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Abstract

In this paper, we propose a Deep Dense Network for

Depth Completion Task (DeepDNet) towards generating

dense depth map using sparse depth and captured view.

Wide variety of scene understanding applications such as

3D reconstruction, mixed reality, robotics demand accurate

and dense depth maps. Existing depth sensors capture ac-

curate and reliable sparse depth and find challenges in ac-

quiring dense depth maps. Towards this we plan to utilise

the accurate sparse depth as input with RGB image to gen-

erate dense depth. We model the transformation of random

sparse input to grid-based sparse input using Quad-tree de-

composition. We propose Dense-Residual-Skip (DRS) Au-

toencoder along with an attention towards edge preserva-

tion using Gradient Aware Mean Squared Error (GAMSE)

Loss. We demonstrate our results on the NYUv2 dataset and

compare it with other state of the art methods. We also show

our results on sparse depth captured by ARCore depth API

with its dense depth map. Extensive experiments suggest

consistent improvements over existing methods.

1. Introduction

Depth estimation from 2D images is a fundamental task

in many applications including scene understanding and re-

construction [39, 16]. Depth estimation plays a vital role

in a wide range of application based technologies, such as

autonomous driving, augmented reality (AR) [39], robotics

and 3D mapping. A set of objectives can be resolved con-

sidering depth such as, producing convincing occlusions

and consistent depth prediction across frames to avoid flick-

ering. Existing depth sensors including LiDAR and struc-

tured light-based depth sensors provide only sparse depth

measurements, resulting in degradation in the performance

for many depth-dependent tasks. To address such degrada-

tion, densification of sparse depth is need of the hour.

Learning based methods, especially convolutional neu-

ral networks (CNNs), perform well in many computer vi-

sion tasks such as object detection [34], image classification

[25], semantic segmentation [24], and so on. Deep learning

performs commendable job in computer vision tasks, works

such as [37, 10, 21, 8] use deep networks for depth densi-

fication. One of the main reasons for processing of sparse

data is to complete missing information. Intuitively appro-

priate designs of CNN architectures can aid in the prediction

of dense depth using valid input data.

Figure 1. Depth densification using proposed DeepDNet.

While the performance of these methods has been

steadily increasing, there are still major problems in the

qualities of these estimated depth maps. Based on the analy-

sis of existing architecture and training strategies we set out

with the design goal to develop a deeper architecture that

makes feature reuse, feature propagation and depth com-

pletion task much smoother. Since the depth sensors can

capture largely random sparse depth, a system capable of

accepting this random sparse as input is necessary. We em-

ploy a simple and efficient preprocessing module, as this

depth completion task is carried out using CNNs [26] which

requires uniform sparse depth aids the neural network to

achieve better results. We also need a deeper network which

can estimate depth for all the points in the scene using

sparse depth. Towards this, we introduce a novel UNet

based Dense-Residual-Skip (DRS) Autoencoder [35].



Figure 2. DeepDNet: Deep dense network for depth completion

Based on the experiments conducted, substantial error

in the depth completion task is due to inaccurate depth es-

timation at the edges. Towards this, we provide attention

mechanism by introducing gradient term in the loss func-

tion which is mathematically well-known solution [22]. We

incorporate this mathematical solution as a learning based

change making the model ”restoration edge aware”. Our

method produces improvised dense depth and outperforms

in comparison with state-of-art methods. In addition, our

method produces better quality dense depth maps compared

to ARCore dense depth map API.

Contributions of this paper. The major contributions

of this paper are presented in three folds:

1. We introduce efficient preprocessing module in which

we employ Quadtree based decomposition for trans-

formation from random sparse input to a grid based

uniform input.

2. We design a novel deep learning architecture called

Dense Residual Skip Autoencoder with an attention

mechanism that preserves the edge information.

3. We formulate a novel loss function called Gradient

Aware Mean Squared Error Loss (GAMSE) based on

existing gradient aware functions towards depth com-

pletion task that preserves edge information in gener-

ated dense depth map.

