
Expression Transfer Using Flow-based Generative Models

Andrea Valenzuela

Universitat Pompeu Fabra

Barcelona, Catalonia / Spain

aand.valenzuela@gmail.com

Carlos Segura

Telefónica Research

Barcelona, Catalonia / Spain

carlos.seguraperales@telefonica.com

Ferran Diego

Telefónica Research, Spain

Barcelona, Catalonia / Spain

ferran.diegoandilla@telefonica.com

Vicenç Gómez
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Abstract

Among the different deepfake generation techniques,

flow-based methods appear as natural candidates. Due to

the property of invertibility, flow-based methods eliminate

the necessity of person-specific training and are able to re-

construct any input image almost perfectly to human per-

ception. We present a method for deepfake generation based

on facial expression transfer using flow-based generative

models. Our approach relies on simple latent vector oper-

ations akin to the ones used for attribute manipulation, but

for transferring expressions between identity source-target

pairs. We show the feasibility of this approach using a pre-

trained Glow model and small sets of source and target im-

ages, not necessarily considered during prior training. We

also provide an evaluation pipeline of the generated images

in terms of similarities between identities and Action Units

encoding the expression to be transferred. Our results show

that an efficient expression transfer is feasible by using the

proposed approach setting up a first precedent in deepfake

content creation, and its evaluation, independently of the

training identities.

1. Introduction

The use of deep learning techniques to create fake mul-

timedia is reshaping the field of multimedia forensics re-

search [38, 26, 13, 16, 12]. Deepfake methods can easily

create fake images and videos that cannot be distinguished

from the authentic ones at the eyes of a human being [28].

Identity swap is the most popular application of these tech-

niques, which consists of replacing the face image of a per-

son, the target, with the face of another person, the source,

to create an image or video of the target doing, and even say-

ing, the things that the source does or says [29]. But identity

swap is just one of many possible applications, including

face synthesis, facial attribute manipulation, and expression

transfer [28].

Autoencoders (AE) and generative adversarial networks

(GAN) are the most popular architectures used for deep-

fake generation. These generative models excel in many

tasks related to image synthesis such as face aging [3],

attribute-guided face generation [24], or feature interpola-

tion [37]. Despite their success, they typically require in-

tensive person-specific training. Recently, flow-based deep

generative models, also known as normalizing flows (NFs),

have been proposed as an efficient alternative to the previ-

ous models [21]. NFs build on invertible transformations

that map directly an input image into a latent representa-

tion that can be useful for high-quality imagery generation,

facial attribute manipulation, and identity combinations by

linear interpolation in the latent space.

In this work, we consider the flow-based Glow

model [20] and explore how the original pre-trained model

can be used for expression transfer between a source face

image and a target face image. We make use of vector arith-

metic operations in the latent space, and show that efficient

expression transfer is feasible for source and target images

corresponding to characters not included in the training set.

We also propose an evaluation pipeline of the generated im-

ages in terms of how similar they are to the source and target

identities and the quality of the facial expression itself based

on Action Units.1

2. Deep Learning for Fake Multimedia

The first techniques for deepfake generation required

significant manual editing until the first automatic method

1The results and implementation details for reproducing our experi-

ments can be found at https://github.com/aandvalenzuela/

normalizing-flows



was proposed [22]. Initially, 3D-based methods were used

for transferring expressions from the source to the target

face. In general, the transfer was performed by fitting a

3D morphable face model (3DMM) to both faces and then

applying the expression components [30]. These type of

statistical models were replaced by the so-called deep gen-

erative models, as deep learning entered the field of face

synthesis and manipulation. Within this framework, most of

the deepfakes are created using variations of autoencoders

(AE) and generative adversarial networks (GAN), or a com-

bination of both [28].

Recently, normalizing flows (NFs) have been shown to

provide very successful results in several application do-

mains [33, 31]. These models enjoy several properties

that make them attractive for being used to generate deep-

fakes. In contrast to AEs and GANs, NFs are fully in-

vertible and they allow for exact latent-variable inference

and log-likelihood evaluation, while eliminating the need

of subject-specific training (person- specific or pair-specific

training) [2].

