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Abstract

The unprecedented ease and ability to manipulate video

content has led to a rapid spread of manipulated media. The

availability of video editing tools greatly increased in recent

years, allowing one to easily generate photo-realistic alter-

ations. Such manipulations can leave traces in the metadata

embedded in video files. This metadata information can

be used to determine video manipulations, brand of video

recording device, the type of video editing tool, and other

important evidence. In this paper, we focus on the metadata

contained in the popular MP4 video wrapper/container. We

describe our method for metadata extractor that uses the

MP4’s tree structure. Our approach for analyzing the video

metadata produces a more compact representation. We will

describe how we construct features from the metadata and

then use dimensionality reduction and nearest neighbor clas-

sification for forensic analysis of a video file. Our approach

allows one to visually inspect the distribution of metadata

features and make decisions. The experimental results con-

firm that the performance of our approach surpasses other

methods.

1. Introduction

The proliferation of easy-to-use video manipulation tools

has placed unprecedented power in the hands of individuals.

Recently, an Indian politician used deepfake technology to

rally more voters [22]. In the original video the politician

delivered his message in English; it was convincingly altered

to show him speaking in local dialect. Media manipulation

methods are also used as tools of criticism and to under-

mine the reputation of politicians [12]. Such manipulated

videos can now be easily generated to bolster disinformation

campaigns and sway the public opinion on critical issues.

A wide variety of tools for video forensic analysis have

been developed [26]. These tools can be used to attribute

a video to the originating device, to reconstruct the past

video compression history, and even to detect video manip-

ulations. The most popular video manipulation detection

techniques focus on inconsistencies and artifacts in the pixel

domain [6, 24, 27, 29]. As video manipulation detection

methods become more sophisticated, video editing tech-

niques continue to improve, leading to a situation where

manipulated videos are becoming practically indistinguish-

able from real videos [7, 8, 14, 28, 36, 38]. For this reason,

detection techniques exploiting pixel-level analysis may fail,

while methods that do not use pixel data will increasingly

gain importance.

Video forensic techniques not exploiting pixel analysis

typically work due to the presence of “metadata” [15, 20].

This is additional embedded information that every video

file contains. The metadata are used for video decoding [21]

and indicating other information such as the date, time, and

location of the video when created. Because video editing

tools tend to cause large structural changes in metadata, it

is difficult for one to alter a video file without leaving any

metadata traces. Therefore, metadata can serve as strong

evidence in video forensics tasks.

In this paper, we leverage the seminal work presented

in [20, 39] to investigate the use of metadata for video

forensic analysis of the MP4 and MOV video formats, which

are among the most popular video wrappers/containers. The

MP4 format is used by numerous Android devices, social

networks, and digital video cameras [13, 33, 41]. MOV

format is mostly used by Apple devices and is derived from

the same ISO standard as MP4 [18]. The design of the MP4

format is based on MOV [2]. The two formats can be parsed

in a similar manner, thus we will refer to MP4 containers

hereinafter even if MOV containers are considered. As a

result, our approach can analyze a large number of videos in

the real world.

In our work, we examine the results of using the metadata

in MP4 files for video forensic scenarios, extending the work

presented in [39]. More specifically, we describe a metadata

extraction method and improve the feature representation

format to make metadata-based forensic feature vectors more

compact. We employed feature selection techniques to boost

the quality of the feature vectors. Finally, we reduced the

dimensionality of the feature vectors to two, which allows

visualization and classification in 2D space. We show that



these feature vectors can be used for a wide variety of video

forensic tasks, from source attribution to tampering detection.

Compared to other work, our proposed approach can generate

2D feature scatter plots and decision boundary graphs for

many video forensics tasks. This feature enables us to gain

insights into the distribution of MP4 metadata and make

interpretable decisions.

Our experimental results show that many video forensics

problems on standard datasets can be solved reliably by

looking only at metadata. We also discovered that videos

uploaded to specific social networks (e.g., TikTok, WeiBo)

present altered metadata, which invalidates metadata-based

forensics methods. This is one of the limitations of our

techniques and will be addressed in future research.

2. Related Work

Many techniques have been described to determine

whether some part of a video has been tampered or not [26].

Most of these methods were developed to detect manipula-

tions in the pixel domain and do not use metadata information.

