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Abstract

In this paper, we propose Point Decomposition Network

(PointDCCNet) for 3D object categorization using point

cloud decomposition. In the recent technologies for 3D

data capture, point clouds have a surge in demand due to

their simpler representation and computations. The point

cloud analysis requires robust methods for feature extrac-

tion to tackle the permutation invariance and unorderdness

in point sets and finds application in categorization, refine-

ment, and super-resolution of 3D data. We propose a novel

PointDCCNet towards the decomposition of point clouds

into primitive geometric shapes, namely plane, sphere, cone

and cylinder; and use it as a clue towards modelling a clas-

sifier for 3D object categorization. The decomposition of

point clouds provides a geometrical signature of the 3D ob-

ject towards categorization. We show the decomposition of

3D data into primitive shapes which assists the model in the

categorization of 3D objects. We demonstrate the results

using benchmark datasets and compare them with state-of-

the-art techniques.

1. Introduction

Point clouds are a set of data points in 3D representing

the shape in the simplest form. Recently, many 3D point

cloud applications like robotics [32], autonomous driving

[26], architectural and archaeological heritage sites digital-

ization [23] have seen rising demands due to its easy com-

putations and storage. These require accurate and robust 3D

point cloud data for processing and analysis. Photogram-

metry, structured light, ToF sensors and LiDAR sensing

technologies produce an unordered set of 3D points try-

ing to capture the object surface and also there are huge

man-made 3D data repositories which widens the oppor-

tunities of working on 3D data processing. However, the

data obtained by sensors and such repositories are repre-

sented as digitailized point clouds or meshes. This simplest

Figure 1. PointDCCNet for 3D object categorization

level of representation makes it potentially challenging to

geometrically understand and operate on 3D data, due to

missing structural information. To address this issue, in this

work we look at this as a problem of 3D object decom-

position, which maps each point to a geometric primitive

shape, defining its unique set of geometric signature thus,

acquiring structural information. Knowing the underlying

geometry will greatly assist many 3D analysis/generation

tasks. We show our framework for 3D object categoriza-

tion in Figure 1, which takes into account the underlying

geometry of the 3D object for categorization.

Previous works in computer vision for primitive shape

detection and shape decomposition were performed using

classical methods like RANSAC [5] and its other variants

[42, 24, 3, 16]. A RANSAC-based framework, [34] tries to

solve this issue by considering it as a problem of primitive

shape fitting and is able to detect different primitive types

on a dense point cloud. [21] improves on this by optimiz-

ing on extracted primitives based on relation between the

primitives. These methods are effective to outliers. How-

ever, weakness of RANSAC based approaches are that the

manual parameter tuning is labour-intensive. This demands

for careful supervision and makes it non-scalable for large

datasets [15].

Another direction of work focuses towards incorporating

the achievements of convolution neural networks on regular



grid data (2D data) analysis [18, 39] to irregular 3D point

set analysis [29, 14, 51, 33, 30, 45]. Most of the meth-

ods [48, 25, 6, 28] transform the point cloud data to vol-

umetric representations to implement weight sharing, lead-

ing to loss of information and high processing complexity.

The local geometry of 3D object would be compromised

due to quantization. Authors in [41] propose to transform

point cloud data to grid representation. Multi-view CNNs

[40, 4, 12, 46, 31] transform 3D point clouds to 2D images

and apply 2D CNNs for point cloud analysis. However, by

using these transformations we lose the underlying geomet-

ric information of the 3D point clouds, making it difficult

to scale-up for scene understanding or point cloud analysis

tasks.

Feature-based SVMs [9] for point cloud analysis, con-

vert 3D point cloud data into a feature vector, namely met-

ric tensors and christoffel symbols. And further use this

feature vector for various 3D analysis using classical ma-

chine learning methods. We think that performance of this

model would be constrained over the representation power

of the features used.

Considerable amount of work has been done on point-

based methods, i.e, to process 3D points directly with deep

learning architectures. PointNet [27] proposed its first strat-

egy towards this approach, where features were learned

for each point followed by a symmetric function, giving a

global signature for the whole point cloud. Yet, this strategy

ignored the local context. Following this, PointNet++ [29]

proposed a hierarchical feature learning network, extract-

ing the local features and capturing fine geometric structure.

SPFN [19] and ParSeNet [36] propose methodologies for

primitive shape fitting to point clouds and [53, 44] learn to

assemble objects by 3D volumetric primitives. SPFN [19]

produces per-point segment membership and is trained to

maximize IOU between predicted and ground truth mem-

berships, however fitting primitive shapes to 3D objects

makes to computationally costly and requires proper selec-

tion of parameters for each primitive shape, which makes it

a difficult task to train a model. While ParSeNet [36] fits

primitives with more robustness to point density and noise,

it has limitations to fit boundaries smoothly and makes er-

rors when parts are small requiring higher detail. To address

these issues of 3D model decomposition task, our decompo-

sition architecture directly predicts per-point primitive la-

bels highly based on the local geometry of point clouds.

