
On the Robustness of Monte Carlo Dropout Trained with Noisy Labels

Purvi Goel

Facebook

purvigoel@fb.com

Li Chen

Facebook

lichen66@fb.com

Abstract

The memorization effect of deep learning hinders its per-

formance to effectively generalize on test set when learn-

ing with noisy labels. Prior study has discovered that epis-

temic uncertainty techniques are robust when trained with

noisy labels compared with neural networks without uncer-

tainty estimation. They obtain prolonged memorization ef-

fect and better generalization performance under the ad-

versarial setting of noisy labels. Due to its superior perfor-

mance amongst other selected epistemic uncertainty meth-

ods under noisy labels, we focus on Monte Carlo Dropout

(MCDropout) and investigate why it is robust when trained

with noisy labels. Through empirical studies on datasets

MNIST, CIFAR-10, Animal-10n, we deep dive into three as-

pects of MCDropout under noisy label setting: 1. efficacy:

understanding the learning behavior and test accuracy of

MCDropout when training set contains artificially gener-

ated or naturally embedded label noise; 2. representation

volatility: studying the responsiveness of neurons by exam-

ining the mean and standard deviation on each neuron’s ac-

tivation; 3. network sparsity: investigating the network sup-

port of MCDropout in comparison with deterministic neu-

ral networks. Our findings suggest that MCDropout further

sparsifies and regularizes the deterministic neural networks

and thus provides higher robustness against noisy labels.

1. Introduction

Neural networks exhibit state-of-the-art performance on

many learning tasks, such as classification and segmenta-

tion. However, training these networks requires an abun-

dance of carefully labeled data; networks tend to overfit

quickly to noise in training labels, which makes their appli-

cation to noisy real-world problems less effective. Expert-

labeled data is expensive and time-consuming to collect; la-

bel noise is common in less carefully crafted datasets due to

measurement inaccuracies, human error, etc.

Nonetheless the latter type of data, albeit noisy, is more

readily available. One recent strategy shown to perform

well on datasets containing significant amounts of label

noise is augmenting the neural network with an uncertainty

estimation method like Monte Carlo Dropout [5]. These

uncertainty estimation models display a delayed memoriza-

tion effect of noisy training labels, and can generalize better

to clean test data. Augmenting models with Monte Carlo

Dropout shows a slower degradation of classification per-

formance, consistent on benchmark datasets like MNIST

and CIFAR-10[5]. In addition to its resilient performance

against noisy training labels, MCDropout adds no training

overhead and only adds minimal cost to inference time.

The robustness property and low-computational cost of

MCDropout indicate it as an effective and practical solu-

tion against noisy labels. In this paper, our goal is to not

only determine whether MCDropout performs consistently

better in these noisy-label situations, but also provide an

in-depth analysis for why it performs better. We present

an investigation into the performance and representation

learned by a model augmented with MCDropout. We first

evaluate the accuracy of MCDropout models in comparison

with deterministic neural networks on datasets like MNIST,

CIFAR-10, and Animal-10n with artificially injected noisy

labels. Second, we measure neuron responsiveness in each

layer, to better explore the differences between representa-

tions learned by certainty and MCDropout models. Finally

we study network sparsity and find that the sparsity prop-

erty offered by MCDropout models contribute to robustness

against noisy training labels. To our knowledge, our work

provides the first detailed analysis of MCDropout in the set-

ting of noisy labels.

The rest of the paper is organized as follows. In Section

2, we provide the background information on the noisy la-

bel setting, label noise taxonomies, MCDropout and related

work. In Section 3, we describe our study directions includ-

ing measuring efficacy, neuron responsiveness via volatil-

ity and network sparsity. In Section 4, we demonstrate the

effectiveness of MCDropout on empirical datasets such as

MNIST, CIFAR10 with artificially corrupted training labels

and Animal-10n a real-world dataset containing annotation

noise. We further analyze the neuron responsiveness and

network sparsity by MCDropout in comparison with deter-

ministic networks. Finally in Section 5, we discuss optimal

1



placement for MCDropout on a neural network and con-

clude our paper.

2. Preliminaries

In this section, we present the problem statement, the

preliminaries on label noise, Monte Carlo Dropout and re-

lated work.