Compared to pixel-level analysis, metadata-based methods

possess unique advantages. The size of metadata is signif-

icantly smaller than pixel data, which enables the analysis

of large datasets in short amounts of time. Most video

manipulation software do not allow users to alter metadata

directly [15, 20]. Consequently, metadata has a higher de-

gree of opacity than pixel data, which makes metadata-based

media forensics more reliable and its corresponding attacks

more challenging.

Most existing work focuses on the metadata in MP4-like

video containers, which maintain data in a tree structure. In

[20] and [39], the authors design features based on symbolic

representation of MP4’s tree structure, which are processed

by a statistical decision framework and decision trees, respec-

tively. The authors report high performance for both video

authentication and attribution tasks. Güera et al. [15] extract

video metadata with the ffprobe utility and then do video

authentication with an ensemble classifier.

More low-level metadata-related information can be found

by looking into video compression traces. Video compression

methods typically leave series of traces related to the way

the video frames are compressed. This information is not

easy to modify, thus acting as a metadata-like feature. As an

example, most contemporary video encoders compress frame

sequences in a structures known as a Group of Pictures (GOP),

where one frame can be defined using contents of other frames

in order to save space [30]. The dependency between frames

within or across different GOPs may provide evidence for

video manipulation. Due to the complexity of video codecs,

a number of techniques have been proposed for various

settings of a codec where specific video encoding features

are turned on or off. Vázquez-Padín et al. [37] provide a

detailed explanation of the video encoding process and GOP
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Figure 1: The structure of our proposed metadata forensic analysis

technique.

structure. They propose a video authentication method that

generalizes across multiple video encoding settings. Yao et

al. [40] discuss the detection of double compression when

an advanced video encoding feature called adaptive GOP is

enabled.

3. Proposed Approach

3.1. An Overview of Our Approach

Video metadata captures multiple aspects of the history

of a video file. In this paper we propose a framework that

exploits an MP4 video file’s metadata to solve multiple

video forensics problems, including brand attribution, video

editing tool identification, social network attribution, and

manipulation detection. Our method can also be easily

adapted to other forensics applications.

The structure of our proposed framework is illustrated in

Figure 1. As will be discussed in Section 3.2, the MP4 format

manages data using a tree structure. First we extract the

metadata from MP4 files while preserving their relationships

in the tree structure. The MP4 standard is around twenty

years old, it contains numerous vendor-specific nuances that

require separate parsing strategies. The metadata tree needs

to go through several refining stages, which increase the

granularity of the extracted information. In the next step, the

tree representation of metadata is converted into a numeric

feature vector, which can be easily processed by machine

learning methods. Our feature representation scheme is based

upon [39]. We improve the handling of media tracks and

metadata fields that take on continuous values inside the tree.

The resulting feature vectors preserve more characteristics

of the videos, yet they tend to also be more compact. In

the last stage, we use these features with a classifier based

on the selected forensic application. In the following we

provide additional details about each step of our proposed

framework.
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Figure 2: Illustration of the MP4 file format, where each cell

represents one byte. An MP4 file is made up of a series of boxes.

Every box has an 8-byte header, where the first 4 bytes store the

size of the box in bytes (including the header) as a 32-bit big-endian

integer, and the last 4 bytes store the name of the box. The content

of a box is either child boxes or binary data. Binary data from

different boxes may require distinct decoding methods.

3.2. Video Metadata

The first step in our approach consists of parsing metadata

from video files. Digital video files are designed to handle

multimodal data such as video, audio, and subtitles. The

standards of these data modalities also shifts as technology

advances. For example, since MP4’s introduction in 2001,

the mainstream video codec has changed from MPEG-2

to H.264, and may change to H.265 in the near future

[17, 34, 35]. The metadata surrounding these various data

modalities and standards are inserted into a video file in

distinct ways. In this paper, we use the word comprehensive

to describe a video metadata extraction scheme that is capable

of parsing metadata across most data modalities and encoding

specifications.

Figure 2 shows the basic structure of an MP4 file [19].