We propose Point Decomposition Network (PointDCC-

Net) for 3D object categorization. The key of PointDCCNet

is decomposition of 3D object, into 4 basic primitive shapes

and learning relations, i.e, local geometrical topology

among these primitives, which in our view will encode

each point, based on its neighbourhood points structure.

The key contributions of our work are as follows:

• We propose a 3D decomposition module which gen-

erates geometric signature of 3D objects using basic

shapes namely plane, cone, sphere and cylinder. In or-

der to build the decomposition module we do:

– We extract 3D patches and generate patch fea-

tures based on local neighbourhood and call this

sub-module as Local Summarizer Layer (LSL).

– We generate 3D point features by interpolating

the acquired patch features by LSL and call this

sub-module as Local Feature Propagation Layer

(LFPL).

• We propose a 3D classification module which takes in-

put features extracted from our proposed 3D decompo-

sition module to categorize objects represented in point

cloud format.

• We demonstrate the results of proposed 3D decom-

position module using ANSI mechanical components

dataset, and achieve an accuracy of 97.4%.

• We demonstrate the results of proposed 3D catego-

rization architecture PointDCCNet using ModelNet40

dataset, and compare the results with other 3D object

categorization techniques.

The rest of this paper is organized as follows. In Section

2, we provide the details of PointDCCNet architecture. Im-

plementation details are discussed in Section 3. We discuss

the results in Section 4 and conclude in Section 5.

2. Proposed PointDCCNet Architecture

The proposed PointDCCNet architecture for 3D object

categorization is shown in Figure 2. PointDCCNet con-

sists of 3 main blocks namely, 3D point cloud decompo-

sition, feature encoder and classifier module for 3D object

categorization. The concept of point cloud decomposition

brings in an insight of certain low level geometric infor-

mation. Our 3D point cloud decomposition module tries

to extract features which are unique to a 3D object, rep-

resented as point clouds, helping the categorization task.

In [10, 8, 35, 7] authors use decomposition framework to

decompose a given point cloud into basic shapes (sphere,

cone, cylinder) and use the decomposed primitives for dif-

ferent applications like 3D object super resolution [8], 3D

inpainting of point clouds [7], 3D object categorization [10]

and 3D object hole filling [35]. They propose to use a ma-

chine learning framework to decompose a 3D object using

metric tensor and Christoffel symbols into a set of basis

functions to perform the above mentioned tasks.

Consider a 3D object represented using point cloud. Let

O be the set of point clouds of 3D objects, which contains



Figure 2. PointDCCNet architecture (point cloud decomposition as a plugin) for 3D object categorization. The symbol ⊗ represents one

hot encoding function. For example 0 will be converted to [1, 0, 0, 0] vector, 1 will be converted to [0, 1, 0, 0] vector as similarly for others.

N number of points. Each point is characterized by 3 space

points and 3 normals in x, y, z directions.

Pi ∈ O, 1 ≤ Pi ≤ N (1)

Now, such Pi can be decomposed into primitive shapes

(sphere, cone, cylinder) as represented in [8]. However, we

choose to use planar primitive as another component be-

cause of [1], which says any 3D shape can be decomposed

into four basic primitive shapes viz. plane, sphere, cone and

cylinder

O = {O1 ∪O2 ∪O3 ∪O4} (2)

where O1, O2, O3 and O4 are set of all planar, spherical,

conical and cylindrical point clouds respectively.

To carry out the decomposition we propose a deep learn-

ing architecture shown in Figure 2 to decompose 3D ob-

ject into primitive shapes. The properties for basic shapes

like plane, sphere, cone and cylinder can be influenced from

the local geometrical properties. The decomposition of the

models is initially carried out on a local patch basis. The

decision for the global classification of the model is derived

from the results of the decomposition on the local basis. We

let the deep architecture learn needed primitive representa-

tions of a given 3D object. This decomposition feature as

a plugin with input point cloud and normals, will help the

classifier to learn the inter-relations between each primitive

shape, and will further boost classification performance.

We train the model to extract feature representation f

for each point p ∈ Pi, where Pi ∈ ON×6, where f en-

codes low level geometric information depending on neigh-

bourhood of p. Using this feature representation, the model

maps each point to its primitive shape label. These per-

point primitive label information, provided by decomposi-

tion module is passed to feature encoding module, which

transforms 3D object to a new latent space inheriting de-

composition knowledge. This new latent representation is

further used by 3D model classifier for better 3D object cat-



egorization. Our proposed modules are explained in detail

below.