4. We demonstrate our results on NYUv2 dataset. We

also demonstrate our results on Depth obtained from

ARCore depth API.

In Section 2 we present related works on depth densifi-

cation. In Section 3 we present our methodology for depth

densification. In Section 4 we provide results on the pro-

posed methodology. In Section 5 we conclude our contri-

butions with future scope in the depth estimation.

2. Related Work

Depth densification encompass depth prediction and

depth completion as its sub-problems. Towards this we pro-

vide a brief level of insight on available methods.

RGB-based depth prediction. Early works on depth

prediction using RGB images largely relied on hand-crafted

features and probabilistic graph models. In [36] authors es-

timate the absolute scales of different image patches and in-

ferred the depth image using a Markov Random field model.

From a single monocular image, the task of depth densifi-

cation was addressed before the rise of deep learning in the

work presented in [30]. Traditional multi-view stereo al-

gorithms such as Patch-based Multi-view Stereo (PMVS)

and Clustering Views for Multi-view Stereo (CMVS) are

methods are used for dense depth estimation for stereo and

multiple images [12].

Advancements in deep learning has paved the way in

successful implementation to the depth estimation problem.

Authors in [6] [19] have shown that Encoder-decoder based

deep neural network predict improved resolutions consider-

ing individual pixels for depth. Authors in [9] present two-

stack convolutional neural network (CNN), one predicting

the global coarse scale and the other refining the local de-

tails. Authors in [37] show, traditional neural networks un-

der perform on sparse data with clues on location of missing

depth.

Unsupervised based depth prediction. Authors in [13]

propose an unsupervised framework to learn a deep convo-

lutional neural network for a single view depth prediction,

without considering ground truth depth. Authors in [27]

provide an approach to depth map prediction from monoc-

ular images that learns in a semi-supervised way. They en-

force deep network to produce photo-consistent dense depth

maps using direct image alignment loss. Authors in [8] pro-

pose to use single deep regression network to learn from

the RGB-D raw data, and show impact of number of depth

samples on prediction accuracy. The increase in the pre-



diction accuracy due to the introduction of sparse depth is

appreciated.

Figure 3. Preprocessing module: conversion of random sparse to

grid input

Depth completion. Depth completion is a sub-problem

of depth estimation, the task aims to recover dense depth

from sparse depth measurements. Authors in [7] solve

solve the problem of depth completion from RGBD data

by jointly extracting 2D and 3D features considering a dedi-

cated neural network block. Authors in [33] provide end-to-

end non-local spatial propagation network for depth com-

pletion considering relevant non-local neighbours during

propagation.

Exploiting the usage of depth as an input is common in

many computer vision tasks such as tracking and segmen-

tation [8] and SLAM based system modules [40] proposes

a deep model which fuses complementary information de-

rived from multiple CNN side outputs.

3. DeepDNet for depth densification

In Section 3.1 we present the pre-processing block that

introduces the conversion of acquired input RGB and sparse

depth to the desired feature maps. In Section 3.2 we in-

troduce DRS autoencoder. In Section 3.3 we provide the

advancement on MSE by introducing new gradient aware

error term.

3.1. Preprocessing Module.

In this section we present the proposed preprocessing

module for depth densification task. Majority of the data

captured from depth sensors (Mobile, Camera, etc) is sparse

and unstructured, however convolutional neural networks

[28] are considered to learn better features with uniform

data. A module that transforms unstructured random sparse

input to uniform grid-based sparse input is important.