An MP4 file is composed by a number of boxes. Each box

starts with a header that specifies the box size (in byte) and

name. The size helps the user to locate box boundaries,

and the name defines the purpose of the box. The content

of a box can either be a child box or some encoded binary

data. Thus, an MP4 file is effectively a tree structure, where

information is stored on leaf nodes. Given MP4’s tree

structure, we can capture metadata information at two levels:

(1) the structure of the tree; and (2) the interpreted values

of binary data contained in leaf nodes. Therefore, the job

of a metadata extractor is to traverse the MP4 tree, attain

the tree’s structure, filter non-metadata leaf nodes (e.g.,

nodes that contain video compressed pixel information) and

interpret values on relevant leaves. As shown in Figure 3, the

output of a metadata extractor can be represented without

any loss by a collection of human-readable strings.

Our metadata extractor focuses on vendor-specific non-

standard MP4 metadata boxes that are significant for forensic

purposes. More precisely, we determine that udta, uuid,

meta, and ilst boxes are likely to carry vital information for

video forensics. We next discuss our strategies to refine the

parsing process.

MEANING

STRING 1

moov

The moov box is present in MP4 file.

MEANING

STRING 2

moov/mvhd

The mvhd box is present in MP4 file. It is a child box of moov.
One can also imply that the moov node itself must not contain
any binary data.

MEANING

STRING 3

moov/mvhd/@duration=1546737

The mvhd box is a leaf node in the tree; it contains a field called
duration, whose value is 1546737.

MEANING

STRING 4

moov/udta/@A9mod=00 09&81iPhone 5c

The udta box is a leaf node in the tree; it contains a field called
A9mod, whose value is 00 09&81iPhone 5c.

Figure 3: Examples of representing MP4 metadata tree with strings.

Node paths are separated with ‘/’, the values of leaf nodes are

prefixed with ‘@’, non-ASCII and unprintable characters are shown

as hexadecimal codes surrounded by black frames. The metadata

tree of any MP4 file can be portrayed by a collection of such strings.

3.2.1 Parsing ilst Data

ilst (“metadata item list”) boxes in MP4 files are used to

store vendor-specific metadata [3]. Generally speaking, ilst

boxes are container boxes whose child boxes carry metadata

items as key-value pairs. The names of ilst’s children (i.e.,

the keys) would start with A9 (equivalent to character ‘©’). A

list of frequently used ilst keys is shown in Table 1. One can

see that the content of the ilst box is particularly important

for forensic analysis, for it often contains information about

the manufacturer of the video capturing device, the encoder

version, and the location and time of the capture.

It is difficult to parse the ilst box because various device

manufacturers employ vastly different approaches when using

it. Below, we report some interesting variants we found

during our experiments:

• ilst’s child boxes directly placed in moov/udta

In some old Apple devices (e.g., iPhone 4, iPhone 5c,

iPad 2), the child boxes of ilst are placed directly in

moov/udta box.

• ilst boxes in moov/meta

As its name suggests, the meta box is used to store metadata.

Table 1: A list of common keys in ilst boxes [4].

Key Description

A9mod camera model

A9too name and version of encoding tool

A9nam title of the content

A9swr name and version number of creation software

A9swf name of creator

A9day timestamp of the video

A9xyz geographic location of the video



In this case, the meta box behaves similarly as other

standard boxes, which means it can be parsed normally.

As the MP4 parser traverses the box, it will eventually

reach ilst and its children.

• ilst boxes in moov/udta/meta and moov/trak/meta

When meta boxes appear in udta and trak boxes, they

deviate from standard boxes. More specifically, 4 extra

bytes are inserted right after the meta header to store

information [25]. These types of meta boxes cannot be

parsed by the MP4 parser, normally because the program

will see these 4 bytes as the size of next box, which will

lead to corrupted results.

Our comprehensive metadata extractor is able to distin-

guish between these three scenarios and process MP4 video

files correctly by fine-tuning the parsing of udta and meta

boxes.

3.2.2 Parsing XML Data

We concluded that many video files contain XML data after

inspecting numerous video files, especially those edited by

ExifTool and Adobe Premiere Pro. These tools make use

of the Extensible Metadata Platform (XMP) to enhance

metadata management, which introduces a large amount of

metadata inside an MP4 file’s uuid and udta boxes in the

form of XML. In Figure 4, we show two XML examples

extracted from MP4 containers. It can be seen that these XML

data can potentially contain a large amount of information,

which includes type of manipulation, original value before

manipulation, and even traces to locate the person that applied

the manipulation. It is vital for our metadata extractor to

have the ability to handle XML data inside MP4 files.

