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Abstract

This paper presents the first adversarial example based

method for attacking human instance segmentation net-

works, namely person segmentation networks in short,

which are harder to fool than classification networks. We

propose a novel Fashion-Guided Adversarial Attack (Fash-

ionAdv) framework to automatically identify attackable re-

gions in the target image to minimize the effect on image

quality. It generates adversarial textures learned from fash-

ion style images and then overlays them on the clothing re-

gions in the original image to make all persons in the image

invisible to person segmentation networks. The synthesized

adversarial textures are inconspicuous and appear natural

to the human eye. The effectiveness of the proposed method

is enhanced by robustness training and by jointly attack-

ing multiple components of the target network. Extensive

experiments demonstrated the effectiveness of FashionAdv

in terms of robustness to image manipulations and storage

in cyberspace as well as appearing natural to the human

eye. The code and data are publicly released on our project

page1.

1. Introduction

Powerful computer vision methods have been applied

to object classification [14, 15], object detection [21, 35],

semantic segmentation [19, 25], and instance segmenta-

tion [13, 20], enabling machines to perceive the world. With

incremental learning using a massive amount of data ob-

tained from the Internet and surveillance cameras, vision-

based intelligent systems (i.e., face recognition [39], and
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Figure 1. Overview of our proposed Fashion-Guided Adversarial

Attack (FashionAdv). Top row: person is segmented successfully.

Bottom row: given a target image and a guided-fashion style im-

age, FashionAdv synthesizes natural clothing texture that can nev-

ertheless fool a person segmentation network by making the per-

son invisible to the network.

gait recognition [41]) can track and learn the behaviors of a

large population. Such systems are typically trained using

images and videos crawled from social networks without

authorization, which raises a serious privacy issue requiring

governments and companies to establish policies to prevent

unauthorized surveillance and tracking on the basis of user

data [39]. Moreover, social network users need a tool to

protect their privacy. The tool should be robust against the

transformations and compressions that occur during the up-

loading, sharing, and storing images and videos.

Several attack methods using adversarial examples have

been developed to degrade the performance of deep neu-

ral networks in the digital world. Most such methods ef-

fectively fool object classification by directly attacking the

digital image or video files [3, 36]. Adversarial noise-

based attack methods were developed first and became well-

established [11, 18, 28, 30]). Subsequently, attacks based on

color [36] and texture [3, 8], which also target human per-

ception, have been developed. A few attack methods have
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(a) FGSM (b) ColorFool (c) tAdv (d) FashionAdv

Figure 2. Effectiveness of our proposed FashionAdv, compared

with conventional digital-level adversarial attacks. From left to

right: adversarial noise attack [11], adversarial color attack [36],

adversarial texture attack [3], and our FashionAdv. Bottom row:

corresponding adversarial perturbations. Changes made by Fash-

ionAdv are inconspicuous to the human eye.

been developed to target object detection and semantic seg-

mentation [46]. To the best of our knowledge, a method

for attacking instance segmentation, which is a combina-

tion of object detection and semantic segmentation, has not

been developed. In this work, we develop a method for tar-

geted adversarial attacks against human instance segmenta-

tion, namely person segmentation.

Naturalness and robustness are two essential properties

of adversarial examples [3, 49]. Naturalness means that

adversarial examples are unlikely to be noticed by people,

while robustness means that they are not paralyzed by data

compression, transformation, or image filter effects (e.g.,

beauty applications). There is a trade-off between these

properties. Adversarial examples created using traditional

approaches can deal with naturalness [3, 36], but they are

easily negated by image transformation [12] or compres-

sion [11]. This work aims to balance this trade-off.

To this end, we propose an attack method for use against

person segmentation network (i.e., YOLACT [4], one of the

first networks attempting real-time instance segmentation).

Our proposed Fashion-Guided Adversarial Attack (Fash-

ionAdv) is designed to synthesize adversarial textures by

blending generated adversarial noise transferred from cus-

tomizable fashion style images into the original clothing re-

gions. The new image with adversarial textures, an adver-

sarial image, is used to spoof the target person segmentation

network by making the persons invisible to the network (c.f .