We consider a fully supervised learning problem in im-

age classification, where the images and its associated la-

bels in the training set, denoted by Ttrain := {(Xi, Yi)}
n
i=1

,

with n denoting the total number of training samples and

all the pairs {(Xi, Yi)}
n
i=1

sampled i.i.d from a joint dis-

tribution FX,Y . However instead of observing all the cor-

rectly annotated labels, we observe the training data Ttr :=
{(Xi, Ŷi)}

n
i=1

, where given by a probabilistic process, Ŷi

deviates from Yi. Our exploitation task is to learn a robust

classifier on Ttr = {(Xi, Ŷi)}
n
i=1

containing noisy labels

such that the classification efficacy on incoming test image

X can best predict the unknown label Y .

Across this paper, we refer to the deterministic neural

network without uncertainty estimation as certainty model

or deterministic model interchangeably. We refer to the neu-

ral network augmented with MCDropout layers as the MC-

Dropout model.

2.1. Label Noise Taxonomies

There are several categorizations of noise labels. One

commonly used categorization depends on whether or not

the noisy label depends on the features. If the noisy label

generation process is conditionally independent of the fea-

tures, then a noise transition matrix Tc×c, where c is the

number of classes, is sufficient to describe the label noise

generation process. Each entry in Tij = pij is a proba-

bility such that the true label will be changed into a noisy

label with probability pij . If the observed label is differ-

ent from the true label with a uniform probability, then the

noise is considered to be label-independent and this noise

is called considered symmetric or uniform noise. If the ob-

served label is changed from the true label with probabili-

ties depending on the original ground truth, then the noise is

label-dependent and called asymmetric noise. On the other

hand, if the corruption process depends on the features and

labels, the label noise is called instance-dependent. A more

recent study proposes a new but practical assumption within

instance-dependent label noise, defined as part-dependent

label noise, where the noise depends partially on an instance

[27].

Another perspective on label noise is via uncertainty

characterization [5]. The noisy label generation process is

probabilistic and random. Naturally uncertainty character-

ization comes into play. From the notion of deep learning

uncertainty, the noise in the labels can be considered a type

of aleatoric uncertainty, a measurement of the intrinsic and

irreducible uncertainty within the data. Within aleatoric un-

certainty, homoscedastic uncertainty is constant across the

input while heteroscedastic uncertainty is dependent on the

input. Hence if the noise transition matrix is a uniform or

symmetric one, then the label noise can be considered ho-

moscedastic; if it is label-dependent, then the label noise

can be considered heteroscedastic. In recent noise simu-

lation schemes, label noise is applied on samples that are

more likely to be mislabeled given by pre-learned model

[1]. We consider such type of noise as epistemic uncer-

tainty, a term that describes uncertainty induced by models.

2.2. Monte Carlo Dropout

The deep learning uncertainty perspective to characterize

label noise inspires us to study label noise via deep learning

uncertainty estimation techniques. Chen et al [5] proposed

using epistemic uncertainty estimation methods when learn-

ing with noisy labels. Comparing Monte Carlo Dropout,

Bootstrap [16], Bayesian CNN upon Bayes by Backprop [4]

and certainty neural networks trained in noisy label settings,

the authors discovered that Monte Carlo Dropout (MC-

Dropout) had a prolonged memorization effect and pos-

sessed the best classification performance on test set.

We also included Figure 1 as our motivational example

here. Hence in this paper, we laser-focus on the study of

why MCDropout possesses robustness against noisy labels

in comparison with certainty models.

The core idea of MCDropout is to enable dropout reg-

ularization at both training and test time. With multiple

forward passes at inference time, the prediction is not de-

terministic and can be used to estimate the posterior dis-

tribution. As a result, MCDropout offers Bayesian inter-

pretation. First proposed in [8], the authors established

the theoretical framework of MCDropout as approximate

Bayesian inference and proved MCDropout minimises the

Kullback–Leibler divergence between an approximate dis-

tribution and the posterior of a deep Gaussian process. More

formally, let dl denotes dropout at the l-th layer of a neu-

ral network, where dl ∼ Bernoulli(p). Then at inference

time, with K forward passes, we obtained a distribution of

K logits and predictions per test data, where we can com-

pute the expected value, standard deviation, variation ratio

and entropy to assess uncertainty.