To avoid over-complicating the extracted metadata tree,

we discard the tree structure of XML elements and flatten

them into a collection of key-value pairs. If there is a collision

between key names, the older value will be overwritten by

the newer one, which indicates that only the last occurring

value of each key is preserved. Despite the fact that some

information is lost by doing so, the data we have extracted

is likely to be more than enough for most automated video

forensic applications.

3.3. Track and Type Aware Feature

The second step of our approach consists of turning the

parsed metadata into feature vectors. Most machine learning

methods use vectors as the input. The string representation

of metadata trees generated in the previous step needs to

be transformed into feature vectors before being used by

machine learning methods.

Our feature representation technique is shown in Figure

5. For feature vectors to contain sufficient information of

the MP4 tree, they need to include two levels of details:

structure of the tree and value of metadata fields. Metadata

can be either categorical or continuous numerical fields.

Considering categorical values, we assign each node and

metadata key-value pair in the MP4 tree an element in the

feature vector, which counts the number of occurrences

of that node or pair. This strategy preserves information

about the MP4 tree in the feature vector to a great extent.

Considering numerical values, creating a new element for

each of these key-value pairs will render the feature vectors

large and redundant. We decide to insert the values into the

feature vectors directly.

From Figure 3, we know that string representation can be

put into two categories: (1) strings that indicate the presence

of a node, with node path separated by ‘/’; and (2) strings

that show the key-value pair stored in a node, with node

path separated by ‘/’ and key-value separated by ‘=’. Since

an MP4 file can be seen as a collection of such strings, the

feature transformation process can be viewed as a mapping

from a given collection of strings ( to a vector v. For the

discussion below, we use v [; ] to denote the ;-th element of v.

In order to construct a mapping ( → v, we need to

consider the set of all possible strings Ω. We denote the set

of all category (1) strings and category (2) strings by �(1)

and �(2) , respectively. By definition, �(1) and �(2) form

a partition of Ω. We assume that both �(1) and �(2) are

ordered so that we can query each element by its index. Let

us denote the ;-th elements of �(1) and �(2) by �(1) [;] and

�(2) [;], respectively.

Each category (1) string corresponds to an element in v.

For the 8-th category (1) string, we denote the index of the

corresponding vector element in v by j (1) (8). The value

corresponding to this element is given by

v [j (1) (8)] = number of times �(1) [8] occurrs in (,

∀8 ∈
{

1, 2, . . . ,
�

��(1)

�

�

}

. (1)

We treat each media track (trak) segment in the metadata

strings in a different way. In the MP4 file format, each trak

node contains information about an individual track managed

by the file container. We observed that the number of tracks

and content of the tracks remain consistent among devices

of the same model. The structure of an MP4 file can be

better preserved if we distinguish different tracks rather than

merging them. This is achieved by assigning each track a

track number in the metadata extraction phase. For example,

the first track will be moov/trak1, and the second track will

be moov/trak2. As a result, the child nodes and key-value

pairs of each track will be separated, which effectively makes

the feature vectors track-aware.

For category (2) strings that represent key-value pairs

stored in a node, we applied a slightly different transformation

strategy. We observed that some fields in MP4 files are

essentially continuous (e.g., @avgBitrate, @width). Despite

the fact that most MP4 metadata fields are discrete, assigning

each combination of these continuous key-value pairs a new



<x:xmpmeta xmlns:x=3D"adobe:ns:meta/" x:xmptk=3D"Adobe XMP Core
5.6-c145 79=↩→

.163499, 2018/08/13-16:40:22 ">
<rdf:RDF xmlns:rdf=3D"http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about=3D""
xmp:CreateDate=3D"2019-11-19T22:47:45+01:00"
xmp:ModifyDate=3D"2019-11-19T22:47:45+01:00"
xmp:MetadataDate=3D"2019-11-19T22:47:45+01:00"
xmp:CreatorTool=3D"Adobe Premiere Pro CC 2019.0 (Windows)"
dc:format=3D"H.264">
<creatorAtom:windowsAtom
creatorAtom:extension=3D".prproj"
creatorAtom:invocationFlags=3D"/L"
creatorAtom:uncProjectPath=3D"\\?\C:\Users\pengpeng\Documents\Ado ⌋

be\Pre=↩→
miere Pro\13.0\premcut.prproj"/>
</rdf:RDF>
</x:xmpmeta>

(a) Excerpt of XML data from a video processed by Adobe Premiere

Pro. It clearly contains multiple important timestamps, the software

name and version, and even the path to the Premiere project.