One of the first works proposing non-linear invert-

ible transformations of the data to model complex high-

dimensional densities for image synthesis was the non-

linear independent component estimation (NICE) model [9]

and real-valued non-volume preserving transformations

(RealNVP) [10], an extension of NICE with a more flexible

invertible transformation to experiment with natural images.

However, these flow-based generative models tended to

perform worse in terms of density estimation compared

to other generative models, and are incapable of realistic

synthesis of large images compared to GANs. The Glow

model [20], a generative flow with invertible 1× 1 convolu-

tions, significantly outperformed previous flow-based meth-

ods, both in density estimation on natural images, as well

as in the ability to generate realistic high-resolution natu-

ral images efficiently. The Glow architecture has become

the most popular flow-based generative model and has been

subsequently modified with the objective of closing the per-

formance gap between flow-based models and autoregres-

sive models. Among these modifications, the most impor-

tant ones are Flow++ [15] and MaCow [25].

One of the main benefits of these techniques is the ex-

pressive power of their learned latent representations, since

they can be used in downstream machine learning tasks,

allowing for various applications such as interpolation be-

tween attributes and meaningful modifications of existing

images. In [32], a stable model configuration was in-

troduced for training deep Convolutional Neural Network

(CNN) models as part of the GAN architecture. The authors

explored the latent space of GANs with different training

datasets, including a face database. They used the learned

representations of the model to perform vector arithmetic

with faces in the latent space.

Latent vector arithmetic has its origins in word-

embedding models for natural language processing [27].

In word-embeddings, each word is assigned to a high-

dimensional vector such that the geometry of the vectors

captures semantic relations between the words, e.g. vectors

being closer together has been shown to correspond to more

similar words [17]. The most popular example is

h(king)− h(man) + h(woman) = h(queen),

where h(w) is the latent vector corresponding to the

word w. Analogously, an example proposed for vector

arithmetic with faces is [32]: smiling woman − neutral

woman + neutral man = smiling man.

Specifically, the arithmetic was performed by averag-

ing the points in the latent space of multiple faces with a

given attribute. Therefore, the terms smiling woman, neu-

tral woman and neutral man correspond to the resulting

face after averaging multiple faces with the same attributes

(smile and neutral). This approach introduced a methodol-

ogy for transferring attributes, such as the smile, the color of

the hair, complements as sunglasses, etc, into face images.

This technique was later known as attribute manipulation.

The attribute manipulation approach can also be formu-

lated as finding the path in the latent space present between

the two extremes of the same attribute. In practice, the

dataset is split into two subsets: the images with this con-

crete attribute (positive class samples) and the images with-

out the attribute (negative class samples) to compute their

corresponding average latent vectors, z+ and z−. Then,

the resulting manipulation of an image x was obtained by

adding to its latent vector zinput a scaled manipulation vec-

tor, consisting of the difference between the corresponding

average encoding of each extreme. Therefore,

zmanipulated = zinput + α · zmanipulation vector, (1)

where zmanipulation vector = z+ − z− denotes a manipulation

from the positive to the negative class. The coefficient α

regulates the intensity of the manipulation, which typical

ranges between −1 and +1. The sub-range α ∈ [−1, 0)
is used for inverting the direction of the transformation, i.e.

from the negative class to the positive class. For α = 0, the

original image is obtained.

Flow-based models have also explored this idea of at-

tribute manipulation, e.g. for adding several attributes to

their original images [20]. In this work, we want to con-

tinue with this semantic manipulation approach, but instead

of using it for attribute manipulation, we explore whether

same technique can be used to transfer expressions between

a source identity and a target identity.

3. Normalizing Flows

A flow model f consists of an invertible transformation

that maps the input image x to a standard Gaussian latent



variable z = f(x) of the same dimensionality. The transfor-

mation f is created by stacking simple invertible transfor-

mations as f(x) = f1 ◦ · · · ◦ fL(x), with each fi having a

tractable inverse and a tractable Jacobian determinant.

Optimizing the parameters of the flows fi for a dataset

of images involves maximizing the likelihood

log p(x) = logN (f(x);0, I) +

L
∑

i=1

log
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which can be done efficiently.

