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Abstract

In this paper, we present a novel method for generat-

ing synthetic underwater images considering revised im-

age formation model. We propose to use the generated

synthetic underwater images to train a conditional gener-

ative adversarial network (CGAN) towards restoration of

degraded underwater images. Restoration of degraded un-

derwater images using traditional dehazing models is chal-

lenging as they are insensitive to wavelength, depth, water

type and treat backscattering and direct signal attenuation

coefficients to be equal. However, learning based models

for restoration perform well but sensitive to availability of

ground truth information. Generating ground truth labels

in underwater scenario demands in-situ measurements us-

ing expensive equipments and is infeasible due to varying

underwater currents. Towards this, we propose to generate

synthetic underwater images using revised image formation

model. Revised image formation model is sensitive to dif-

ferent attenuation coefficients: 1) back scattering, 2) direct

scattering and 3) veiling light. We propose to estimate these

attenuation coefficients considering proven facts from the

literature. We demonstrate restoration of real underwater

images through restoration framework trained using ren-

dered synthetic underwater images, and compare results of

restoration with state-of-the-art techniques.

1. Introduction

In this paper, we propose a framework for generation

of synthetic underwater images considering revised image

formation model [1] and use the same to train conditional

generative adversarial networks, towards restoration of de-

graded underwater images. Capturing of underwater scene,

heavily relies on unmanned vehicles (UV) equipped with

imaging sensors, to provide a high-resolution view of sea

bed, corals and archaeological sites. Marine archaeolo-

gists use the remotely operated vehicle (ROV) to explore

the ocean without physically being present in the ocean

[12]. Recently, we observe considerable advancement in
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Figure 1. Restoration of underwater images.

underwater scene capturing technologies. However, the

aquatic environment still presents unique challenges, unlike

the above-water environment. Due to light attenuation, ab-

sorption and scattering most of the underwater images lack

in contrast and depict inaccurate colors. The attenuation

of light in water varies with wavelength and depends on its

distance, unlike the terrestrial images where attenuation is

assumed to be spectrally uniform. Wavelength-dependent

attenuation causes color distortion that increases with the

distance of an object from the camera. This phenomenon

causes underwater images to appear bluish or greenish in

color, unlike the above water scene.

Recently, authors propose to use calibrated stereo cam-

eras [11] with improved depth information [5] for 3D recon-

struction [13] of underwater archaeological sites. However,

with dynamically varying environmental conditions, under-

water restoration and 3D reconstruction of submerged sites

remain unsolved. Images captured in deep oceanic water

have a different distribution of optical properties from those

captured in shallow coastal waters. This problem is due to

the varying lighting conditions and suspended particles. In

deep oceanic water, the penetration of natural light is abso-

lutely nil. Capturing images in artificial light introduces ar-
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tifacts causing (certain number of pixels to reach) saturation

and limiting the underwater scene’s visibility. In shallow

coastal water, the suspended particles are more significant

than the incident light resulting in non-selective scattering.

The non-selective scattering accounts for the formation of

haze, limiting the visibility of an underwater scene. In each

of these cases, either ocean bed or coastal bed restoration

is the need of the hour, towards improved underwater ob-

ject detection, mapping and tracking of coral reefs and for

preserving underwater ecology. Several authors have pro-

posed learning and non learning based techniques towards

restoration of underwater images.

Non learning-based methods consider brightest pixel to

estimate the veiling light. Tan et al. [30] choose brightest

pixel and Fattal et al. [4] used it as an beginning conjec-

ture. Intuitively, the brightest pixel might not directly con-

tribute towards estimation of veiling light, as the brightest

pixel may also belong to object under consideration. To

overcome this, He et al. [7] choose the the brightest pixel

based on the local patches, considering intensities being

close to zero in dark channel and determining atmospheric

light from haze opaque regions of dark channel. These

methods are sensitive to discernible regions of an image and

demands to choose hand crafted features towards estimation

of attenuation coefficients.