<x:xmpmeta xmlns:x=3D'adobe:ns:meta/' x:xmptk=3D'Image::ExifTool
11.37'>↩→

<rdf:RDF xmlns:rdf=3D'http://www.w3.org/1999/02/22-rdf-syntax-ns#'>

<rdf:Description rdf:about=3D''
xmlns:exif=3D'http://ns.adobe.com/exif/1.0/'>
<exif:DateTimeOriginal>1986-11-05T12:00:00</exif:DateTimeOriginal>

</rdf:Description>

<rdf:Description rdf:about=3D''
xmlns:xmp=3D'http://ns.adobe.com/xap/1.0/'>
<xmp:CreateDate>1986-11-05T12:00:00</xmp:CreateDate>
<xmp:ModifyDate>1986-11-05T12:00:00</xmp:ModifyDate>

</rdf:Description>
</rdf:RDF>
</x:xmpmeta>

(b) XML data from a video modified by ExifTool. It can be

seen that the version of ExifTool is 11.37; the presence of exif:

DateTimeOriginal implies the date of the video is modified.

Figure 4: Examples of XML data in MP4 video containers.

moov/mvhd
moov/mvhd
moov/mvhd

number of occurrences of nodes

· · · 0 2 1 3 0 600 1 · · ·

j (1) (8)

moov/trak/tkhd/@track_ID=1
moov/trak/tkhd/@track_ID=1

number of occurrences of

categorical metadata fields

j3

(2)
( 9)

moov/trak/tkhd/@width=600.0

value of continuous metadata

fields

j2
′

(2)
(:)

Figure 5: Illustration of the vector representation of MP4 metadata.

The j functions help determine the corresponding element of a

node or a metadata field in the feature vector.

element in v will still result in large and redundant feature

vectors. We continue to subdivide �(2) based on the type of

each field, where the set of strings that have discrete fields is

denoted by �3
(2)

, and the set of strings that have continuous

fields is denoted by �2
(2)

. For strings that belong to �3
(2)

,

the transformation scheme is similar to that of category (1)

strings. Let the vector element index of the 9-th string in

�3
(2)

be j3
(2)

( 9), then the value corresponding to the element

is given by

v [j3

(2) ( 9)
] = number of times �3

(2)
[ 9] occurs in (,

∀ 9 ∈
{

1, 2, . . . ,

�

�

��
3
(2)

�

�

�

}

. (2)

As for strings that belong to �2
(2)

, we first discard the values

in the strings to form a set of distinct keys �2′

(2)
, and then put

the values in v directly. For the :-th string in �2′

(2)
, the index

of the corresponding vector element in v is j2
′

(2)
( 9), and the

value of the element is

v [j2′

(2) (:)
] =

{

the value of key �2′

(2)
[:] in (

0 (if the key �2′

(2)
[:] is not in ()

,

∀ 9 ∈
{

1, 2, . . . ,

�

�

��
2′

(2)

�

�

�

}

. (3)

It can be seen that the dimensionality of v is given by

dim(v) =
�

��(1)

�

� +

�

�

��
3
(2)

�

�

� +

�

�

��
2′

(2)

�

�

� . (4)

In general, the actual value of the index functions j can be

arbitrary as long as all values of j (1) (8), j
3
(2)

( 9), and j2
′

(2)
(:)

form a valid partition of integers in the range [1, dim(v)].

By using different representation strategies for discrete

and continuous fields (i.e., being type-aware), the resulting

feature vectors are more compact and suited to machine

learning techniques.

3.4. Feature Selection

Our third step consists of reducing the set of selected

features by discarding redundant features. Based on the

feature extraction scheme above, it can be observed that some

elements in the feature vector are significantly correlated.

For example, the presence of string moov/mvhd/@duration

=1546737 in a collection ( extracted from a valid MP4 file

must lead to the presence of moov/mvhd in (. Therefore,

feature selection can reduce redundancy within the feature

vectors.