2.3. Related Work on Deep Learning with Noisy
Labels

While there has not been much work on applying epis-

temic uncertainty methods to address noisy labels, an abun-

dant of research has been done in deep learning noisy labels

ranging from loss function adjustment, robust architecture

design, data processing, data filtering and so on. Authors

in [10, 29, 26, 19] devised robust loss function to achieve a

smaller risk for unseen clean data when learning with noisy



Figure 1. (Left): MNIST test accuracy when training labels con-

tain 15% noise. (Right): MNIST test accuracy when training la-

bels contain 35% noise. Our previous study suggests that MC-

Dropout has the best classification performance among a few other

uncertainty estimation methods. Further MCDropout does not in-

crease training time per epoch and has relatively cheap inference

cost. Hence in this paper, we focus on investigating the robustness

of MCDropout when training with noisy labels.

labels. Sample selection techniques as to filter the clean la-

bels for training and removing the noisy labels have been

proposed in [14, 11, 28, 21]. Sample selection and label

correction for spatial computing is studied in [6]. Devising

loss to estimate noise transition matrix and correct the la-

bels are studied in [23, 12, 2]. Semi-supervised learning is

another field of techniques on noisy labels, where the noisy

labelled data are treated as unlabeled and clean labelled data

are as labeled [22, 7, 18].

3. Investigation

Our goal is to analyze the representations produced by

MCDropout models, particularly in comparison with cer-

tainty models, trained in the presence of noisy labels. Sim-

ilar to the definitions presented in Bau et al [3], we use the

term representation to describe the outputs of a particular

layer in a model. More specifically: which channels of

the layer have been activated for various data inputs? How

strongly have these channels been activated? What is the

variation in a specific channel’s possible activations? Com-

paring the representations lends insight and intuition as to

why one model may perform better than another one. Es-

sentially, we investigate why MCDropout performs better

than a certainty model by comparing the different represen-

tations of the two models respectively.

Again following the vocabulary used in Bau et al [3],

we refer to feature maps as the output of every layer in the

network–the aggregate of the feature maps makes up the

network’s learned representation. We refer to a neuron as a

specific channel of the feature map. In this paper, we use the

term activation gamut to refer to all the possible values that

a particular neuron can produce. We can approximate the

activation gamut as the set of a neuron’s activation values

for each image in a dataset.

We compare the classification efficacy, neuron respon-

siveness, and network sparsity by the two models respec-

tively. To understand how two models have learned and

encoded information differently, we evaluate trained mod-

els on test set and cache neuron activations from each layer,

where we derive statistics such as mean and standard devia-

tions on each neuron with respect to data samples from the

test set.

3.1. Measuring Efficacy

We first train MCDropout and certainty models on train-

ing data with noisy labels and evaluate their accuracy on a

cleanly labeled test set. We present the learning behaviors

during training and testing over epochs.

3.2. Measuring Responsiveness

Next we compare neuron responsiveness measured by

volatility in the two models. We define volatility as the stan-

dard deviation of a neuron’s activations over a dataset; if a

neuron is capable of producing vastly different activation

values for different input images, the neuron’s activation

gamut would possess high standard deviation, indicating a

highly responsive neuron.

To compute the activation gamut of a neuron, we first

cache the feature maps ui
j , post-ReLu, produced by the

i-th neuron on the j-th test set image. We find the mean

activation value, a
j
i for the feature map ui

j . In other words,

for a feature map with n rows and m columns,

a
j
i =

∑n

r=0

∑m

c=0
u
j
i (r, c)

nm
.

Per neuron, this results in j values which compose its

activation gamut Ai

Ai = {a0i , a
1

i ...a
j
i}.

We can perform statistical analysis on these gamuts and

aggregate them per-layer, such as finding the mean activa-

tion value Vl of all I neurons in the l-th network layer:

Vl =

∑I

i=0
mean(Ai)

I
.

We also find the average gamut standard deviation Sl for

all I neurons in the l-th network layer

Sl =

∑I

i=0
std(Ai)

I
.

We would observe the activation gamut of a volatile neu-

ron to possess a higher standard deviation than that of a non-

volatile neuron. The activation gamut of a volatile neuron

may also include extremes, showing a higher maximum ac-

tivation than a non-volatile neuron.