Fig. 1). Directly optimizing the adversarial texture through

infusion of texture from the fashion style image helps make

the synthesized adversarial texture inconspicuous and ap-

pear natural to the human eye despite their large perturba-

tions. Indeed, a quick visual comparison of the results with

FashionAdv with those of conventional adversarial attacks

in Fig. 2 indicates that FashionAdv is capable of generat-

ing highly inconspicuous adversarial textures. Unlike con-

ventional adversarial attacks [3, 11, 36], which attack the

entire image, FashionAdv automatically detects the attack-

able regions (i.e., clothing regions) to minimize the impact

10

20

30

40

50

60

70

0.5 0.6 0.7 0.8 0.9 1

A
v
er

ag
e 

P
re

ci
si

o
n
 (

A
P

)

Structural Similarity (SSIM)

FashionAdv

FGSM

ColorFool

cAdv

Random
Noise

DeepFool

PGD

BIM tAdv

QF 10

QF 40

QF 80

Figure 3. Naturalness (i.e., SSIM [42]) v.s. robustness (i.e.,

AP [24]) on MS-COCO dataset. FashionAdv significantly out-

performed conventional adversarial example methods in terms of

robustness against JPEG compression (quality factors 10, 40, and,

80) while maintaining naturalness competitive with that of the con-

ventional methods. Hence, FashionAdv successfully spoofed the

target person segmentation network (i.e., YOLACT [4]), and the

changes made were inconspicuous to the human eye.

of adversarial examples on image quality. Only clothing re-

gions are identified as attackable regions because (1) these

regions are suitable for embedding adversarial noise while

maintaining image quality, and (2) human perception is less

sensitive to these regions compared with other regions such

as faces [22]. FashionAdv effectively works on all persons

in the image, hiding them from deep instance segmentation

networks. Moreover, we propose jointly attacking two net-

work components, the classification and the segmentation

sub-networks. Multiple cues are integrated into the loss

function, making the adversarial attack robust against im-

age manipulations and storage in cyberspace.

Extensive experiments on the MS-COCO dataset [24]

demonstrated that the changes made by FashionAdv are not

only robust against image manipulations and storage in cy-

berspace (e.g., image filters and JPEG compression) but are

also inconspicuous and appear natural to the human eye de-

spite having large perturbations (c.f . Fig. 3). The code and

data are made available on our project page2.

Our contributions are as follows.

• We have developed a novel adversarial attack method

for use against person segmentation networks that

achieves both robustness and naturalness. Our

Fashion-Guided Adversarial Attack (FashionAdv) is

the first reported attack method for use against instance

segmentation.

• FashionAdv flexibly synthesizes clothing textures

2https://github.com/nii-yamagishilab/fashion_

adv



from guided-fashion style images that are inconspic-

uous and appear natural to the human eye despite their

large perturbations.

• FashionAdv focuses on only the clothing regions in

images, which minimizes the effect on image quality.

It is also robust against image manipulations and stor-

age in cyberspace, such as image filtering and JPEG

compression, respectively.

• Extensive experiments demonstrated that Fashion-

Adv significantly outperforms conventional methods

in term of robustness while still maintaining natural-

ness.

2. Related Work

2.1. Adversarial Attacks

There are two types of adversarial attacks, including

digital-level and physical-level. The former target ob-

ject classification, while the latter target both object clas-

sification and object detection. In digital-level attacks,

adversarial perturbations are added to digital images or

videos [1]. In physical-level attacks, real adversarial objects

are crafted [18]. For both levels, the adversarial perturba-

tions can be noise [26], patterns [8, 16, 48], colors [36, 3],

or patches [5, 40, 49].

Most digital-level adversarial attacks target object

classification [1]. Adversarial noise-based attacks (e.g.,

gradient-based attacks) were developed first and became

well-known, including FGSM [11], BIM [18], Deep-

Fool [30], and PGD [28]). FGSM [11] uses gradients

of the target neural network to craft adversarial exam-

ples. BIM [18] performs multiple FGSM attacks with

small step size. DeepFool [30] estimates the minimal ad-

versarial perturbation by using a simple iterative method.