In the feature selection step, we reduce the redundancy

among features that are strongly correlated. Since only a

small proportion of elements in the feature vector v are in-

serted from continuous fields, most elements in v correspond

to the number of occurrences of a node or a field value.

If two features in v are negatively correlated, then it often

means the presence of an MP4 entity implies the absence of

another MP4 entity. In forensic scenarios, presence is much

stronger evidence than absence. Therefore, if we only focus

on features that are positively correlated, then we can select

features of higher forensic significance.

Given a set of feature vectors v1, v2, . . . , v# , we can

compute the corresponding correlation matrix X, where X8 9

is equal to the correlation coefficient between 8-th and 9-th

feature in the set. Then, we set all negative elements in

X to zero, which results in matrix X
+. That is, negative

correlation is ignored. Because all elements in X
+ are within

the range [0, 1], the matrix X
+ can be seen as an affinity

matrix between dim(v) vertices in a graph, where an affinity

value of 0 indicates no connection and an affinity value

of 0 indicates strongest connection. This allow us to use

spectral clustering with U clusters on X
+, which assigns

multiple strongly correlated features into the same cluster

[31]. Then, we select clusters with more than V features. For



each selected cluster, we retain only one feature at random.

Here, U > V > 0 are hyperparameters. This feature selection

step helps improve the quality of feature vectors.

3.5. Dimensionality Reduction and Classification

In the last step, depending on the the video forensics

problem, we use the feature vectors for classification in two

ways.

Multi-class problems When the classification problem is

multi-class, we use linear discriminant analysis (LDA) [11]

to drastically reduce the dimensionality of feature vectors to

2 dimensions. LDA is a supervised dimensionality reduction

technique. For a classification problem of  classes, LDA

generates an optimal feature representation in a subspace that

has dimensionality of at most  − 1. The new features in the

subspace are optimal in the sense that the variance between

projected class centroids are maximized. For multi-class

classification problems, we always reduce the dimensionality

of the feature vector to 2. After dimensionality reduction,

we use a nearest neighbor classifier that uses the distance

between the query sample and _ nearest samples to make a

decision, where _ is a hyperparameter. Each nearest sample

is weighted by their distance to the query sample. The use of

the dimensionality reduction and nearest neighbor classifier

lead to concise and straightforward decision rules in 2D

space, which can be interpreted and analyzed by human

experts easily.

Two-class problems When the classification problem is

two-class ( = 2), LDA can only generate one-dimensional

features. Our experiments have shown that 1D features are

insufficient to represent the underlying complexity of video

forensics problems. As a result, for binary classification prob-

lems, we use a decision tree classifier without dimensionality

reduction.

4. Experiments and Results

In this section we report all the details of the experiments

and comment on the results.

We study the effectiveness of our approach using the

following datasets:

• VISION [32]: the VISION dataset contains 629 pristine

MP4/MOV videos captured by 35 different Apple, Android

and Microsoft mobile devices.

• EVA-7K [39]: the EVA-7K dataset contains approximately

7000 videos captured by various mobile devices, uploaded

to distinct social networks, and edited by different video

manipulation tools. The authors took a subset of videos

from the VISION dataset and edited them with a number

of video editing tools. Then, they uploaded both the

original videos and edited videos to four social networks,

namely YouTube, Facebook, TikTok and WeiBo. The

videos were subsequently downloaded back. The EVA-7K

dataset is made up of the pristine videos, edited videos,

and downloaded videos.

The VISION dataset is used for device attribution exper-

iments, while all other experiments are conducted on the

larger EVA-7K dataset.

We demonstrate the effectiveness of our approach in

four video forensic scenarios. In all of the experiments

below that use LDA and nearest neighbor classification,

we choose U = 300, V = 4, and _ = 5. For each of the

scenarios below, unless indicated otherwise, the dataset is

split into two halves with stratified sampling for training and

validation, respectively. The metadata nodes and fields that

are excluded during metadata extraction, as well as the list

of continuous features in the vector representation step, are

provided in supplementary materials. We mainly compare

the performance of our method to [39], where the EVA-7K

dataset is described. For brand attribution, because it is

conducted on the VISION dataset, we select [20] as the

baseline. The experiment results show that our approach

achieves high performance evaluation metrics in all four

scenarios.