Once the model is trained, the process of generating a

new image involves sampling from a Gaussian distribution

and computing the inverse flow, i.e., f−1(z) = f−1

L ◦ · · · ◦

f−1

1 (z) for z ∼ N (0, I).
In the Glow model, the individual flows fi use an affine

coupling layer and pixelwise reshuffling by a learned 1× 1
convolution. For more details, see [20].

4. Expression Transfer

Our approach relies on simple vector arithmetic in the

latent space for expression transfer between a source iden-

tity xsrc and a target identity xtgt. The goal of the pro-

posed vector arithmetic operation is to capture the facial ex-

pression of the source identity and synthesize a facial im-

age ytgt of the target identity with an analogous expression

to the one of the source identity.

We start from a pre-learned Glow model and require

additional (small) sets, Dsrc and Dtgt, of S images of

the source face, and T images of the target face, respec-

tively. We first compute the mean latent vector for both the

source and target image sets, z̄src = 1

S

∑

x∈Dsrc
f(x) and

z̄tgt =
1

T

∑

x∈Dtgt
f(x), respectively. Such vectors encode

what we call the mean face of an identity, defined as its

neutral and frontal (expressionless) face. We compute the

output target image according to

ytgt = f−1 (z̄tgt + α · (zsrc − z̄src)) . (2)

Similarly to equation (1) in the context of attribute ma-

nipulation, the vector zsrc − z̄src acts as an expression vec-

tor, and the coefficient α regulates the transfer intensity.

5. Experimental Results

For the experiments, we used the pre-trained Glow

model on the CelebA dataset provided by OpenAI2. The

CelebA dataset is a large-scale face attributes dataset with

more than 200, 000 celebrity images from 10, 177 identi-

ties. The dataset contains useful annotations for manipu-

lating the attributes of the synthesised faces [23]. The pre-

trained Glow model has a dimensionality of 196, 608 and it

is composed of 6 layers.

2https://github.com/openai/glow

Figure 1. Example of face reconstruction using pre-trained mod-

els for a new face not observed during training. (left) Glow model,

(middle) original image, and (right) StyleGAN2 model.

We consider five popular identities for illustrative pur-

poses. Our choice considered both genders (two females

and two males) and another identity with an special at-

tribute (darker skin). For each subject, we crawled twenty

additional face images from the Internet to form the small

datasets Dsrc and Dtgt (S = T = 20). The only processing

for computing the mean latent vector is an eye alignment

before applying the transformation f .

The proposed approach relies on the ability of the Glow

model to reconstruct each of the new images not present in

the training datasets, and to compute a valid expressionless

face for each of the identities. Both tasks are the building

blocks for the expression transfer approach.

5.1. Face Reconstruction

We first focus on the face reconstruction task, and com-

pare the performance of the pre-trained Glow model with

the StyleGAN2 network [19]. In this experiment, the Style-

GAN2 network has been trained in a higher quality im-

age dataset with an improved variability compared to the

CelebA dataset.

Figure 1 shows an example of an original new image

not present in the training datasets (middle), and the recon-

structed images using the pre-trained Glow model (left) and

the StyleGAN2 network (right). The Glow model encodes

the new image into the latent space and decodes it back to

the exact same image, leading to a perfect reconstruction, in

agreement with [4]. In contrast, the StyleGAN2 reconstruc-

tion is less accurate. The perfect reconstruction is a direct

consequence of the Glow model being invertible.

There are hybrid architectures combining an auto-

encoder with the adversarial architecture, but they still

present difficulties in the reconstruction process. Although

there exist several efficient embedding algorithms that can

map a given image into the extended latent space of a pre-

trained StyleGAN2 network, they still present problems

generalizing beyond the training dataset [1].

5.2. Mean of a Person

The second building block of our approach for expres-

sion transfer is the computation of a valid average face for



Figure 2. Examples of mean faces of three public identities. (top)

The three main faces. (bottom) Samples from the set of 20 real

images used to compute the mean.

both the source and the target. As previously mentioned,

we refer to such expressionless image as the mean face of a

person. We can directly obtain such an image by invert-

ing the flow from the mean latent vector. For example,

x̄src = f−1(z̄src) in the case of the source image.