Figure 2. We show the train and test accuracies per epoch for (Left) the certain and MCDropout LeNet5 models on MNIST; (middle) the

certain and MCDropout ConvNet models on CIFAR10; (right) the certain and MCDropout ConvNet models on Animal-10n. All of these

models are trained in a noisy-label setting with 35 percent noise. In all these cases, the MCDropout model has a better validation accuracy

than the certain model; the certain model generally overfits to training set noise.

3.3. Measuring Sparsity

Along with research directions into network uncertainty

and robustness, neural network sparsity has become a sub-

ject of interest for many machine learning researchers [9,

13, 25]. Sparse neural networks are desirable because they

require less computation at test time, demand less mem-

ory [9], and are less likely to overfit to training data [20].

In the context of our investigation, the tendency for sparse

neural networks to overfit more slowly to training data can

allow them to avoid memorizing noisy training labels. We

can evaluate network sparsity on a per-neuron level: which

neurons never or rarely activate, for any and all test samples,

and how common are these neurons throughout the entire

model? Network sparsity can be defined as the subset of

neurons output a value that is always zero [9], or very close:

these neurons do not affect the final predictions in any sig-

nificant manner. The larger the subset of neurons with this

property, the more sparse the network’s learned representa-

tion is. Because neural networks can easily overfit to noise

in training labels [5], we are interested in the observed prop-

erty of sparse models to overfit more slowly. With fewer

tunable parameters available, sparse models have fewer de-

grees of freedom to overfit to noise.

4. Results

We study the classification efficacy, neuron responsive-

ness, and network sparsity of MCDropout and certainty

model on three benchmark classification datasets: MNIST,

CIFAR10, and Animal-10n [24]. We use two different ar-

chitectures: LeNet5 [17] and ConvNet, a CNN architecture

with 4 convolutional layers followed by 3 fully connected

layers. To maximize the effect of MCDropout, we use an

all-layer MCDropout architecture where each layer in the

certainty model is augmented with MCDropout. Our in-

vestigation compares the findings for the original certainty

model and its augmented all-layer MCDropout model.

We train both models on noisy training labels. Because

we are evaluating these models on a classification task, mis-

labeled data simply means that training samples labeled

with the incorrect class. We use a uniform noise simula-

tion scheme to add noise to 35% of our training labels: in

this scheme, each corrupted label has an equal chance of

35% being mislabeled as any of the other classes. Once

training is complete, we run our trained models on clean

test data and compute all the neurons’ individual activation

maps after the application of an activation function. All of

our chosen architectures use ReLu as their activation.

4.1. Classification Efficacy

We compare the performance of the certainty model and

MCDropout models trained on noisy data and plot their

training and accuracy curves over time 2. We see an emerg-

ing trend consistent across all models and datasets. The cer-

tain model overfits to the noise in the training data and re-

sults in a similar or higher final training accuracy than the

MCDropout model. However, the MCDropout model con-

sistently produces a higher validation accuracy.

Next we investigate why MCDropout outperforms cer-

tainty by analyzing the representations learned by both

models. Consider the results on MNIST shown in Figure 2,

left. Given that the training accuracies of the certainty and

MCDropout model are quite similar after 100 epochs, both

models are clearly learning something. However given the

vastly different test accuracies between the two models–the

uncertain models undoubtedly generalize better to the test

dataset–the models are representing information differently.

4.2. Neuron Responsiveness Measured by Volatility

Next, we compare the volatility of neurons in uncertain

and certain models. We cache each neuron’s activation map

for every image in the test set. We find the mean activation

value for each feature map. To measure volatility, we com-

pare two statistics per layer: the standard deviation of the

layer’s mean activation values and the mean of the layer’s

mean activation values.



Metric Model conv0 conv1 fc1 fc2 fc3

Activation STD Certain MNIST 0.215 0.5367 2.386 1.335 1.5733

MCDropout MNIST 0.0646 0.1085 0.4207 0.2144 0.9182

Activation Mean Certain MNIST 1.009 1.3936 1.4381 0.8383 -0.0324

MCDropout MNIST 0.2443 0.2041 0.1567 0.1208 -0.498

Unresponsive neurons Certain MNIST 0.0 0.0 0.0916 0.0 0.0

MCDropout MNIST 0.1666 0.25 0.5083 0.2023 0.0
Table 1. Quantitative metrics for our MNIST experiment, with the same table layout as described in Table 2. For all layers, the certain

model’s activations posses higher means and standard deviations, while the uncertain model has more relatively unresponsive neurons and

lower activation values. Notice how several of the layers in the certain model have no relatively unresponsive neurons.