PGD [28] treats adversarial attacks as a constrained opti-

mization problem.

Furthermore, attacks based on color and texture (e.g.,

unrestricted attacks), which also target human perception,

have been developed. Shamsabadi et al. [36] devised Color-

Fool attack in which colors within a certain range are mod-

ified rather than adversarial noise or patches being crafted.

Duan et al. [8] used both colors and patterns to generate

photorealistic adversarial examples. Bhattad et al. [3] in-

troduced two attacks that use realistic color perturbation

(cAdv) and texture extracted from a source image (tAdv).

Most physical adversarial attacks target object detec-

tion. The Expectation Over Transformation (EOT) frame-

work [2] was originally developed for object classification,

and then was extended to attack object detection. Thys et

al. [40] used adversarial patches to attack a human detection

system using YOLO-v2 [33]. Zhao et-al. [49] proposed two

types of adversarial patches (i.e., hiding attack and appear-

ing attack) to attack Faster RCNN [35] and YOLO-v3 [34].

Zhang et al. [48] learned camouflaged adversarial patterns

to attack Faster RCNN [35] and YOLO [32]. Following

this, Huang et al. [16] made camouflage adversarial patterns

universal. On the other hand, few adversarial patch-based

methods were proposed for attacking object recognition in

the real-world, especially road objects, which is important

for autonomous driving systems [5, 8, 26]. In addition, few

methods have been recently developed to attack person de-

tectors in the real-world by printing adversarial patches on

t-shirts [45, 47]. However, these methods look extremely

unnatural to the human eye and adversarial patches must be

manually attached to other objects (i.e. t-shirts).

In this work, we focus on attacks based on adversar-

ial examples in cyberspace (digital level). According to

the best of our knowledge, there has been no work on at-

tacking instance segmentation. Therefore, in this work,

we target adversarial attacks for use against person seg-

mentation. Particularly, we target YOLACT [4], one of

the first networks attempting real-time instance segmenta-

tion. YOLACT breaks instance segmentation into two par-

allel subtasks (i.e., generating a set of prototype masks and

predicting per-instance mask coefficients) and then linearly

combines the prototypes with the mask coefficients. We

note that we target only persons segmented from YOLACT.

2.2. Improvements on Robustness and Naturalness

Easily created adversarial examples can fool several

kinds of deep neural networks, including ones for object

detection and semantic segmentation [1]. However, adver-

sarial perturbations created using traditional approaches can

be negated by image transformations [12, 27], or compres-

sion [11]. Recent work has been carried out to improve

the robustness of adversarial perturbations, especially in the

physical world. Physical adversarial objects crafted based

on the basis of the EOT framework [2] are robust to a com-

bination of noise, distortion, and affine transformation. The

algorithm has thus been integrated into different attacks to

improve robustness [5, 31, 44].

A comprehensive benchmark recently performed by

Dong et al. [7] provides an overview of the robustness

of several adversarial attacks. By considering the limita-

tions of pixel-wise and global adversarial attack methods,

Dong et al. [6] developed an attention-based attack that fo-

cuses only on salient objects to improve robustness. Luo et

al. [26] introduced a human-perception-based metric for es-

timating the distance between pixels and a greedy optimiza-

tion algorithm to maximize the noise tolerance of adversar-

ial examples. Zhao et al. [49] used feature-interference re-

inforcement and enhanced realistic constraints generation

to enhance the robustness of their proposed hiding attack.

Although naturalness is essential for human perception,

this property has not been well explored in the literature.

There has been little work dealing with the naturalness of
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Figure 4. Workflow of proposed FashionAdv framework. Given a target image, our FashionAdv identifies attackable regions in the image

and generates an adversarial texture from a guided-fashion style image, which is the image closest to the target image automatically

obtained by searching our constructed fashion corpus. The optimized adversarial image is used to spoof a person segmentation network.

Blue flow (i.e., blue arrows and blue blocks) illustrates the learning process only.

adversarial attacks. Shamsabadi et al. [36] simply modified

colors in the target image within ranges that are perceived

as natural by humans. Bhattad et al. [3] searched texture

sources in feature space to find the one most similar to the

target image and used it to generate more natural-looking

images. Duan et al. [8] transferred adversarial perturbations

into natural-looking styles, namely camouflage styles that

appear natural to human observers. Wu et al. [45] trained

adversarial patterns from real images and printed them on

posters and T-shirts for physical-level attacks.