Towards this, we introduce quad tree based preprocess-

ing module, as shown in the Fig. 2 for transforming random

sparse points to uniform sparse input. This conversion from

random sparse depth to uniform sparse depth is given in the

Algorithm 1. The unmediated application of dense convo-

lution on the generated grid-based sparse input results in

wastage of computing resources. To overcome this diffi-

culty, we extract two features and feed the same to the auto-

encoder. These two features are

• F1: Nearest neighbour interpolation of sparse depth

Algorithm 1: Random sparse depth to grid sparse

depth conversion

Input: sparse depth S(x, y);

Initialize: H, W = shape(S);

Initialize: qt = quadTree();

Initialize: grid(x, y);

Initialize: offset = 3;

for (x, y) such that S(x, y) != 0: do

Insert point(x, y) to quadTree qt;

end

for all grid points (x, y) do

nx, ny = query qt for nearest neighbour point;

grid[x, y] = S[nx, ny];

end

• F2: Bi-cubic interpolation of sparse depth

All the points with unknown depth can be assigned to

a group, by observing the nearest neighbour with known

depth. As there is high correlation between the points

with unknown depth to its neighbours, we introduce nearest

neighbour interpolation (F1) and bicubic interpolation (F2)

as two feature maps to the autoencoder along with the RGB

image. Bicubic interpolation is included as the depth of any

point is dependent on its neighbours in all directions and as

it utilizes the weighted average of four translated pixel val-

ues for each output pixel value. Extraction of two feature

maps is explained in the Algorithm 2.

Algorithm 2: Feature extraction from grid sparse

depth for autoencoder

Input: grid sparse depth grid(x, y);

Input: RGB image rgb(x, y);

Initialize: F1(x, y) = 0, for all (x, y);

Initialize: F2(x, y) = 0, for all (x, y);

Initialize: k = downsampling window size;

Initialize: h = H // k;

Initialize: w = W // k;

Initialize: down(x, y) = 0 for all x, y;

for y in (0, h) do

for x in (0, w) do

down[x, y] = grid[x*k, y*k];

end

end

F1 = nearestNeighbourInterpolation(down, (W, H));

F2 = bi-cubicInterpolation(down, (W, H));

Features = Concatenation(rgb, F1, F2);



Figure 4. Proposed DRS auto-encoder: novel deep learning auto-encoder architecture

3.2. DRS autoencoder

In the previous Section, we discuss essential preprocess-

ing module. In this Section, we introduce proposed DRS

auto-encoder. Fig. 4 shows an overview of our DRS au-

toencoder network for depth densification. An ideal deep

network produces accurate dense depth maps using sparse

input. To produce these dense depth maps, the deepness

of the network should be extensive. Towards this, works

such as [17] introduce dense blocks where each layer is

connected to every other layer in a feed-forward fashion.

This alleviates the vanishing-gradient problem, strengthens

feature propagation, encourages feature reuse, and substan-

tially reduces the number of parameters. We employ these

dense block as building blocks of our network. We intro-

duce two types of skip connections to solve the problem of

vanishing gradient problem, as shown in the Fig. 4.

In addition to solve vanishing gradient problem, these

two skip connections aid the model to have foremost feature

reuse which reduces deepness of the network. These two

skip connections are explained in details in Section 3.2.1

and 3.2.2.

3.2.1 Dense skip connectivity

Depth completion task requires very deep network and in-

troducing such network will introduce problems such as

vanishing-gradient. DenseNet blocks and long skip con-

nections, address this issue of vanishing gradient to some

extent. However, vanishing gradient problem still remains

a major concern to be solved. We address this issue by in-

troducing new kind of connectivity between encoder and

decoder called as Sparse connectivity. We also introduce a

new type of direct connection with appropriate interpolation

and channel reduction using 1x1 convolution from all en-

coder layers to every decoder layer. Introducing these dense

skip connections ensures more feature re-usability and re-

covers the spatial information. Information is lost during

down-sampling in encoder, and introducing these new types

of skip connections helps the model to recover from this

loss. These skip connections strengthens feature propaga-

tion, feature reuse and substantially reduce the number of

parameters and employ faster convergence.

Figure 5. Comparison of MSE and GAMSE loss. Results of

depth densification using DRS auto-encoder trained using MSE

and GAMSE loss for input image shown in Fig. 6.