Alternatively, deep neural networks provide the solu-

tion for modelling complex non-linear structures. However,

deep learning-based solutions are data-dependent and re-

quire a large amount of data for training. Learning-based

approach for restoration and 3D reconstruction of underwa-

ter images remains unsolved unlike the terrestrial applica-

tions. Major challenges in deep learning-based architec-

tures are the need for a larger database coupled with la-

bels or corresponding ground truth information. Generating

ground truth labels in underwater scenarios demands in-situ

measurements using expensive equipment [29]. Performing

in-situ measurements requires skilled personnel to handle

complex equipment and is a challenging affair. Gathering

larger chunks of data with corresponding depth and ground

truth information in the underwater scenario is quite chal-

lenging and remains an open problem.

Towards this, we propose to generate realistic underwa-

ter images considering a revised image formation model

and use the same as training data, for learning-based mod-

els. Typical image formation model, is derived from at-

mospheric dehazing equation and are insensitive to wave-

length dependencies, resulting in significant errors while

restoring/enhancing underwater images. The backscattered

signal, is the primary reason for underwater image degra-

dation, and is affected by the scattering and absorption of

light, which are wavelength-dependent. There is a need

for an image formation framework that incorporates wave-

length dependencies, derived from the laws of physics.

We plan to generate synthetic underwater images consid-

ering depth [20], wavelength-based attenuation coefficients

and several other parameters, we term the algorithm as Re-

alistic Underwater Image Generation (RUIG). Unlike the

deep learning algorithms [18], our model is data indepen-

dent. Authors in [18] propose generative adversarial net-

works considering on-air images and corresponding depth

information to render synthetic underwater images. In pro-

posed model (RUIG) we consider the revised image for-

mation model and the wavelength-based attenuation coef-

ficients to render synthetic underwater images. The gener-

ated synthetic underwater images and the corresponding on-

air images are used to train conditional adversarial networks

(CGAN) [19]. CGAN learns the mapping from synthetic

underwater images to on air images towards restoration of

degraded underwater images.

Towards this, we propose to address data insufficiency

challenges faced by learning-based models for restoration

of underwater images, in particular

• We propose to design conditional generative adversar-

ial networks (CGAN) towards restoration of degraded

underwater images.

• We propose to generate realistic underwater images us-

ing revised image formation model as given by [1] us-

ing coefficients of Jerlov water types [29].

• We demonstrate the results of restoration using syn-

thetic and real dataset, and compare the performance

of restoration model with state-of-the-art techniques

using quantitative metrics.

In Section 2, we present the evolution of image for-

mation model. In Section 3, we discuss the proposed

methodology for generation of synthetic underwater im-

ages. Methodology for restoration of underwater images

is given in Section 4. We demonstrate the results of the

proposed methodology in Section 5 and compare the same

with state-of-the-art techniques. In Section 6, we discuss

conclusions drawn towards the research carried out.

2. Underwater image formation

Fundamental problem in underwater vision is image

restoration which aims at recovering a high-quality image

from low quality observations. Several image restoration

algorithms are proposed to improve the performance. Tra-

ditional algorithms use hand crafted features or prior [32, 9]

to recover high quality observations from degraded sam-

ples. With the advent of deep learning algorithms, restora-

tion has achieved a promising result for on air images. How-

ever, restoration in underwater scenario is an open problem

as degradation is sensitive to wavelength and depth. Deep

learning algorithms are data dependent and capturing data

2



Figure 2. Overview of the proposed framework for realistic underwater image generation towards restoration, includes, realistic underwater

image generation (RUIG), training CGAN using the generated synthetic images and, testing the trained model with real underwater images.

in underwater scenario is challenging due to light attenua-

tion and dynamically varying conditions. Towards this, we

propose to generate synthetic data modelled using revised

image formation model. Generated synthetic data is used to

train conditional adversarial networks towards restoration

of underwater images.