3. Proposed Method

3.1. Overview

We overview our proposed FashionAdv method by de-

scribing how it can be used to attack a state-of-the-art

instance segmentation network (i.e., YOLACT [4]), par-

ticularly targeting person segmentation (i.e., human in-

stance segmentation). By generating adversarial textures

and painting them on clothing regions, FashionAdv should

cause YOLACT to fail in segmenting individual persons un-

der diverse perturbation transformation conditions (i.e., im-

age compression, image blurring, noise addition, color vari-

ation, and perspective transformation).

Given an image X of size (w, h) consisting of K per-

sons, FashionAdv decomposes the image into person re-

gions P and non-person regions P̄ . It focuses on only the

person regions:

P = {Pk : Pk = X ·Mk +X · M̄k}
K
k=1, (1)

where Pk indicates the k-th person, and Mk, M̄k ∈

{0, 1}w,h are binary masks of the attackable regions (e.g.,

clothing) and unattackable regions (e.g., face, hair, hand,

and leg) of person Pk, respectively. These binary masks

specify the locations to which the pixels of image X be-

long, and ”·” denotes pixel-wise multiplication.

FashionAdv manipulates only the attackable regions

(e.g., clothing), corresponding to masks Mk instead of the

entire image, resulting in an adversarial image X̃ . That is,

it creates an adversarial texture for the attackable regions of

each person P̃k:

P̃ = {P̃k : P̃k = X̃ ·Mk +X · M̄k}
K
k=1. (2)

Our goal is to generate adversarial image X̃ with both

robustness and naturalness. For naturalness, FashionAdv

synthesizes adversarial textures P̃k from fashion style im-

age S and minimizes the distance between P̃K with both

PK and S. This learning criterion should yield adversarial

textures that look inconspicuous to the human eye and look

natural as new fashion clothing:

argminX̃

K
∑

k=1

(D1(P̃k, Pk) +D2(P̃k, S)). (3)

For robustness, FashionAdv uses the expectation over

transformation (EOT) framework to formalize the adversar-

ial attack problem [2]. In particular, it optimizes the ad-

versarial image X̃ to minimize the outputs Ψt(P̃k) of the

attacked person segmentation network (i.e., classification

score and segmentation mask) in expectation:

argminX̃Et∼T

K
∑

k=1

Ψt(P̃k), (4)



where t denotes a perturbation transformation, T is the dis-

tribution over all possible transformations {t}, and Ψt(·)
are the outputs of the attacked person segmentation network

(i.e., classification score and segmentation mask) over the

transformed image.

3.2. Fashion­Guided Adversarial Attack Frame­
work

Figure 4 depicts the FashionAdv workflow. Given an

original target image, FashionAdv performs four basic

steps: 1) segment the clothing regions to identify attackable

regions in the image, 2) search for and select a fashion style

image in a fashion corpus for use in generating an adversar-

ial texture, 3) use the adversarial texture to create an adver-

sarial image that is then optimized for use in an adversarial

attack, and 4) use the image to spoof a person segmentation

network.

FashionAdv first identifies regions in the target image in

which the textures can be modified within an arbitrary range

and still look natural to the human eye. The effect on im-

age quality is minimized by focusing on only the clothing

regions. These regions are segmented by using the Self-

Correction for Human Parsing (SCHP) [23], which exhib-

ited superior performance on the Look into Person (LIP)

challenge [10]. We used the off-the-shelf model pre-trained

on the LIP dataset [10], which was provided by the authors.

FashionAdv combines semantic maps of the ”upper-clothes,

dress, coat, pants, skirt, and jumpsuits” labels, outputting a

binary mask of the clothing regions. This mask is used to

protect unattackable regions in the target image.