3.2.2 Residual connectivity

We introduce residual connectivity [18] as they preserve the

gradients as they back propagate through identity function

by doing vector addition of features. Back propagation with

identity function makes the usage of residual blocks in tasks



Table 1. DRS performance on NYU-V2 dataset: The reported numbers are from the corresponding original papers. Note that lower

values for RMSE and MRE are considered superior and higher values for δ1(%), δ2(%) and δ3(%) are considered superior. It is also to be

noted that our method performs better in majority of the cases.

Model % of points Sampled Downsampling factor RMSE MRE δ1(%) δ2(%) δ3(%)

D3 0.011 96X96 0.318 7.20 94.2 98.9 99.8

DRS(ours) 0.011 96X96 0.309 6.98 94.8 99.04 99.78

Ma et al. 0.029 ∼59X59 0.351 7.8 92.8 98.4 99.6

D3 0.043 48X48 0.193 3.21 98.31 99.73 99.95

DRS(ours) 0.043 48X48 0.196 3.16 98.41 99.71 99.94

Lu et al. - 24X24 0.171 - - - -

D3 0.174 24X24 0.118 1.49 99.45 99.92 99.98

Fu et al. - 24X24 0.509 - 82.8 96.5 99.2

High quality Monocular Depth estimation. - 24X24 0.390 - 89.5 98.0 99.6

DRS(ours) 0.174 24X24 0.117 1.56 99.48 99.92 99.98

Ma et al. 0.289 ∼19X19 0.23 4.4 97.1 99.4 99.8

Lu et al. - 16X16 0.108 - - - -

D3 0.391 16X16 0.087 0.99 99.72 99.97 99.99

DRS(ours) 0.391 16X16 0.086 1.03 99.74 99.97 99.99

such as optical flow estimation and semantic segmentation.

We introduce residual connections in decoder in which fea-

ture maps from each decoder layer is added to its subse-

quent layer. Residual connections makes layers of decoder

to learn from previously captured information of layers of

the decoder.

Neighbourhood pooling techniques such as max pool-

ing, average pooling [41] are simple and efficient. But these

methods introduce edges halos, blurriness and aliasing. To

address this,e we implement wavelet pooling [38]. We re-

place the max-pooling layers by a wavelet pooling layers

that performs second level wavelet decomposition.

We apply bilinear interpolation in decoder as no learn-

able parameters are necessary. We use Random Relu

(RRelu) [4] as activate function to our architecture. All con-

volutional layers in the network are batch normalized [20].

3.3. GAMSELoss

In this Section, we introduce Gradient Aware Mean

Squared Error (GAMSE) loss function for the task of depth

completion and present comparison of predictions made by

models trained on MSE and GAMSE separately in Fig. 5.

Mean Squared Error loss [2] calculates the loss for the entire

image without having to cornerstone any specific features of

the image. Based on the observations and extensive experi-

ments, reconstruction problems have poor performance due

to inaccurate depth prediction at edges. Inspired from works

such as [29, 15, 31], and to give importance to edges, we

propose new GAMSE loss. This new loss function helps the

model with fast convergence, enhanced stability and edge

preservation.

G = E

[

((

∂p

∂x

)

−

(

∂g

∂x

))2

+

((

∂p

∂y

)

−

(

∂g

∂y

))2
]

(1)

M = E
[

(p− g)
2

]

(2)

LOSS = γG + (1− γ)M (3)

where p is the prediction, g is ground truth or target, E is

expectation, γ is hyperparameter γ ǫ [0, 1]

In equation (1)
(

∂p
∂x

)

−
(

∂g
∂x

)

represents the difference of

gradient of predicted depth and ground truth depth in hori-

zontal direction and
(

∂p
∂y

)

−
(

∂g
∂y

)

represents the difference

of gradient of predicted depth and ground truth depth in ver-

tical direction. And equation (2) represents Mean Squared

Error between predicted depth and ground truth. The convo-

lution operation of image with sobel [22] filter is performed

while computing the gradients of the image considered.

