
– Supplemental Material –
SpoC: Spoofing Camera Fingerprints

Davide Cozzolino1 Justus Thies2 Andreas Rössler2 Matthias Nießner2 Luisa Verdoliva1

1University Federico II of Naples 2Technical University of Munich

SpoC shows how to inject camera traces into synthetic
images. Given a GAN generated image, we are able to in-
sert the traces of a specific camera model into it, fooling
at the same time the state-of-the-art camera model identi-
fiers and GAN detectors. In this supplemental document,
we report the details of the architectures used for Generator,
Discriminator, and Embedder (Sec. 1). For reproducibility,
we report the parameters of the used comparison methods
used in the main paper (see Sec. 2). Finally, we analyze
the scenario where we attack images by varying the JPEG
compression level. In addition, we report the results ob-
tained when we want to fool at the same time both a model
classifier and a GAN detector (see Sec. 3).

1. Architectures

Generator Our generator is composed of seven convolu-
tional layers with a fixed stride equal to one (see Fig.1). The
number of feature channels increases through the network
from 64 to 128 after the first three convolutional layers and
is set to the image channel size of three in the last layer. We
apply appropriate padding to keep the input image dimen-
sions of 256×256. In order to guide our adversarial train-
ing, we apply spectral normalization for our five middle lay-
ers as described in [10]. We use ReLU as non-linearity for
all layers besides the last. After the input has been passed
through our convolutional layers, we use a residual connec-

tion to add it to our output and squash the final result back
to image space using a Tanh non-linearity.

Discriminator As described in the main paper, the dis-
criminator uses a fixed first layer to extract low level image
features. This input is fed into a convolutional layer with
a kernel size of three. Afterwards, we use four blocks of
convolutional layers using a kernel size of three, spectral as
well as mean-only batch normalization. The number of fea-
ture channels is 64 for all these layers and we use ReLU as
non-linearity. The output is fed into a final convolutional
layer with kernel size of three to reduce the number of fea-
tures to one. We use no padding for all convolutional lay-
ers in our discriminator. The discriminator architecture is
shown in Fig.2.

Embedder As shown in Fig.3, the main layer in our em-
bedder is a residual block. This block has two branches. In
one branch, a convolution with kernel size one is applied,
while in the other branch, we make use of two convolu-
tions using a kernel size of three together with a ReLU non-
linearity. The outputs of the two branches are then summed
up to obtain the final output tensor. We adopt spectral nor-
malization for all convolutional layers. As described in
the paper, the input image of the embedder is first passed
through our fixed layer to extract low level image features.
The output is passed through four residual blocks following

G
au
ssian

Filter

C
o
n
v
6
4
@
3
x3

R
eLU

SN
-C
o
n
v
6
4
@
3
x3

R
eLU

SN
-C
o
n
v
6
4
@
1
x1

R
eLU

SN
-C
o
n
v
1
2
8
@
3
x3

R
eLU

SN
-C
o
n
v
1
2
8
@
3
x3

R
eLU

SN
-C
o
n
v
1
2
8
@
1
x1

R
eLU

C
o
n
v
3
@
3
x3

Tan
h

Figure 1: Generator architecture.

Fixed
Layer

C
o
n
v
6
4
@
3
x3

R
eLU

SN
-C
o
n
v
6
4
@
3
x3

R
eLU

SN
-C
o
n
v
6
4
@
3
x3

R
eLU

SN
-C
o
n
v
6
4
@
3
x3

R
eLU

SN
-C
o
n
v
6
4
@
3
x3

R
eLU

SN
-C
o
n
v
1
@
3
x3

Sigm
o
id

B
atch

N
o
rm

B
atch

N
o
rm

B
atch

N
o
rm

B
atch

N
o
rm

Figure 2: Discriminator architecture.

1



Fixed
Layer

R
esB

lo
ck

6
4

A
vg

Po
o

lin
g 2

x2

R
esB

lo
ck

1
2

8

R
esB

lo
ck

2
5

6

A
vg

Po
o

lin
g 2

x2

A
vg

Po
o

lin
g 2

x2

G
lo

b
al M

ax Po
o

l.

A
vg

Po
o

lin
g 2

x2

R
esB

lo
ck

5
1

6

SN
-C

o
n

v
N

@
3

x3

R
eLU

SN
-C

o
n

v
N

@
3

x3SN
-C

o
n

v
N

@
1

x1

ResBlock N

Figure 3: Embedder architecture.

each one by an average pooling of size two. The number
of feature channels linearly increases from 64 to 512. The
output is pooled to a single 512 dimensional tensor using a
global max pooling.

2. Comparison with state-of-the-art

In the main paper we compare our proposal with four
techniques that generate adversarial attacks. For all these
techniques, we set the parameters in order to obtain a PSNR
of about 31dB. In the following, we give more details about
these techniques.

PGD (Projected Gradient Descent attack) [9]: PGD is
an iterative attack method based on the evaluation of the
gradient of the loss function w.r.t the input image. At each
iteration, the image is modified with the projection of the
gradient into the space of allowed perturbations. For this
method, we use a number of iterations equal to 40 and an
epsilon for each attack iteration equal to 1.25.