Next, FashionAdv automatically selects a fashion style

image from a fashion style corpus we assembled. To im-

prove the naturalness of the target image’s texture, the fash-

ion style image closest in texture to the target image is se-

lected by minimizing the texture transfer cost in the feature

space for the target image [3]. We assembled the fashion

style corpus by manually selecting different raw images in

the DeepFashion2 dataset [9]. We initially selected images

of only clothing, without a person in the image. Then, we

manually discarded images with patterns or materials sim-

ilar to those of other images. We ended up with 140 style

images in our corpus, each with a distinct style.

FashionAdv then initializes adversarial noise and over-

lays it on the mask-covered target image, outputting an ad-

versarial texture. Using the adversarial texture and the fash-

ion style image, FashionAdv performs robustness training

(c.f . Section 3.4) to optimize the adversarial texture directly.

In this training process, the adversarial texture is gradually

modified to minimize both the classification score and seg-

mentation mask produced by the attacked network while

maintaining the texture’s naturalness. The adversarial im-

age following mask removal should be robust against var-

ious transformations in cyberspace. Finally, the optimized

adversarial image is directly fed into the person segmenta-

tion network to be attacked.

3.3. Loss Function

The total loss is a combination of adversarial loss Ladv

and naturalness loss Lnat in the adversarial image:

L = αLadv + Lnat. (5)

Adversarial loss Ladv is directly obtained from the tar-

get person segmentation network (i.e., YOLACT) and is

defined as the combination of classification loss Lcls (i.e.,

softmax loss) and segmentation loss Lmask (i.e., pixel-wise

binary cross entropy). This is described in detail else-

where [4].

Naturalness loss Lnat as introduced here consists of in-

conspicuous loss Linc and texture transfer loss Ltex. Incon-

spicuous loss Linc helps make the adversarial texture in-

conspicuous to the human eye while texture loss Ltex helps

create a new fashion texture for clothing.

Lnat = Linc + βLtex, (6)

Inconspicuous loss is used to make the adversarial image

X̃ similar to the original image X so that the changes are

inconspicuous to the human eye:

Linc = λ1Lsim(X, X̃) + λ2Ltv(X̃), (7)

where Lsim is computed as the multi-scale structural sim-

ilarity index measure (MS-SSIM) between X̃ and X [43],

and Ltv stands for the total variation loss, which is helpful

for reducing noise in the adversarial texture [29].

Inspired by the efficient performance of style transfer [3,

8], we use texture loss to generate a new clothing texture

with large perturbations that still looks natural to the human

eye. It consists of content loss Lc, which helps preserve the

content of the original image X , and style loss Ls, which

helps to generate a new style from the fashion style image

S:

Ltex =
∑

l∈Lc

wlL
l
c(X̃,X) +

∑

l∈Ls

wlL
l
s(X̃, S), (8)

where l is the l-th feature (e.g., the l-th layer of the network)

in the sets of content layers Lc and style layers Ls, and wl =
1/C2

l+1
indicates normalized weights used to configure the

layer preferences, with Cl being the number of filter maps

in layer l.
The content of the adversarial image X̃ may appear dif-

ferent from that of the original image X . The content loss

is used to ensure that the adversarial image can preserve

the content of the original image in the deep representation

space through mean squared error minimization:

Ll
c(X̃,X) =

∣

∣

∣

∣

∣

∣
φl(X̃)− φl(X)

∣

∣

∣

∣

∣

∣

2

2

, (9)
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Figure 5. Image perturbation pipeline.

where φl(·) denotes the feature extracted from the l-th layer

in a set of content layers Lc of feature extractor φ.

The style of the fashion style image is transferred to the

adversarial image by using the style loss, which is defined

by the difference in their style representations:

Ll
s(X̃, S) =

∣

∣

∣

∣

∣

∣
G(φl(X̃), φl+1(X̃))− G(φl(S), φl+1(S))

∣

∣

∣

∣

∣

∣

2

2

std(G(φl(X̃), φl+1(X̃)))
,

(10)

where G is the Gram matrix of features extracted from a set

of style layers Ls of feature extractor φ.