Metric Model conv0 conv1 conv2 conv3 fc1 fc2 fc3

Activation STD Certain ConvNet 0.0602 0.0343 0.1715 0.1279 7.3578 11.8364 6.5248

MCDropout ConvNet 0.047 0.0123 0.0708 0.0871 4.3155 9.2449 4.480

Activation Mean Certain ConvNet 0.0818 0.04378 0.238 0.106 1.6077 5.038 0.075

MCDropout ConvNet 0.060 0.0149 0.091 0.0616 0.4894 3.340 -2.424

Unresponsive neurons Certain ConvNet 0.4166 0.4583 0.4323 0.4414 0.5449 0.2031 0.0

MCDropout ConvNet 0.4583 0.71875 0.7083 0.6172 0.7851 0.0781 0.0

Table 2. Quantitative metrics for our CIFAR10 experiment. We show standard deviations of the mean activation value per neuron (top),

the average of the mean activation value per neuron (middle), and a ratio of the ConvNet layer’s neurons that are relatively unresponsive

(bottom). We accumulate metrics across all test samples. In general, the certain model’s layer activations have higher standard deviation

and mean (suggesting greater volatility). The uncertain model is less volatile and has more unresponsive neurons (suggesting sparsity).

Figure 3. Histograms for our MNIST experiment, with the same set-up described in Figure 4. We show 8 neurons from the second

convolution layer. Several neurons from the uncertain model (orange) are unresponsive to all inputs: notice how many of the uncertain

activation distributions are centered around 0, with shorter tails. This suggests that the uncertain model is sparser. We include a quantitative

summary of activation values over the entire test dataset in Table 1

We show the results of this investigation for each dataset

in Table 1 for MNIST, Table 2 for CIFAR10 and Table 3 for

Animal-10n. With the exception of a few layers, neurons in

certainty models activate more strongly and with more vari-

ance: the mean activation and standard deviation is higher.

4.3. Network Sparsity

We can compare the sparsity via analysis of the neurons’

individual feature maps. Sparser models contain more neu-

rons whose feature maps have values close to some constant

c, usually 0, no matter the input sample from the test set.

For qualitative evaluation, we visualize the post-

activation feature map of individual neuron for a given sam-

ple of testing data. We can visually compare how many neu-

rons seem near constant or activate in only small patches of

the map. We show heatmaps from various layers in Figure

6 (MNIST), Figure 7 (CIFAR10), and Figure 8 (Animal-

10n). In all cases, activation maps from MCDropout mod-



Metric Model conv0 conv1 conv2 conv3 fc1 fc2 fc3

Activation STD Certain ConvNet 0.2037 0.0202 0.0596 0.0304 2.077 5.071 5.695

MCDropout ConvNet 0.0191 0.0132 0.0277 0.0301 1.6326 4.032 3.8372

Activation Mean Certain ConvNet 0.0217 0.0146 0.0599 0.0191 0.4833 3.017 -2.256

MCDropout ConvNet 0.0172 0.0086 0.0265 0.0148 0.210 1.534 -1.9296

Unresponsive neurons Certain ConvNet 0.625 0.6354 0.4583 0.6367 0.4804 0.1094 0.0

MCDropout ConvNet 0.6666 0.7708 0.7448 0.4687 0.6679 0.5 0.0

Table 3. Quantitative metrics for our Animal-10n experiment, with the same table layout as described in Table 2. While less exaggerated

than results shown on MNIST in Table 1 and CIFAR in Table 2, we see a similar trend. For the majority of layers, the certain model is

more volatile, with a larger gamut of possible activation values and higher overall magnitude of activations, while the uncertain model has

more relatively unresponsive neurons and a sparser representation.