4.1. Scenario 1: Brand Attribution

Brand attribution consists of identifying the brand of the

device used to capture the video file under analysis. We

examined brand attribution experiments in two scenarios. In

the first experiment, we assume the analyst has access to all

possible devices at training time (i.e., close-set scenario). In

the second experiment, we assume that a specific device may

be unknown at training time (i.e., blind scenario).

Close-set scenario In Table 2, we show the F1-score com-

parison between our approach and previous work. Our

method almost perfectly classifies the VISION dataset, with

only one Apple device being misclassified as Samsung. Be-

cause our framework is capable of extracting and analyzing

more metadata, the performance of our method is better

compared to the baseline, especially for brands like Huawei,

LG, and Xiaomi. The 2D feature distribution and decision

boundary for each label are shown in Figure 6, from which

we can determine the metadata similarity between brands

and the metadata “variance” for each brand. Visualizations

as shown in Figure 6 generated by our method can aid an

analyst in making a more interpretable and reliable decision.

If a new video under examination is projected close to the

LG region, one can assume it is unlikely for that video to

come from a Samsung device.

Blind scenario We also examined device attribution with

an unknown device using our approach. Let us consider

a specific example where device ID 20 (an Apple device)

is the unknown device. In the training phase, we use the

entire VISION dataset except for samples from device ID

20. In order to classify this device that is unknown to the

classifier, we project its features in 2D space and plot them



Figure 6: 2D feature distribution and classification boundary for

device attribution scenario.

Table 2: F1-score comparison of device attribution scenario.

Device Attribution

Brand Iuliani, et al. [20] Our Approach

Apple 1.00 0.99
Asus 1.00 1.00

Huawei 0.87 1.00
LG 0.94 1.00

Oneplus 0.93 1.00
Samsung 0.93 0.99

Wiko 0.65 1.00
Xiaomi 0.74 1.00

Figure 7: Example of blind device attribution scenario. The

projected samples from the unknown device are shown with white

markers with black contour.

in the decision boundary plot shown in Figure 7. It can be

seen that all samples lie in Apple’s decision region, which

indicates that the unknown samples are classified correctly.

4.2. Scenario 2: Manipulation Tool Identification

The goal of this scenario is to determine the video editing

tool used to manipulate a given video file. We considered

native video files from the acquisition devices as non-edited,

and compare them with video files edited using Avidemux

[5], Exiftool [16], ffmpeg [10], Kdenlive [23] and Premiere

[1] as reported in [39].

In Table 3, we compare the F1-score of our method

to previous work. Our method achieves a higher average

F1-score compared to the previous work. The 2D feature

distribution and decision boundary for this scenario are

shown in Figure 8.

4.3. Scenario 3: Social Network Attribution

In our social network attribution scenario, we classify

the source social network of the video files. If a video file

is not downloaded from a social network or the video file

comes from an unknown social network, it will be classified

Table 3: F1-score comparison of manipulation tool identification

scenario.

Manipulation Tool Identification

Tool Yang, et al. [39] Our Approach

Native 0.97 1.00
Avidemux 0.99 0.98

Exiftool 0.98 1.00
ffmpeg 0.94 1.00

Kdenlive 0.95 1.00
Premiere 1.00 0.99

Average 0.97 0.99

Figure 8: 2D feature distribution and classification boundary for

manipulation tool identification scenario.

as “other”. The F1-scores in this scenario are shown in

Table 4; the 2D feature distribution and decision boundary

for this scenario are shown in Figure 9. For this task, our

approach achieves high average F1-score of 0.99. The high

performance also implies that each social network leaves a

unique fingerprint on its videos.

Figure 9: 2D feature distribution and classification boundary for

social network attribution scenario.

Table 4: F1-score comparison of social network attribution scenario.

Social Network Attribution

Social Network Yang, et al. [39] Our Approach

YouTube 1.00 0.99
Facebook 1.00 1.00

WeiBo 0.99 0.99
TikTok 1.00 1.00

Other - 0.99

4.4. Scenario 4: Manipulation Detection

There are two sub-tasks within this scenario. As discussed

above, for binary classification scenarios such as manipu-

lation detection, LDA can only generate one-dimensional

features. It limits the features’ expression power after di-

mensionality reduction, which leads to inferior classification



performance. Therefore, for binary classification problems,

we prefer using a decision tree classifier without dimension-

ality reduction.