3.4. Robustness Training

The performance of a person segmentation network is af-

fected by fluctuations such as a shift in the viewpoint and by

other transformations in the real world. In early work [2],

the EOT framework was used to conduct adversarial attacks

on classifiers by adding random distortions in the optimiza-

tion to make the perturbations more robust. In this work,

we adapt the EOT framework to train a robust adversarial

attack for use against a target person segmentation network.

The training was done by simulating realistic situations with

a series of random image transformations in cyberspace.

We included camera-related transformations for two rea-

sons: (1) they have been proven to be effective in making

adversarial perturbations robust [2], and (2) they make our

method extendable to the physical domain. From Eqs. (3),

(4), and (5), our EOT-based training is defined as:

argminX̃Et∼TαLadv + Lnat. (11)

Minimizing Eq. 11 results in the optimized adversarial

image substantially degrading the performance of the detec-

tor, thereby resulting in a high spoofing rate. To improve the

generation of adversarial images under various conditions,

we used a series of perturbation transformations to simulate

the cyberspace condition fluctuations. Figure 5 depicts the

image perturbation pipeline.

First, we simulated perspective transformations of dif-

ferent camera views by generating a random homography

matrix in the range [−0.2, 0.2] to transform the original im-

age. Next, we simulated image blurring by using a Gaus-

sian blur with kernel size and standard deviation randomly

sampled in {1, 3, 5, 7, 9, 11} and [0.1, 3], respectively. We

then approximated color variation by shifting the color

values of each channel in terms of hue, saturation, bright-

ness, and contrast in the range [−0.02, 0.02] for hue and

[−0.2, 0.2] for the others. We also took into account im-

age noise by using a uniform noise model in the range

[−0.02, 0.02]. Finally, we applied an approximation of

JPEG compression [37] with a quality factor (QF) gener-

ated uniformly in the range [18, 22]. We note that the origi-

nal image color values were normalized in the range [0, 1],
and then the color values after transformations were clipped

to [0, 1].

3.5. Implementation Details

This section describes the implementation details of our

approach. We implemented FashionAdv in PyTorch and

conducted experiments on a computer with 32-GB RAM

and a Tesla P100 GPU. We employed the ImageNet pre-

trained VGG-19 network [38] as the feature extractor. We

used Lc = {conv4 2} to present the content, and Ls =
{conv1 1, conv2 1, conv3 1, conv4 1, conv5 1} to present

the style, similar to previous usage [3].

We set the weights of the loss function empirically:

α = 0.2, β = 5 ∗ 103, λ1 = 0.75, and λ2 = 10−6. Each

target image was trained using the EOT framework for 200

iterations, with the Adam optimization [17] and a learning

rate of 0.02.

As our attack target, we selected the YOLACT, one of

the first networks aimed at real-time instance segmenta-

tion. We used the pre-trained model on the MS-COCO

dataset [24], which was provided by the authors.

4. Experiments

4.1. Benchmark Dataset and Evaluation Criteria

To evaluate the proposed method, we selected im-

ages containing at least one person from the MS-COCO

dataset [24] and ended up with 1000 images. We

evaluated robustness using Average Precision (AP) [24]

and naturalness using Structural Similarity Index Measure

(SSIM) [42]. To evaluate the effectiveness of methods, we

computed AP by comparing the results of person segmen-

tation before and after an attack.

4.2. Comparison with State­of­the­Arts

We compared the performance of FashionAdv with

those of state-of-the-art adversarial example methods:

FGSM [11], BIM [18], PGD [28], DeepFool [30], Color-

Fool [36], cAdv [3], and tAdv [3]. These methods were

originally developed to attack classifiers; we thus adapted

them to attack the classification sub-network in the person



Table 1. Comparison of performance between FashionAdv and conventional methods in terms of robustness as represented by average

precision (AP) against JPEG compression for various quality factors (QFs). The two best results are shown in blue and red, respectively.

FashionAdv significantly outperformed the conventional methods.