TI-MI-FGSM (Translation-Invariant Momentum Itera-
tive Fast Gradient Sign Method) [4]: It is an iterative
version of the Fast Gradient Sign Method with the use of a

No comp. Camera QF QF=95 QF=90 QF=85 QF=80 QF=75 QF=700.3

0.4

0.5

0.6

0.7

0.8

0.9

SA
R

Bondi2017
Xception
Incept.V3

Figure 4: Attack success rate of our proposal by varying the com-
pression level of the attacked images.

momentum term for the estimation of the gradient. More-
over, to improve the transferability of the attack, the gradi-
ent is computed considering a set of translated versions of
the image. For this method, we use a number of iterations
equal to 40, an epsilon for each attack iteration equal to 0.4
and, an overall epsilon equal to 8.

GAP (Generative Adversarial Perturbation) [11]: It is
a method where a generator network is trained in order to
obtain a perturbation able to fool the classifier with a con-
straint on the maximum allowed perturbation. The authors
propose two variants, Universal Perturbation, and Image-
dependent Perturbation. In the first case, the perturbation
does not directly depend on the image to attack, while in
the second case it depends on the image. We compare the
proposal with Image-dependent Perturbation that is a less
restrictive hypothesis and more coherent with our scenario.
As proposed by the authors, for the architecture of the gen-
erator network, we use ResNet Generator that is defined in
[5]. In our experiments, the epsilon of the constraint is set
equal to 8.

Adv-Cam-Id [2]: The white-box attack proposed in [2]
uses a generator network that provides a falsified version
of the image. The generator network is trained using two
losses, one is relative to the capability to fool the classifier
and the other is the L1 distance between the original im-
age and the falsified image. The generator architecture is
composed of a first block, that emulates the color filter ar-
ray, and seven convolutional layers. For our experiments,
we use the hyperparameters suggested by the authors and
stop the training when the PSNR is greater than or equal to
31dB.

3. Additional results

In this section we analyze robustness to compression
of our approach. In Fig.4 we show the attack success
rate by varying the JPEG compression quality. Camera
model classifiers have been trained using images at differ-

No comp. Camera QF QF=95 QF=90 QF=85 QF=80 QF=75 QF=70

0.5

0.6

0.7

0.8

0.9

1.0

TP
R

before attak after attack

Figure 5: True Positive Rate of the network Xception by varying
the compression level before and after the proposed attack.

2



in training out training

Xception Spec ResNet50
Patch

FFD Xception Spec ResNet50
Patch

FFD
Forensics Forensics

M
od

el
C

la
s. Tuama2016 34.8 51.2 31.0 54.0 40.8 56.3 56.4 53.5 56.8 55.1

Bondi2017 38.8 59.3 33.9 62.6 47.2 47.9 47.8 45.0 48.4 46.5
Xception 43.8 66.3 37.9 71.1 54.6 73.6 73.4 69.8 74.2 72.5
InceptionV3 40.6 63.1 38.8 67.7 51.0 65.3 65.3 61.8 66.0 63.5

Table 1: Successful Attack Rate (SAR) to fool the Model classifier and the GAN detector at the same time considering both images inside
(StarGAN [3], CycleGAN [13], ProGAN [6], StyleGAN [7], and RelGAN [12]) and outside the training-set (bigGAN [1], and StyleGAN2
[8]).

ent JPEG compression levels, so as to improve their per-
formance also on compressed data. In this analysis we ex-
clude Tuama2016 because it achieves an accuracy below
50% in this scenario. Results are shown in Fig.4 and show
that the attack is still effective even on compressed images,
in particular the attack success rate still remains above 50%
also for images compressed at JPEG quality in the range
[70 − 75], which is the quality level typically applied by a
social networks when an image is uploaded.

We also carry out a similar analysis on GAN detectors.
The trend by varying the JPEG compression is very much
similar for all the GAN detectors, hence in Fig.5 we only
report the behavior of Xception by varying the compression
level. Performance of the detector are perfect before the
attack and then reduce strongly after our attack, even on
heavily compressed images.

Finally, we consider a scenario where the objective is to
fool both the camera model classifier and the GAN detector
at the same time. Results are shown in Tab.1 and confirm
that our approach is able to obtain statisfying results, es-
pecially when attacking deeper networks for camera model
identification and GAN detectors that were not trained on
that specific GAN images.

References

[1] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis,
2018. 3

[2] Chen Chen, Xinwei Zhao, and Matthew C. Stamm. Gener-
ative adversarial attacks against deep-learning-based camera
model identification. IEEE Trans. Inf. Forensics Security, in
press, October 2019. 2

[3] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. StarGAN: Unified Gen-
erative Adversarial Networks for Multi-Domain Image-to-
Image Translation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018. 3

[4] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu.
Evading defenses to transferable adversarial examples by
translation-invariant attacks. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 2

[5] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694–711,
2016. 2

[6] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive Growing of GANs for Improved Quality, Stabil-
ity, and Variation. In International Conference on Learning
Representations, 2018. 3

[7] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4401–4410, 2019. 3

[8] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of StyleGAN. In CVPR, pages 8110–8119,
2020. 3

[9] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017. 2

[10] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. arXiv preprint arXiv:1802.05957, 2018.
1

[11] Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge
Belongie. Generative Adversarial Perturbations. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4422–4431, 2018. 2

[12] Po-Wei Wu, Yu-Jing Lin, Che-Han Chang, Edward Y.
Chang, and Shih-Wei Liao. Relgan: Multi-domain image-
to-image translation via relative attributes. In IEEE Interna-
tional Conference on Computer Vision (ICCV), 2019. 3

[13] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In IEEE International Con-
ference on Computer Vision (ICCV), 2017. 3

3