Figure 4. Histograms for our CIFAR10 experiment. We gather the mean activation values per neuron for each image in the CIFAR10 test

set, for both certain and MCDropout models. We show 8 neurons from the 1st convolution layer; for each neuron, we plot a histogram of

the mean activation values. Mean activations from the certain model are in blue; uncertain model are in orange. Notice how the range of

the uncertain model’s distributions are smaller: uncertain neurons produce a smaller gamut of possible mean activations. The uncertain

model’s distributions tend to be centered on or near 0. This suggests several of the uncertain model’s neurons produce no activation no

matter the input image. We choose 8 neurons to fit in page requirements; we include a quantitative summary of these metrics in Table 2.

els have spatially sparse activations: when they do activate,

it is in tight, localized regions, and large patches of each ac-

tivation map remain inactivated. In addition, several of the

MCDropout activation maps show very little activation at

all. We also calculate the mean activation value per neuron

per image in each experiment’s test dataset. We plot per-

neuron histograms of these mean activation values for the

certain and MCDropout models in Figures 3 (MNIST), 4

(CIFAR10), and 5 (Animal-10n). We can then compare the

mean and support of the resulting activation distributions: in

many cases, the distributions from MCDropout models pos-

sess smaller supports and are centered more closely around

a mean activation value of 0.0. This provides an intuitive

understanding of why MCDropout is more robust against

noisy labels: the neurons that may be influenced by noisy

labels in the certainty model are not activated as strongly

in MCDropout models. MCDropout layers provide regular-

ization against these “corrupted” neurons.

These qualitative traits show that the MCDropout

model’s learned representation is sparser. For a quantitative

analysis, we can count how many neurons are “relatively

unresponsive” based on their gamut of possible activations

for all the test images. Neurons that rarely activate–that is,

the mean of their activations for all images on the test set

falls below some epsilon threshold–are tallied in the final

row of Tables 1 (MNIST), 2 (CIFAR10), and 3 (Animal-

10n). We report these numbers as the ratio of “relatively

unresponsive neurons” to the total number of neurons in the

layer. The results show that the major of the MCDropout

models’ layers have more dead neurons than correspond-

ing layers in the certain model does. This indicates that the

uncertain model has learned a more sparse representation.

5. Discussion

We have compared the representations, on a per-neuron

level, of MCDropout models and certainty models when



Figure 5. Histograms for our Animal-10n experiment, with the same set-up as Figure 4. We show neurons from the third convolution

layer. Similar to Figure 4, several neurons from the uncertain model are unresponsive (result in mean activations near 0) to all inputs. This

suggests that the uncertain model is sparser. We include a quantitative summary of activation values over the entire dataset in Table 3

.

C
er

ta
in

M
C

D
ro

p
o

u
t

Figure 6. Activation maps for our MNIST experiment. We show the activations from 10 neurons on a random image from MNIST’s

test set, from the certain LeNet5’s second convolution layer (top) and the MCDropout model’s second convolution layer. Brighter values

indicate higher activation values. The chosen layer contains 16 neurons total; for each model, we choose the 10 neurons with the highest

mean activation value. The certain model activates much more strongly, while the MCDropout model’s activations are more muted, and

spatially sparse.

C
er

ta
in

M
C

D
ro

p
o

u
t

Figure 7. Activation maps for our CIFAR10 experiment. We show the activations from 10 neurons on a random image from CIFAR10’s

test set, from the certain ConvNet’s first convolution layer (top) and the MCDropout model’s first convolution layer. The chosen layer

contains 48 neurons total; for each model, we choose the 10 neurons with the highest mean activation value. The brighter the value at a

pixel, the higher the activation at that point. We see on that MCDropout has smaller overall activations: there are no bright yellow areas in

the bottom row’s feature maps, while we do for several maps in the top row. In addition, the activations are more spatially sparse: many of

the displayed MCDropout model’s featuremaps have entire regions with no activations. This is not as noticeable in the certain model.

trained with noisy labels. MCDropout’s representation is

less volatile but more sparse, a justification for its greater

effectiveness and generalization in noisy-label scenarios.

MCDropout provides regularization so that neurons are not

overly influenced by the noisy labels; these neurons are not

regularized at test time, contributing to robustness against



C
er

ta
in

M
C

D
ro

p
o

u
t

Figure 8. Activation maps for our Animal-10n experiment. We show the activations from 10 neurons on a random image from Animal-

10n’s test set, from the certain ConvNet’s third convolution layer (top) and the MCDropout model’s third convolution layer. Brighter values

indicate higher activation values. The chosen layer contains 196 neurons total; for each model, we choose the 10 neurons with the highest

mean activation value. While less obvious than the comparison in Figure 7 and Figure 6, the certain model still shows higher and less

spatially sparse activations than the MCDropout model.

noisy labels. With fewer free parameters to over-explain

training label noise, MCDropout models forge representa-

tions that are less capable of overfitting to noisy labels.