Method Conference/Year No
JPEG Compression

Compression QF 100 QF 80 QF 60 QF 40 QF 20 QF 10

Random Noise - 58.37 58.36 57.89 57.62 56.96 54.32 40.65

FGSM [11] ICLR 2014 49.71 49.93 51.33 52.63 52.90 51.97 43.30

BIM [18] ICLRW 2016 40.87 41.63 50.11 54.82 58.13 59.16 46.65

DeepFool [30] CVPR 2016 42.23 49.99 63.33 64.00 63.34 60.00 46.35

PGD [28] ICLR 2018 3.74 4.70 56.05 61.12 61.66 45.65 45.65

ColorFool [36] CVPR 2020 46.14 48.66 50.65 50.92 50.41 47.27 33.77

cAdv [3] ICLR 2020 26.16 29.70 44.74 48.05 49.24 46.66 33.14

tAdv [3] ICLR 2020 29.05 30.77 49.62 55.27 58.07 56.98 45.44

FashionAdv (rnd) CVPRW 2021 21.30 21.83 24.36 25.70 26.05 25.63 22.20

FashionAdv CVPRW 2021 18.40 18.52 19.90 20.36 20.49 20.59 20.82

Figure 6. Comparison of the resulting images of different methods.

From left to right: the original image, FGSM [11], ColorFool [36],

cAdv [3], tAdv [3], and our FashionAdv. Changes in image with

FashionAdv are inconspicuous. (Best viewed online in color with

zoom-in.)

segmentation network (i.e., YOLACT). Instance segmenta-

tion networks are harder to fool than classifiers [45], and our

empirical experiments revealed that the conventional meth-

ods with their default parameter settings are even weaker

than a random noise attack, which is supposedly the weak-

est type of attack. We thus determined that it was pointless

to use the default parameter settings to attack person seg-

mentation networks. Therefore, we adjusted their param-

eter settings by using a gird search to make the compared

methods more reliable than random noise methods in terms

of AP score. The parameter settings and source codes are

publicly released on our project page.

Figure 3 illustrates the trade-off between naturalness

(i.e., SSIM) and robustness (i.e., AP) for the compared

methods. FashionAdv significantly outperformed the other

methods on robustness against JPEG compression with dif-

ferent QFs (i.e., 10, 40, and 80): the AP scores of Fash-

ionAdv were around 20 while those of the other methods

were higher than 30. FashionAdv also achieved competitive

naturalness and was a top method in achieving the highest

SSIM scores. As shown in Fig. 6, the adversarial images

generated by FashionAdv looked the most natural.

Table 2. Contributions of loss components to final result.

Ladv Ltex Lsim Ltv AP SSIM

X 18.68 0.954

X X 18.62 0.954

X X X 18.60 0.955

X X X 18.63 0.956

X X X X 18.40 0.958

Table 1 compares the results for robustness in detail.

FashionAdv (rnd) is our proposed method using fashion

style random selection strategy (see section 4.3 for more

detail). Our method significantly outperformed state-of-the-

art methods and achieved the highest robustness against im-

age compression. The conventional methods were not ro-

bust even for uncompressed images (except for PGD) and

JPEG compressed images. Their AP scores were higher

than 30 and rapidly increased for the JPEG compressed im-

ages. In contrast, the scores for FashionAdv were lower

than 20 on uncompressed images and remained stable at

around 20 for the JPEG compressed images.

4.3. Ablation Study

We investigated the effect of different components of

our proposed FashionAdv, such as targeted attack, compo-

nents of loss function, fashion style selection, and robust-

ness analysis.

Importance of Attacked Targets. Previous attack

methods target only the classification module in deep net-

works, so they work only on image classification. For per-

son segmentation, both the classification and segmentation

modules must be targeted. Indeed, an experiment we con-

ducted on attacked targets revealed that targeting both the

classification and segmentation modules significantly re-

duced AP by 18.35, from 36.75 (corresponding to target

only classification module by setting Lmask = 0) to 18.40.

Contributions of Loss Components. Table 2 shows the

contributions of the loss components to the final result. Ltex

helps to generate strong adversarial textures while Lsim and
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Figure 7. Robustness against JPEG compression for different qual-

ity factors QFs.

Ltv improve the naturalness and inconspicuousness of the

generated textures. Integrating these loss components is

thus useful in synthesizing robust and natural adversarial

textures.