The edges in an image are represented by set pixels

which have higher gradient than nearby pixels. In the pro-

posed loss function, the term G represents edge regions. It

is determined by calculating the difference between ground

truth and prediction, only at edges [22]. This enhances the

propagation of gradients to kernels which are responsible

for edge production. The G effects MSE loss [2] as edge

regions are a part of MSE [2]. It ultimately results in fast

convergence, enhanced stability and edge preservation. The

hyperparameter gamma plays a crucial role in assigning the

weightage to gradient regions in the image. Fig. 3.3. shows

the comparison between predictions made by model trained

on MSE [2] and GAMSE Loss function. As observed in



5 depth prediction at edges due to introduction of the pro-

posed loss function are more accurate compared to MSE

[2].

4. Results and Discussions

In Section 4.1 we provide the description of the dataset

used. In Section 4.2 we provide implementations and train-

ing details. Section 4.3 present metrics used to evaluate

performance of the model. In Section 4.4 we provide qual-

itative results of proposed architecture. In Section 4.5 we

provide ablation study on various experiments performed.

4.1. Dataset Description

Our framework uses the NYU-Depth-v2 dataset [32]

which consists of RGB and depth images collected from

464 different indoor scenes with a Microsoft Kinect. We

use the official split of data, where 249 scenes are used

for training and 215 for testing. The small labelled test

dataset with 654 images is used for evaluating the final per-

formance. For training, we sample spatially evenly from

each raw video sequence from the training dataset, generat-

ing roughly 48,000 synchronized depth-RGB image pairs.

4.2. Implementation Details

We use batch size of 12 on 4 TeslaV100 GPUs on DGX-

1 for training. The model is implemented in PyTorch 1.3.0

[3]. We train the model with a 24x24 downsampling rate for

15 epochs i.e. roughly 60000 iterations. We perform exper-

iments with model trained on different downsampling rates.

The model trained on 24x24 downsampling rate model is

loaded and again trained for about 5 epochs i.e. roughly

20000 iterations. Initial learning rate of 0.01 is used and for

every 4000 iterations learning rate is decayed by a factor

of 10. Adam [23] is used as an optimizer and our custom

GAMSELoss criterion is used.

4.3. Evaluation Metrics

Standard metrics are used to evaluate our depth estima-

tion model against valid ground truth depth values. Let ŷ be

the predicted depth and y the ground truth dense depth. We

measure: (1) Root Mean Square Error (RMSE)[2]:

√

1

N

∑

[ŷ − y]
2

(4)

(2) Mean Absolute Relative Error (MRE)[1]:

100

N

∑

(

|ŷ − y|

y

)

(5)

(3) Delta Thresholds (δ i):
∣

∣

∣

{

ŷ|max
(

y
ŷ
, ŷ
y

)

< 1.25i
}
∣

∣

∣

{ŷ}
(6)

, δ i is the percentage of pixels with relative error under a

threshold controlled by the constant i.

4.4. Qualitative Analysis.

In this Section, we present analysis of DRS model with

GAMSE loss function for NYUv2 dataset. We further

demonstrate the results on multiple sparse input patterns.

For downsampling factor of A x A, we take H*W / A2

depth values as the sparse input. For example, for 24x24

downsampling on a 480x640 image, this would be 0.18 %

of the total pixels.

In Fig. 6 we show the results on NYUv2 dataset with a

downsampling factor of 48x48 in the first row, 12x12 in the

second row, along with grid based sparse depth as input.

In Fig. 9 we show the results on NYUv2 dataset differ-

ent rates of downsampling factors. We can observe that the

presented network performs fairly better even with extreme

sparse depth information as an input. With the increase in

number points in sparse depth quality of dense depth map

increases.

In Fig. 10 we show the results for dense map produced

using the proposed network and Google ARCore depth API.