Our goal was not to build state-of-the-art models for the

presented datasets or find the best network to deal with

noisy labels. Rather, we investigate interpretable metrics

and observations from the model responses that identify

why MCDropout outperforms certainty models.

In our experiments, we primarily analyzed all-layered

MCDropout for the purpose of maximizing the MCDropout

effect. However we acknowledge there are other differ-

ent configurations of uncertainty placement. As seen in

Figure 9, we further analyze different MCDropout place-

ment configurations on MNIST dataset and discover that

MCDropout on all layers possesses the best test classifica-

tion accuracy when training with noisy labels. Such be-

havior is consistent with the theoretical establishment that

all-layered MCDropout best approximates Bayesian neu-

ral network. While other configurations such as converting

only convolutional layers, internal layers, final layers, etc.,

to MCDropout layers still outperform the certainty model,

the best-performing model benefits from the most number

of MCDropout layers. We believe research directions on

an optimal trade off between classification performance and

MCDropout layer placement is critical for noisy-label train-

ing with constraints on memory or inference time.

We also comment on Dropout in comparison with MC-

Dropout in the setting of noisy labels. While both remove a

subset of neurons at random during training, at inference

time, Dropout is deterministic but MCDropout estimates

a posterior predictive distribution that is informed by the

network–and perhaps affected by network properties that

we have investigated, such as volatility and sparsity. MC-

Dropout is able to offer extra information such as uncer-

tainty and confidence via variation ratio, entropy, standard

deviation to better detect samples with noisy or clean labels

[5, 15]. Furthermore, during inference time, MCDropout

conducts an ensemble of K forward passes. The ensem-

ble procedure may contribute to less volatility but more un-

Figure 9. We further analyze different MCDropout placement con-

figurations and discover that MCDropout on all layers (black line)

possesses the optimal results against noisy labels, particularly

compared to the certain model (yellow line).

responsive neurons, and thus additional robustness, com-

pared with just Dropout during noisy label training. We

plan to conduct thorough ablation studies to compare reg-

ularization, sparsity, and robustness between MCDropout

and Dropout when training with noisy labels.

We hope this investigation helps us ask and answer more

questions. It would be interesting to see if our observations

about volatility and sparsity hold for other uncertainty esti-

mation or ensemble methods like Bootstrap [16] or Bayes

by Backprop [4]. These observations may also help us tune

MCDropout-related hyperparameters, such as the best loca-

tions to place MCDropout layers in a model architecture.

6. Acknowledgements

We thank the anonymous reviewers for their thoughtful

suggestions. We thank Ilknur Kabul, Theofanis Karaletsos,

Forough Arabshahi, Adly Templeton, Ousmane Dia, Karen

Chen, and Sahar Karimi for helpful discussions. We thank

Jessica Ai, Audrey Flower, Beliz Gokkaya, Neamah Hus-

sein, and Ehsan Emamjomeh-Zadeh for developing the un-

certainty estimation techniques used in this study.



References

[1] Görkem Algan and Ilkay Ulusoy. Label noise types and their

effects on deep learning. arXiv preprint arXiv:2003.10471,

2020. 2

[2] Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor, and

Kevin McGuinness. Unsupervised label noise modeling and

loss correction. In International Conference on Machine

Learning, pages 312–321. PMLR, 2019. 3

[3] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou,

Joshua B. Tenenbaum, William T. Freeman, and Antonio

Torralba. Gan dissection: Visualizing and understanding

generative adversarial networks. In Proceedings of the In-

ternational Conference on Learning Representations (ICLR),

2019. 3

[4] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,

and Daan Wierstra. Weight uncertainty in neural networks.

In Proceedings of the 32nd International Conference on In-

ternational Conference on Machine Learning - Volume 37,

ICML’15, page 1613–1622. JMLR.org, 2015. 2, 8

[5] Li Chen, Purvi Goel, and Ilknur Kabul. Uncertainty estima-

tion methods in the presence of noisy labels. Advances in

Neural Information Processing Systems, Women in Machine

Learning Workshop, 2021. 1, 2, 4, 8

[6] Li Chen, David Yang, Purvi Goel, and Ilknur Kabul. Ro-

bust deep learning with active noise cancellation for spatial

computing. arXiv preprint arXiv:2011.08341, 2020. 3

[7] Yifan Ding, Liqiang Wang, Deliang Fan, and Boqing Gong.