Figure 2 shows three illustrative examples of mean faces

considering the original twenty crawled images of each

identity. We observe that, despite the heterogeneity present

in the datasets, the model successfully decodes a relatively

neutral and frontal face without loosing the identity of the

person under consideration. In some cases, the neutral face

may present a residual expression, as the slight smile of the

third identity in Figure 2, that could be explained by bias in

the data.

5.3. Arithmetic Expression Transfer

We now focus on the task of expression transfer and an-

alyze the approach proposed in equation (2) for the range

of values of the coefficient α originally considered for the

attribute manipulation task, α ∈ [0, 1].
Figure 3 shows an example. The first image (top-left)

corresponds to the source input image xsrc and contains the

expression to be transferred. The rest of the images are the

resulting ytgt for increasing values of α. Thus, the second

image (top row) corresponds to α = 0 (target mean im-

age x̄tgt) and the final image (bottom-right) corresponds to

α = 1. The original exploration was performed in α-steps

of 0.1 between consecutive samples.

We observe a trade-off between quality of the obtained

image and the associated facial expression. Lower values of

α result in images too close to the mean target face, whereas

higher values of α result in poor quality faces. For values of

α ∈ [0.3, 0.5], we identify an efficient expression transfer.

Figure 4 shows further results for a different character

and five different expressions (rows), varying α in the afore-

mentioned narrower range in steps of 0.02 between consec-

utive samples. Again, every first image of each row corre-

sponds to the original image with the expression to be trans-

ferred, xsrc. The second image of each row corresponds to

the mean face of the target identity x̄tgt, while the other

Figure 3. Expression transferring between two identities. The first

image of the first row corresponds to the expression to be trans-

ferred, while the other images correspond to the target output im-

age generated for increasing values of alpha within the range [0, 1]
(the second image of the first row corresponds to the target mean

image).

images correspond to the target output images ytgt for in-

creasing values of α.

The proposed approach is also valid for transferring the

same facial expression to different target identities. To illus-

trate this multi-target ability, Figure 5 shows an example of

the same expression transfer applied to different identities.

It shows three different target identities (rows) where the

first image of each row corresponds to the original source

input image xsrc with the expression to be transferred. The

second image of each row corresponds to the target mean

image x̄tgt of the identities under consideration, while the

other images correspond to the target output images ytgt for

increasing values of α within the range α ∈ [0.3, 0.5] again

in steps of 0.02 between consecutive samples. In these il-

lustrative examples, almost all the inner faces of the inter-

mediate samples obtained within the proposed range of α

look like realistic faces.

From these results, we can conclude that expression

transfer using a pre-trained Glow model is feasible using

our proposed approach.

6. Optimizing α for Expression Transfer

So far, we have presented results that show the feasibility

of the proposed approach on a small set of illustrative iden-

tities. In this section, we describe two alternative methods

that aim to find the best expression transfer using our pro-

posed approach regardless of the identity. These methods

optimize two different metrics as a function of α, and can

additionally be useful for evaluation purposes.

6.1. Identity Similarity

Our first method relies on a measure of identity similarity

between two images. We compare how much similar is the

generated image generated ytgt with two other images: the

mean face of the target identity x̄tgt (target distance) and

the source identity xsrc (source distance). Intuitively, these

similarities should change consistently as a function of α

across identities.



Figure 4. Expression transfer: five different expressions for the same target identity. The first image of each row corresponds to the original

expression to be transferred. The second image of each row corresponds to the mean face of the target identity, while the images next

to them show the target output images for increasing values of α. In this case, the range α ∈ [0.3, 0.5] is considered with steps of 0.02
between consecutive samples.

Figure 5. Expression transfer: same expression for three different target identities. The first image of each row corresponds to the original

expression to be transferred. The second image of each row corresponds to the mean face of the target identities, while the images next

to them show the target output images for increasing values of α. In this case, the range α ∈ [0.3, 0.5] is considered with steps of 0.02
between consecutive samples.