The downsampling factor for the sparse input is 96x96. It

can be observed that our method generates clearer, accu-

rate and dense depth maps with higher quality compared to

dense depth maps produced by Google ARCore depth API.

In Fig. 11 we show a gallery of depth estimation results

that are predicated using our method along with a compari-

son to those generated by the two methods [11] and [5]. It is

observed by the black bounding boxes for same regions for

the scenes, that our approach produces depth estimations at

higher quality where depth edges better match those of the

ground truth and with significantly fewer artifacts.

4.5. Ablation Study

We provide ablation study for depth completion task in

two different experimental conditions i.e

1. Dense depth map prediction with random sparse depth

as input versus uniform grid based sparse depth as in-

put, and

2. Dense depth map prediction without the introduced

Gradient Aware MSE loss function versus Gradient

Awarse MSE loss function.

In Fig. 7, the first column contains RGB image from

NYUv2 dataset, second column contains predicted dense

depth map from proposed DRS autoencoder with random

sparse depth as input, third column contains dense depth

map prediction from grid based sparse input and the fourth

column contains the ground truth dense depth map. It can

be observed that architecture provides better quality dense

depth maps when the input is of uniform type. All the pre-

vious depth completion methods considered only uniform



Figure 6. Visualisation of our results on NYUv2 dataset The first column consists of RGB image, second column consists of sparse depth.

The sparse depth is obtained using a downsampling factor of 48x48, 24x24, 12x12.

Figure 7. Results on DRS with unstructured random sparse depth

as input and uniform grid sparse depth as input: Sparse depth input

downsampling factor: 24x24.

Figure 8. Results on DRS without GAMSE loss function and with

GAMSE loss function: sparse depth input downsampling factor:

24x24.

grid based sparse depth as input. However, in practical ap-

plications, obtaining uniform data can act as a limitation

which is addressed in this work as explained in 3.1.

In Fig. 8, the first column contains RGB image

from NYUv2 dataset, second column contains predicted

dense depth map from proposed DRS autoencoder without

GAMSE loss function, third column contains dense depth

map prediction with GAMSE loss function, and the fourth

column contains the ground truth dense depth map. It is

Figure 9. Visualization of our results on different sampling

Rate: First column: input RGB images, second column: DRS

(our) model predictions for downsampling factor: 48x48, Third

column: DRS (our) model predictions for downsampling factor:

24x24, Fourth column: DRS (our) model predictions for down-

sampling factor: 12x12, Fifth column: ground truth.

observed that the dense depth predictions with the network

trained with GAMSE loss function provides clear, smooth

and better dense depth maps when compared to the network

which is trained only on MSE. As the error at the edges

decreases, the dense depth map predictions become more

accurate.

5. Conclusions

In this paper we have proposed a novel framework for

dense depth estimation using RGB and sparse sensing. We

demonstrate that our novel DRS Auto Encoder network can

operate on sparse depth information and RGB image to pro-

duce accurate dense depth maps similar to that of dedicated

sensor hardware. Our model generalizes readily on diverse

sparse input patterns and also introduce two new skip con-

nections in the autoencoder. We have also proposed new



Figure 10. Visualization of our results versus ARCore dense depth map

Figure 11. A gallery of estimated depth maps on the NYU depth v2 dataset: input RGB images, results of [11] (provided by the authors),

results of [5] (provided by the authors), our estimated depth maps and ground truth depth maps. First column: input RGB image, Second

column: ground truth dense depth map, Third column: results by DORN [11], Fourth column: results by High quality model [5], Fifth

column: estimated dense depth map by proposed DRS autoencoder.

loss function for depth prediction at edges.

The next step would be to use dense depth for 3D recon-

struction tasks, to reduce model parameters for on-device

(mobile phones) applications and to show results on KITTI

dataset [14]. We evaluate our DRS model for other vision

tasks like super resolution. We hope that our work motivates

additional research into use of DRS Autoencoder network.
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