A semi-supervised two-stage approach to learning from

noisy labels. In 2018 IEEE Winter Conference on Applica-

tions of Computer Vision (WACV), pages 1215–1224. IEEE,

2018. 3

[8] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian

approximation: Representing model uncertainty in deep

learning. In international conference on machine learning,

pages 1050–1059. PMLR, 2016. 2

[9] T. Gale, E. Elsen, and Sara Hooker. The state of sparsity in

deep neural networks. ArXiv, abs/1902.09574, 2019. 4

[10] Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss

functions under label noise for deep neural networks. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence,

volume 31, 2017. 2

[11] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao

Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-

teaching: Robust training of deep neural networks with

extremely noisy labels. arXiv preprint arXiv:1804.06872,

2018. 3

[12] Dan Hendrycks, Mantas Mazeika, Duncan Wilson, and

Kevin Gimpel. Using trusted data to train deep net-

works on labels corrupted by severe noise. arXiv preprint

arXiv:1802.05300, 2018. 3

[13] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden,

and Alexandra Peste. Sparsity in deep learning: Pruning

and growth for efficient inference and training in neural net-

works, 01 2021. 4

[14] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and

Li Fei-Fei. Mentornet: Learning data-driven curriculum for

very deep neural networks on corrupted labels. In Interna-

tional Conference on Machine Learning, pages 2304–2313.

PMLR, 2018. 3

[15] Jan M Köhler, Maximilian Autenrieth, and William H

Beluch. Uncertainty based detection and relabeling of noisy

image labels. In CVPR Workshops, pages 33–37, 2019. 8

[16] Felix Laumann and Kumar Shridhar. Uncertainty estima-

tions by softplus normalization in bayesian convolutional

neural networks with variational inference, 06 2018. 2, 8

[17] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 4

[18] Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix:

Learning with noisy labels as semi-supervised learning.

arXiv preprint arXiv:2002.07394, 2020. 3

[19] Yueming Lyu and Ivor W Tsang. Curriculum loss: Robust

learning and generalization against label corruption. arXiv

preprint arXiv:1905.10045, 2019. 2

[20] R. Ma and L. Niu. A survey of sparse-learning methods

for deep neural networks. In 2018 IEEE/WIC/ACM Interna-

tional Conference on Web Intelligence (WI), pages 647–650,

2018. 4

[21] Eran Malach and Shai Shalev-Shwartz. Decoupling”

when to update” from” how to update”. arXiv preprint

arXiv:1706.02613, 2017. 3

[22] Duc Tam Nguyen, Chaithanya Kumar Mummadi, Thi

Phuong Nhung Ngo, Thi Hoai Phuong Nguyen, Laura

Beggel, and Thomas Brox. Self: Learning to filter noisy la-

bels with self-ensembling. arXiv preprint arXiv:1910.01842,

2019. 3

[23] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon,

Richard Nock, and Lizhen Qu. Making deep neural networks

robust to label noise: A loss correction approach. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1944–1952, 2017. 3

[24] Hwanjun Song, Minseok Kim, and Jae-Gil Lee. SELFIE:

Refurbishing unclean samples for robust deep learning. In

ICML, 2019. 4

[25] S. Srinivas, A. Subramanya, and R. V. Babu. Training sparse

neural networks. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), pages

455–462, 2017. 4

[26] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng

Yi, and James Bailey. Symmetric cross entropy for robust

learning with noisy labels. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 322–

330, 2019. 2

[27] Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Ming-

ming Gong, Haifeng Liu, Gang Niu, Dacheng Tao, and

Masashi Sugiyama. Part-dependent label noise: Towards

instance-dependent label noise. Advances in Neural Infor-

mation Processing Systems, 33, 2020. 2

[28] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang,

and Masashi Sugiyama. How does disagreement help gener-

alization against label corruption? In International Confer-

ence on Machine Learning, pages 7164–7173. PMLR, 2019.

3



[29] Zhilu Zhang and Mert R Sabuncu. Generalized cross en-

tropy loss for training deep neural networks with noisy la-

bels. arXiv preprint arXiv:1805.07836, 2018. 2