To compute both similarities, we use the CNN Inception

Resnet (V1), that combines the residual connections intro-

duced in [14] and the latest revised version of the Inception

architecture [35]. In particular, we evaluate the target output

images using the implementation for Inception Resnet (V1)

models in pytorch3 pretrained on both VGGFace2 [7]

and CASIA-Webface datasets [39]. This implementation

of the Inception Resnet returns a distance score for each pair

of input images. Lower values for the distance mean that the

identities of the images look alike, and vice-versa.

Figure 6 shows the distances corresponding to four dif-

ferent identities for α ∈ [0, 1]. We observe that the source

distance (discontinuous line) remains generally constant,

meaning that the expression vector successfully gets rid of

3https://github.com/timesler/facenet-pytorch

the source identity components. In contrast, the target dis-

tance (continuous line) increases with α. 4 This is a general

trend, and we typically observe that beyond α ≈ 0.6, the

generated image deviates more from the target mean than

from the source identity, suggesting a value of α smaller

than this threshold to preserve the identity of the target in

the expression transfer. Note that this is in agreement with

the previously identified expression transfer examples, for

which we identified a range of α ∈ [0.3, 0.5].

4We checked distances between several real images of the same identity

and found values around 0.8.



Figure 6. Evolution of the distance score of the generated samples

with respect to the source mean (discontinuous line) and the target

mean (continuous line). Despite the fact that the distance score

with respect to the source remains almost constant for any value

of α, the distance score with respect to the target mean increases

for increasing values of α.

6.2. Expression Characterization Using Action
Units

Our second method relies in the particular expression

to be transferred. For that, we characterize the expres-

sion quantiatively and compute the deviation between such

a characterization for the source identity xsrc and the gen-

erated image ytgt.

The Facial Action Coding System (FACS) [11] is a com-

prehensive anatomically-based system for describing all vi-

sually discernible facial movement. FACS was created with

the purpose of identifying the different facial muscle move-

ments that correspond to a certain emotion to objectively

determine the displayed emotion of a given face. Such

analysis of facial expressions is one of very few techniques

available for assessing emotions in real-time [8].

This method breaks down facial expressions into individ-

ual components of muscle movement. Each one of these in-

dividual components is called Action Unit (AU) and a com-

bination of AUs represents a particular emotion [36]. For

example, happiness is calculated from the combination of

AU6 (cheek raiser) and AU12 (lip corner puller).

To evaluate the expression itself of the target output im-

ages ytgt, we use the toolkit OpenFace 2.0. This toolkit is

freely available and reaches state-of-the-art performance in

all of the above mentioned tasks [5]. OpenFace 2.0 recog-

nizes facial expressions by detecting both the intensity and

the presence of certain AUs. The intensity is on a 5 point

scale (0: not present to 5: maximum intensity) representing

the degree of activation [6]. Using this toolkit it is possible

Description of the Action Units

AU Full name AU Full name

1 Inner brow raiser 14 Dimpler

2 Outer brow raiser 15 Lip corner depressor

4 Brow lowerer 17 Chin raiser

5 Upper lip raiser 20 Lip stretched

6 Check raiser 23 Lip tightener

7 Lid tightener 25 Lips part

9 Nose wrinkler 26 Jaw drop

10 Upper lip raiser 28 Lip suck

12 Lip corner puller 45 Blink
Table 1. Action Units analyzed using OpenFace 2.0. Table shows

the eighteen AUs used to characterize the transferred expressions.

to detect the eighteen AUs listed in Table 1.

We propose the following approach to evaluate the gen-

erated faces: the facial expression of the original image of

the source xsrc is characterized using the eighteen AUs and

their intensity scores are treated as the ground truth (GT) for

the expression to be transferred. A generated image ytgt is

then evaluated as well by characterizing the expression in

terms of the intensity of the eighteen AUs and comparing

these values to the GT.