Fashion Style Selection. We employed two strategies

for fashion style selection. In the first one, a fashion style

image is randomly selected from our style corpus for each

target image, denoted by FashionAdv (rnd). In the second

one, denoted by FashionAdv, fashion style image that min-

imized the texture transfer cost in the feature space is se-

lected for each target image, similar to Bhattad et al. [3].

Using the optimal selection strategy effectively reduced AP

by 3 to 5 compared with using the random selection strat-

egy (c.f . Table 1). With this optimized strategy, the fashion

style image closest to the target image is selected, resulting

in more natural adversarial examples. This result also indi-

cates the crucial role of using guided-fashion style images

for synthesizing adversarial textures.

Robustness Against Image Storage. To evaluate

the robustness of FashionAdv against image storage, i.e.,

against compression and saving in JPEG format, we inves-

tigated using JPEG cues in the robustness training. We

compared training with and without JPEG cue for differ-

ent JPEG quality factors (QFs). As shown in Fig. 7, train-

ing adversarial examples with JPEG cues kept the AP score

around 20 for all QFs. In contrast, the AP score of training

without JPEG cues increased to 33 at small QFs. Hence, in-

tegrating JPEG cues into the robustness training effectively

defends against JPEG compression for various QFs.

Robustness Against Image Manipulations. To fur-

ther exhibit the robustness of FashionAdv against image

manipulations, we investigated the performance of person

segmentation (in terms of AP) on several image editing op-

erations: scaling, blurring, color jitter, and noise addition.

We conducted manipulation attacks in two modes, easy and

hard. In easy mode, we used randomly scaled images (0.8

to 1.2 of original size), Gaussian blur with a 5 × 5 kernel,

histogram equalization for color jitter, and uniform noise

of 0.05. In hard mode, we used randomly scaled images

(0.5 to 1.5 of original size), Gaussian blur with a 9× 9 ker-

nel, randomly changing values of each color channel in the

range [-0.2, 0.2], and uniform noise of 0.15. We remark that

image color values were normalized and clipped to [0, 1].

Table 3. Robustness against image manipulations in terms of AP

score.
Attack

Mode

Robustness

Training
Scaling Blurring Color Jitter

Noise

Addition

Easy
X 19.93 20.75 19.12 18.04

× 44.94 50.45 21.88 23.72

Hard
X 23.50 23.66 22.93 19.23

× 48.10 51.86 29.35 49.06

The effectiveness of the robustness training, which in-

cluded perspective transform, image blurring, color varia-

tion, and image noise (Section 3.4) was demonstrated for

each attack mode. Table 3 shows that the robustness training

significantly outperformed the standard training (i.e., non-

robustness training) for both attack modes, reducing the AP

scores by 30. Utilizing our image perturbation pipeline in

the robustness training process was effective against all im-

age editing operations.

Table 3 also shows that the completed FashionAdv (with

robustness training) was significantly robust against color

jitter and noise addition even in hard mode, in which the AP

scores increased by less than 5. We remark that the AP for

the original images was 18.04 (c.f . Table 1). FashionAdv

also well defended against two more difficult image editing

operations (i.e., scaling and blurring). Image scaling elim-

inates small details (including generated adversarial noise)

for downscaled images or highlights adversarial noise for

upscaled images. Image blurring can wash away adversar-

ial noise in the images. For these two image editing oper-

ators, AP was smaller than 24, indicating that FashionAdv

also well defends against these difficult attacks.

5. Conclusion

Our proposed adversarial example based method is

aimed at spoofing person segmentation networks. Fashion-

Adv automatically detects and attacks the clothing regions

by synthesizing robust yet natural adversarial textures from

guided-fashion style images, resulting in all persons in the

image being invisible to the networks. Extensive testing

showed that FashionAdv is not only robust against digital

image filtering and compression but also produces images

that appear natural to the human eye.

FashionAdv relies on SCHP for generating binary masks

of the clothing regions. If the clothing regions cannot be

segmented, the generated adversarial images will be unable

to spoof person segmentation networks. If the binary masks

are over-segmented, manipulations can be easily perceived.

Future work includes investigating better clothing segmen-

tation approaches. It also includes further exploration of

adversarial attacks on general instance segmentation.
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