Authors in [15] and [16] use standard model for both de-

hazing and restoration of underwater images. The standard

model for restoration and dehazing is given as:

I(x) = J(x)t(x) +A(1− t(x)) (1)

where J(x) is true scene radiance, t(x) is the transmis-

sion and A is the veiling light. The transmission map t(x)
through the water medium is given by,

t(x) = e−βλd(x) (2)

As depicted in Equation 1 and Equation 2 there are three

unknown parameters {A, d(x), βλ} to be estimated to-

wards restoration of underwater images. Traditional model

as given in Equation 1 considers wide band attenuation co-

efficient βλ to be spectrally uniform for backscattering and

direct attenuation across R, G, B channels. However, au-

thors in [3] demonstrate space of attenuation coefficients as

independent entities and represent the same graphically as

per 10 Jerlov classes [10].

In underwater scenario propagation of light is influenced

by direct light, forward scattering light, and backscattering

light. The total light reaching the camera from the object is

represented as:

Iλ = Dλ +Bλ + Fλ (3)

where Iλ is the total irradiance received by the camera, Bλ

is the backscattered light, Dλ is the direct light, Fλ is for-

ward scattering component respectively. The subscript λ

represents the wavelength of color channels R, G and B for

an RGB image. However, authors in [28] show quantita-

tively Fλ ≪ Dλ, and it does not contribute significantly to

the degradation of an image. Therefore, Equation 3 can be

represented as:

Iλ = Dλ +Bλ (4)

Bλ and Dλ given in Equation 3 can be represented using

attenuation coefficients βB
c and βD

c (wide band attenuation

coefficients) respectively. Rewriting Equation 1 considering

wideband attenuation coefficients,

Dλ = J(x)e−βD

c
(vD)d(x) (5)

Bλ = B∞

c (1− eβ
B

c
(vB)d(x)) (6)

I(x) = J(x)e−βD

c
(vD)d(x) +B∞

c (1− eβ
B

c
(vB)d(x)) (7)

where vD = {d(x), ρ, E, Sc, β} and vB = {E, Sc, β, b}.

Here d(x) is the depth, ρ is the reflectance of each object

in the scene, Sc is the spectral response of the camera, E
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is the spectral irradiance of the scene, b and β are beam

attenuation coefficients.

In what follow, we discuss these parameters βD
c , βB

c , and

B∞

c .

2.1. Direct signal (βD
c )

Scattering involves redirecting the photons away from

the line of sight by suspended particles. Signal leaving

the camera (Divers Position) hitting the object and reach-

ing back the camera constitutes direct signal. Direct sig-

nal carries most information from the scene. However, the

phytoplankton’s, chlorophyll content, micro-organisms and

dissolved organic matter decreases the strength of the signal

resulting in direct signal scattering. As depicted in Equation

7 first part of the equation constitutes for true scene recon-

struction. Direct signal is greatly influenced by the distance

between the object and the camera (Divers Position). Gen-

erating accurate depth along with scene information is chal-

lenging in underwater scenario. Towards this we consider

NYU depth dataset [21] comprising indoor scenes captured

using Microsoft Kinet. We have the true scene radiance

J(x) and corresponding depth information d(x) for gener-

ating synthetic underwater images. Attenuation coefficient

representing direct signal scattering is βD
c and is strongly

governed by d(x), ρ, E, Sc, β and is given by authors in [2].

For simplicity we assumed ρ = E = 1 and λ1 = 400nm and

λ2 = 700nm (Visible spectrum range). We consider spectral

response of camera Nikon D90 as given by authors in [6].

We simulate βD
c considering Equation 8. Figure 3 shows in-

creasing behaviour of βD
c , as we move from ocean water to

coastal bed along the line of turbidity. Increase in turbidity

here is influenced by water type and depth d(x).

βD
c =

∫ λ2

λ1

Sc(λ)ρ(λ)E(λ)e−(β(λ)d(x)d(λ)
∫ λ2

λ1

Sc(λ)ρ(λ)E(λ)e−(β(λ)d(∆(x))d(λ)
(8)

where ∆(x)= x2 - x1, all other measurements at the surface

are considered in-line with the authors in [2].