As an example, Figure 7 shows the characterization of

one of the considered expressions in terms of presence of

AUs and Figure 8 shows the analysis of this concrete ex-

pression transfer for the target identity of Figure 4. For

each AU, we show the intensity values for both the minimal

(α = 0.02) and maximal (α = 1.00) contributions of the

expression vector. We also show the intensity of each AU

for the value of α minimizing the error with respect to the

GT (α∗ = 0.44). These three representations (discontinu-

ous lines) are presented in comparison to the GT (continu-

ous line). It is interesting to note how the intensity profile

corresponding to α∗ gets closer to the GT presenting almost

the same AU activation with relatively small intensity dif-

ferences. In general, we do not observe a clear tendency

showing an optimal value of α consistent across the consid-

ered identities and expressions. Nevertheless, the general

trend shows that the values of α∗, namely the value of α

minimizing the error with respect to the GT, are generally

within the α ∈ [0.3, 0.5] range in which we visually identi-

fied the expression transfer.

The proposed AU framework can be used as an auto-

matic procedure to find the target output image ytgt that

minimizes the error with respect to the GT. Across the dif-

ferent expressions to be transferred, we realized that there

are certain AUs that present higher error rates in all the

transfers, suggesting that this concrete aspect of the expres-

sion is difficult to either be captured in the expression vec-

tor, zsrc − z̄src, or to be modified in the source mean, x̄src.

This is the case, e.g., of AU45, which captures the level of



Figure 7. Example of an original expression to be transferred,

xsrc, analysed in terms of Action Units. The AUs present in the

expression are marked regardless of their intensity.

Figure 8. AU’s intensity analysis for a concrete expression trans-

fer. The original expression (black line) shows the GT intensity

pattern. The extreme values of the α coefficient have been repre-

sented (orange line for α = 0.02 and green line for α = 1.00) as

well as the value of α minimizing the error, α∗ (blue line).

blinking in the facial expression. The nose wrinkle (AU9)

and the jaw drop (AU26) also present the same problem.

Regarding the target identities, we have seen that the

error increases considerably when target identities have a

racial attribute different form the one classified as white

race. According to [18], we hypothesize that these phe-

nomenon could be present because of the strong bias that

the CelebA dataset exhibits towards Caucasian faces, i.e.,

racially classified as white. The racial composition of the

CelebA dataset is of 80% white race, while the other 20%
is shared between the other races (the black race represents

less than the overall 10%) [18, 34].

7. Discussion and Conclusion

We have proposed a simple vector arithmetic approach

for expression transfer between two concrete identities us-

ing normalizing flows. The proposed approach relies on the

ability of the model to encode and decode original images

regardless of their presence or not in the training dataset,

and in the ability to generate expressionless face images

without loosing the identity of the person under consider-

ation. The pre-trained Glow model has been validated ac-

cording to these two properties due to the fact that it is a

flow-based model.

Our proposed formula is analogue to the one tradition-

ally used for attribute manipulation, where the original ma-

nipulation vector is redefined as an expression vector, com-

puted as the difference between the source input and the

source mean (instead of the average latent vectors of the two

extremes of the attribute to modify). In addition, instead of

modifying an original image, we propose the application of

the expression vector to the expressionless image of the tar-

get identity.

Our initial study considers five different identities and a

limited number of expressions, but already provides valu-

able results for future large-scale analysis and validation. In

particular, we have found a valid range of values for the pa-

rameter α ∈ [0.3, 0.5] that controls the expression transfer.

The generated images of the target identity have been

analysed in terms of likeliness to the target and source iden-

tities via the comparison to the mean faces. We have shown

that in all the cases the identity of the target is preserved

during the expression transfer within the identified range of

the parameter α.

In addition, the generated images have been also anal-

ysed in terms of the quality of the expression transfer via

Action Units. Although there is not a clear tendency in

the value of α showing a smaller error consistently be-

tween identities and expressions, this evaluation method

also shows that the value of α∗ generally lies within the

identified range as well.

Overall, we have presented a successful expression

transfer method for flow-based models that, because of their

invertibility property, could be extrapolated to a variety of

target identities regarding different facial expressions of the

source aside from the training process. This work represents

a first insight in deepfake creation via expression transfer

in flow-based models providing an initial pipeline for both

generation and evaluation of such type of deepfake content.
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