Manipulation detection on videos files from social net-

works In this task, we detect manipulated videos given

the fact that both pristine and edited videos are uploaded to

social networks first. We compare the performance of using

our features with different classification strategies to [39],

and the results are shown in Table 5. Using the EVA-7K

dataset, the manipulation detection problem is unbalanced

because there are much more edited videos than original ones

(edited:pristine≈9:1), meaning more samples with positive

labels. In this case, the true positive rate (TPR) and the true

negative rate (TNR) reflect a classifier’s performance more

objectively than F1-score. It can be seen that our features

combined with decision tree classifier achieve higher TNR

for videos from all four social networks. When we use LDA

and nearest neighbor classifier for this scenario, the classifier

completely fails for videos from TikTok and WeiBo. It

is likely because LDA can only generate one-dimensional

features, which do not possess enough degrees of freedom to

represent the complexity of this problem. Thus, the decision

tree classifier is preferred for this scenario.

From Table 5, we also have a glimpse of how each social

network process uploaded videos. For WeiBo and TikTok

videos, conducting further metadata-based forensic analysis

becomes unreliable, which indicates they may have signifi-

cantly altered videos uploaded to their platforms. YouTube

videos can be classified perfectly, which implies that they

apply minimum modification to videos’ metadata.

Table 5: Performance evaluation metrics comparison between our

approach and previous work. TPR and TNR stand for True Positive

Rate and True Negative Rate, respectively. The accuracy score has

been balanced.

Social Network Manipulation Detection

Yang, et al. [39]
Our Features+
Decision Tree

Our Features+
LDA & NNC

F
ac

eb
o
o
k Accuracy 0.76 0.84 0.62

TNR 0.40 0.87 0.30
TPR 0.86 0.82 0.95

T
ik

T
o
k Accuracy 0.80 0.69 0.50

TNR 0.51 0.94 0.00
TPR 0.75 0.43 1.00

W
ei

b
o Accuracy 0.79 0.63 0.50

TNR 0.45 0.57 0.00
TPR 0.82 0.68 1.00

Y
o
u
T
u
b
e Accuracy 0.60 1.00 1.00

TNR 0.36 1.00 1.00
TPR 0.74 1.00 1.00

Manipulation detection on local videos In this task, we

classify pristine videos and edited videos that are not ex-

changed via social network. To mimic the real world classifi-

cation scenario, we employ a similar leave-one-out validation

strategy as introduced in [39]. This approach takes the video

files from one device model out as the validation set at a time.

Since there is only one Microsoft device among 35 models,

it is discarded in this scenario, as described in [39]. Because

the Microsoft device either belongs to the training set or

validation set, we are left with no samples to validate or no

data to train. The mean balanced accuracy comparison of the

34-fold cross validation is shown in Table 6. Our approach

achieves higher performance compared to previous works.

Table 6: Comparison of our method with previous works. The

balanced accuracy is averaged over 34 folds.

Manipulation Detection on Local Videos

Balanced Accuracy

Güera, et al. [15] 0.67
Iuliani, et al. [20] 0.85
Yang, et al. [39] 0.98

Our Features + Decision Tree 0.99

5. Conclusion

In this paper, we proposed a video forensics approach

for MP4 video files based on metadata embedded in video

files. Our improved metadata extraction and feature rep-

resentation scheme allows one to represent more metadata

information in a compact feature vector. We use feature

selection, dimensionality reduction, and nearest neighbor

classification techniques to form interpretable and reliable

decision rules for multiple video forensics scenarios. Our

approach achieves better performance than other methods.

The performance of our method in many of the scenarios

indicates that we need to increase our video forensics dataset

to include more difficult cases. Our research also exposed

the limitation of metadata-based forensics methods, namely

its failure to analyze videos from specific social networks

such as TikTok and WeiBo. This is a significant disadvantage

compared to pixel-based methods. In the future, we plan

to continue exploring the potential of metadata-based video

forensics by adding the ability to parse more manufacturer-

specific data models (e.g., Canon’s CNTH tags [9]) and

by looking into lower-level metadata in the distribution

of audio/video samples as well as location of key frames

in the video stream. We hope that metadata-based video

forensics methods can be proved to be reliable in more

forensic scenarios.
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