ground-truth

height.

For neutral poses, the minimal error is 0.003 cm,

but increases to as much as 25.2 cm. Across all fe-

male/male heights, the average neutral error is 6.4/7.1 cm,

or 3.8/3.9%, as compared to the average IPD-based sim-

ulation errors of 2.7% for neutral poses. The average er-

ror across action and sitting poses for female/male heights

is 7.6/8.2 cm, or 4.6/4.6% compared to an average IPD-

based simulation errors of 3.4% for action poses.

We note that the errors systematically increase as heights

increase away from the average female/male height of

161/175 cm. We posit this is because the inter-pupillary

distance (IPD) scales with height. To test this hypothesis,

we linearly scaled the reference IPD proportional to height.

While this is unrealistic in real-world forensic analysis, we

see in Figure 7 that the resulting errors are significantly re-

duced to an average error of 3.9 cm for neutral poses and

5.1 cm for action and sitting poses. By comparison, guess-

ing the average, gender-specific height would yield an error

of 5.6 cm.

With the appropriate IPD, height estimation is reason-

able for neutral poses, but is only slightly better than guess-

ing for more complex poses. Combined with the results

from our large-scale simulations, Section 4.1, we see the

rate limiting step to accurate height estimation, for neutral

poses and direct camera orientations, is not the 3D pose

estimation, but rather the scale disambiguation. For more

complex poses and off-axis camera orientations, both the

3D pose estimation and the scale disambiguation introduce

significant errors.

4.3. Augmented Singleview Metrology

We have shown that modeling 3D pose can improve

height estimation when a person is not standing perfectly

upright and directly facing the camera. Resolving the scale

ambiguity from this 3D model with the average human

inter-pupillary distance (IPD), however, results in signif-

icant errors in real-world scenarios. On the other hand,

single-view metrology is better at resolving the scale am-

biguity because of the assumption of a known reference ob-

ject, but has not previously incorporated 3D pose estimation

and correction. Here, we describe an example of augment-

ing a classic, single-view metrology estimate of height with



(a) female (neutral)

(b) male (neutral)

Figure 6. Shown is the absolute error between the estimated and

ground-truth heights for the in-the-wild dataset, separated by gen-

der. The value on each bar indicates the number of samples in each

height range. Errors increase as the ground-truth height deviates

from the mean adult height of 161 cm (female) and 175 cm (male)

because the assumed IPD for scale disambiguation is height de-

pendent. See also Figure 7.

3D pose estimation.

Shown in Figure 8 is the result of using the single-view

metrology method of Criminisi et. al, with a known height

of the beam supporting the roof, to estimate height [9].

This yields an estimated height of 178.6 cm relative to the

ground-truth height of 180 cm. The authors in [9] hypoth-

esize the slight under reporting of the height is due to the

fact that the person is leaning on their right leg. Shown in

the bottom panel of Figure 8 is a fitted 3D model, capturing

the slight bend in the knees.

We start with the assumption that, as shown in Figure 8

(middle panel), the head to right foot distance in the fit-

ted model is the previously estimated 178.6 cm. Then, by

directly measuring the height of the model reposed into a

neutral position, Section 3, height is estimated to be 179.9
cm, only 0.1 cm less than ground-truth.

This, obviously, is only one example and further study is

(a) female + male (neutral)

(b) female + male (action+sitting)

Figure 7. Shown is the absolute error between the estimated and

ground-truth heights for the in-the-wild dataset, separated by pose.

The value on each bar indicates the number of samples in each

height range. Unlike Figure 6, the assumed IPD is scaled to be

height dependent, significantly reducing errors.

required to determine by how much 3D pose estimation will

improve standard single-view metrology across body poses

and other factors. This example, however, nicely illustrates

how even a slight deviation from a perfectly upright, neutral

pose can impact height estimation, further emphasizing the

importance of 3D pose estimation.

5. Discussion

We propose the use of 3D pose estimation to improve the

accuracy with which height and weight can be forensically

measured from a single, reference-free image.

When the estimated 3D model scale can be reliably de-

termined, we find, in large-scale simulations, height can be

accurately measured for a wide range of body poses and

camera angles. The scale disambiguation used in these sim-

ulations (CPD), however, is not feasible in real-world sce-

narios. A feasible, but less accurate, scale disambiguation

based on an average inter-pupillary distance (IPD) can lead



Figure 8. An example of augmenting single-view metrology with

3D pose estimation: (top) An original image analyzed in Criminisi

et. al [9], where the person is 180 cm; (middle) the result of their

analysis with a predicted height of 178.6 cm (middle) – the au-

thors hypothesize that this under prediction is probably due to fact

the person is leaning on their right leg; and (bottom) the result of

our 3D model fitting superimposed atop the image – note how the

3D model captures the slight bend in the knees. Combining this

3D model with the known height of the beam yields an estimated

height of 179.9 cm, only 0.1 cm less than ground-truth.

to accurate height estimations but for a more narrow range

of body poses and camera angles. This general pattern of

results generalizes to real-world scenarios, where we find,

under limited conditions, height estimation can be reason-

ably accurate.

We hypothesize that a measured IPD, as opposed to an

average IPD, from a known suspect will lead to more accu-

rate height estimates. This approach, however, is only pos-

sible in certain real-world forensic scenarios and requires

further validation.

We conclude that the 3D pose estimation is necessary,

but not sufficient, to achieving accurate estimates of height

and weight under a broad range of scene and imaging condi-

tions. Resolving the scale ambiguity in a single, reference-

free image remains challenging. When additional informa-

tion is available in the scene (e.g., the known height of a

doorway or floor tiles), the absolute scale can be determined

more accurately. We hypothesize, therefore, that the ad-

dition of 3D pose estimation to existing techniques should

lead to more accurate estimates of height. Beyond the one

example provided above that combines 3D pose estimation

with single-view metrology, further studies are required to

better integrate these techniques and understand the relia-

bility and accuracy of this approach.

In contrast to height estimation, weight (volume) esti-

mation is no better than guessing a gender-specific aver-

age weight. We hypothesize this is because the 3D mod-

eling focuses only on the 2D skeletal keypoints and does

not consider the overall body shape. For non-average body

shapes, therefore, the 3D body shape is not well modeled,

even when the 3D pose is. As a result, weight cannot

yet be accurately determined. We are investigating how

appearance-based techniques can be incorporated into the

3D body pose estimation with the hope this will yield more

accurate weight estimation. This will also require thought

as to how to transform a 3D volume to metric weight.

Unlike many computer vision tasks where it is not pos-

sible or desirable to have a human in the loop, forensic ana-

lysts can manually intervene in an analysis by, for example,

annotating known object sizes and manually refining the fit-

ted 3D model. It is critical, however, to ensure that such

manual interventions do not introduce bias.

Even the seemingly simple and most basic forensic anal-

ysis of measuring height and weight is riddled with com-

plexities: apparent height is impacted by body pose and

camera angle, footwear and headwear, and physiological

changes throughout the day; weight is impacted by clothing

and physiological fluctuations; and estimating metric scale

from a single reference-free image is challenging. While 3D

pose estimation helps to contend with some of these com-

plexities, many remain. Caution, therefore, should be taken

when making these forensic measurements. It is our hope

that further advances in body pose and shape estimation and

scale disambiguation, along with large-scale studies of ac-

curacy and reliability, will continue to improve the state of

digital forensic identification.
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