2.2. Backscattering signal (βB
c )

In previous section, we discussed on calculating direct

signal as given in Equation 8. Here, in this section we fo-

cus on simulating backscattering attenuation coefficient βB
c .

Backscattering is fundamentally governed by the water con-

stituents, the size of the submerged particles and the chloro-

phyll concentration of the water. Photons (Incident Flux)

travelling from the natural source of light, towards the cam-

era (Divers Position) get deflected in all the directions due

to floating particles in the water. These photons do not carry

any information of the scene and creates a hazy layer. This

phenomenon is termed as, backscattering and is primarily

responsible for haze formation. The deflection of photon,
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Figure 3. Simulated direct signal attenuation coefficient (βD

c )

across R, G, B channels (visible spectrum). Figure depicts increase

in direct signal attenuation for coastal bed compared to ocean wa-

ter due to increased turbidity. Type (I, IA, IB, II, III) represents

ocean bed, and Type (1C, 3C, 5C, 7C, 9C) represents coastal bed.

away from the incident direction is determined by volume

scattering function (VSF). However, estimating VSF of a

specific ocean water or a coastal bed is possible with in-situ

experiments using specialized equipments and a skilled per-

sonnel. The measurements associated with 10 water types

are given by authors in [10]. For surface measurements, we

consider CIE D65 standard values as given by authors in

[1].

We simulate βB
c as given by authors in [2]. βB

c strongly

depends on E, Sc, β(λ) and B∞(λ). Few measurements

are taken from authors in [29]. Considering all the measure-

ment, we calculate backscattering attenuation coefficient as

given by authors in [2]. Estimates of βB
c is used in revised

image formation model as given in Equation 7 towards gen-

eration of synthetic underwater images.

2.3. Veiling light (B∞

c )

In this section, we simulate calculation of veiling light

towards synthetic data generation. Natural light gets atten-

uated with vertical depth before reaching the actual scene

and often fails to reach beyond 20m - 30m depth. Cap-

turing scene beyond 20m depth demands artificial source

of light, to mimic the behaviour of natural light. Artificial

source of light mounted over divers headset is unstable due

to ocean and sea currents leading to absorption and scatter-

ing. Restoration of lost information due to scattering and

absorption is the key towards success of underwater imag-

ing. Towards this, we calculate B∞

c as given by authors in

[1] and use the estimates in revised image formation model

for synthetic underwater image generation.
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3. Realistic underwater image generation

(RUIG)

In this section, we consider the deliberated values of

wide band attenuation coefficients and use it in revised im-

age formation model towards synthetic data generation.

Attenuation 

coefficients

Rendering of 

synthetic 

underwater image

Image 

formation 

model
Depth information 

RGB image 

Realistic Underwater Image Generation (RUIG)

Input data

Rendered output

Input data

Figure 4. Generation of synthetic underwater images consider-

ing wide band attenuation coefficients, True scene radiance J(x)
corresponding depth information d(x) as per Revised Image For-

mation Model.

As shown in Figure 4 we propose to model synthetic data

generation considering revised image formation model de-

picted in Equation 7. NYU depth data set provides R, G,

B data and its corresponding depth information. We de-

sign an algorithm, that takes true scene radiance J(x) and

its corresponding depth d(x) as input, with the deliberated

wide band attenuation coefficients. Unlike, the traditional

image formation we estimate βD
c as given in Equation 8

and βB
c as given by authors in [2] for each color channel R,

G, B across visible spectrum range. We generate, 800 im-

ages for 10 classes of Jerlov water types across 20 vertical

depths. Total of 1,60,000 synthetic underwater images are

generated towards training restoration framework. Gener-

ated synthetic underwater images are depicted in Figure 6

(Column 1) and Figure 7 (Column 1) respectively, for 10

classes of Jerlov water types.

4. Learning based restoration of underwater

images

Generative networks learn mapping from random noise

z to output y, however, conditional generative networks

learn mapping conversely i.e from input image x and ran-

dom noise z to output y. Here, we model conditional gen-

erative networks to learn mapping from degraded image

x‘ and noise z to ground truth image x i.e (x‘& z) → x.

We model x‘ as our degraded observation and x being the

ground truth image and learn the mapping from degraded

image to ground truth image towards restoration.

Towards this, we model loss function for conditional

generative networks as per Equation 9.

LCGAN (G,D) = logD(x‘, x) + log(1−D(x‘, G(x‘, z)))
(9)

We model generator with skip connection as given by au-

thors in [27] to learn low frequency components with more

detailing. Discriminator is modelled as simple classifier to

differentiate between degraded image x‘ and true image x.

Generator and discriminator are modelled with the structure

(conv2D → batch normalization → relu). We use adam op-

timizer with learning rate of 0.0001.

5. Results and discussions

In this section, we present results of the proposed

methodology quantitatively and compare the same with

state-of-the-art techniques.

a) Ground truth b) Corresponding depth image

Ocean water

C
oastal bed

Figure 5. The plot for PSNR considering (a) as ground truth (from

NYU-Depth dataset). Blue color represents PSNR values for ren-

dered synthetic underwater images, and orange color represents

PSNR values of restored underwater images for ocean and coastal

beds shown in Figure 6 and 7.
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Figure 6. Synthetic underwater image rendered using NYU Depth

data set considering Equation 7 and corresponding restored im-

ages. First column shows rendered underwater images for ocean

water (Type I, IA, IB, II, III) as per Jerlov [10]. Second column

shows corresponding restored underwater images using proposed

pipeline.

Figure 7. Synthetic underwater image rendered using NYU Depth

data set considering Equation 7 and corresponding restored im-

ages. First column shows rendered underwater images for coastal

beds (Type 1C, 3C, 5C, 7C, 9C) as per Jerlov [10]. Second column

shows corresponding restored underwater images using proposed

pipeline.
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5.1. Quantitative metrics

Quality of the restored image is sensitive to colourful-

ness, contrast, sharpness and fogginess. Typically qualita-

tive and quantitative analysis is carried out to demonstrate

the quality of the restored image. Qualitative analysis is per-

ceptual [23], quantitative quality is carried out as no refer-

ence [8] and reference measures. Researchers don’t appre-

ciate with reference quality metric as it demands for ground

truth information [26] [24] [25]. Towards this, we propose

to use no reference quantitative metrics like UCIQE, UIQM

and CCF. These metrics depends on the underlying dataset

and is a weighted combination of colourfulness, sharpness

and contrast. Table 1 shows comparison of our results with

state-of-the-art technique [14]. We demonstrate results of

proposed methodology using UCIQE [33], UIQM [22] and

CCF [31] and prove our restoration results are promising

quantitatively. Figure 8 presents qualitatively pleasing im-

ages in accordance with the quantitative scores presented in

the Table 1.

Figure 6 shows synthetic generation of underwater im-

ages for ocean water, and the corresponding restored re-

sults using the proposed conditional generative networks.

Figure 7 shows synthetic generation of underwater images

for coastal bed, and the corresponding restored results us-

ing the proposed conditional generative networks. Figure 5

depicts PSNR values for rendered synthetic underwater im-

ages against restored underwater images. PSNR estimates

for ocean water and coastal beds depicts different behaviour

representing the turbidity. It is evident from the quantitative

metrics that, behaviour of water in ocean is significantly dif-

ferent from coastal beds.

6. Conclusions

In this work, we have presented a novel method for

generating synthetic underwater images considering revised

image formation model with depth as a clue. We have pro-

posed to use the generated synthetic data to train condi-

tional generative networks towards restoration of degraded

underwater images. We show, underwater image formation

model is sensitive to back scattering βB
c , direct scattering

βD
c ,and veiling light B∞

c . We have demonstrated restora-

tion of real underwater images through restoration frame-

work trained using rendered synthetic underwater images,

and have compared the results of restoration with state-of-

the-art techniques using quantitative metrics.
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