2.1. Point cloud decomposition module

The novel deep architecture for point cloud decomposi-

tion task as shown in Figure 2, takes in input point cloud

Pi with point coordinates N×3 and per-point normals Pn

∈ R
N×3, where N is number of points in Pi and predicts

per-point primitive shape label L ∈ R
N×1. Our network

supports M = 4 types of primitives: plane, sphere, cone

and cylinder,

Pi ∈ O =⇒ {P1 ∪ P2 ∪ P3 ∪ P4} ∈ O (3)

where P1, P2, P3, P4 are the set of planar, spherical, con-

ical and cylindrical points in given point cloud Pi.

The prediction of a point belonging to a primitive shape

must be biased by its neighbouring geometric structure,

which should be exploited by the model. PointNet++ [29]

proposed a hierarchical learning method to learn per-point

embedding which is influenced by local as well as global

geometry. Employing this idea of hierarchical learning, we

propose this novel decomposer module to extract the lo-

cal shape-aware property of point clouds, constrained by

smaller receptive fields. This ensure that the new learnt per-

point embedding are influenced highly by local geometry.

To achieve this, the module has two consecutive layers

of: Local Summarizer Layer (Section 2.1.1) and Local Fea-

ture Propagation Layer (Section 2.1.2).

2.1.1 Local Summarizer Layer (LSL)

In this layer we attempt to extract point features from the ac-

tual point cloud which are summarized from a local patch.

The input point cloud Pi ∈ON×d, with N points and 6 fea-

ture channels is summarized to a smaller set of points Ps

∈ ON1×d1, where Ps < Pi and d1 > d. These new set of

feature channels d1 are generated based on the neighbour-

hood points and represent point cloud in a higher dimension

canonical space. This layer consists of 2 sub-layers: Sam-

pling and Grouping layer and Pointnet layer.

Sampling and grouping layer. Given the input point

set Pi = {x1, x2, . . . , xN} we sample N1 points using

the farthest point sampling algorithm to get a uniform sub-

sampled point set Ps = {x1, x2, . . . , xN1}. Keeping these

points as centroids, local clusters of size N1 × K × d are

formed using ball query, where K is number of points in

each cluster. Ball query assigns all points to a centroid

based on radius parameter r. Each cluster is then processed

to make their respective centroids as origin and to get local-

coordinate of the points with respect to the centroid. We

use the novel MSG (Multiple Scale Grouping) layer [29] to

capture patterns at different scales (varying radius). By set-

ting a set of small grouping radius we force our network to

capture local geometry and ensuring that the receptive field

does not capture the whole point cloud.

Pointnet layer. All the N1 patches are further regressed

individually using a set of MLP layers, followed by a max-

pool function. We use this symmetric function proposed

by Pointnet [27] to embed each patch to a common latent

space. Input to this layer is of size N1×K×d, which are the

N1 local clusters to produce N1×d1 sized point features.

Features of all scales are concatenated to form a Local Sum-

marized feature vector.

2.1.2 Local Feature Propagation Layer (LFPL)

After a first pass of point cloud from LSL the point set

Pi ∈ ON×d is reduced to Ps ∈ ON1×d1. However, for

the task in hand we need to generate point features for all

the original number of points. To get per-point features, we

interpolate the summarized features to the original points

N×d1. Other methods to retrieve original number of points

is to consider each point as centroid in LSL, but this in-

creases the computational cost of system.

LFPL contains a set of fully connected layers that map

the input point set to original number of points N . Skip

connections are placed in order to traverse the information

throughout the network. They propagate point coordinates

and point features as shown in Figure 2.

Following to LPFL, the decomposer module has set of

fully connected layers with dropouts to avoid overfitting. In

the end, we get per-point primitive labels for point cloud.

2.2. Feature encoding module

In this module the input point cloud N × 3 and its per-

point primitive labels N × 1 are processed. It uses one hot

encoding technique, to transform per-point primitive labels

to per-point primitive label vectors N × 4. These per-point

primitive label vectors are concatenated with the input point

cloud N × 6 giving a new latent space representation of the

point cloud Pi of size N × 10.

2.3. 3D model classifier module

Our classifier module is inspired by the design of Point-

net++ [29]. The input to this module are point coordinates

N × 3, normals N × 3 and decomposition labels N × 4
which is the new latent space representation given by fea-

ture encoding module. These decomposition feature as a

plugin with input point cloud and normals, will help the

classifier to learn the inter-relations between each primitive

shape, and will further boost classification performance.

3. Experimental Details

In this section we discuss about the dataset used for train-

ing PointDCCNet architecture and also provide the imple-

mentation details of 3D point cloud decomposition module.



Figure 3. Results of decomposition using proposed point cloud decomposition architecture on ANSI mechanical components dataset.

(Top row) Input point cloud (8096 points), (Bottom row) Decomposed point cloud [Green for Cylindrical, Magenta for Conical, Blue for

Spherical and Black for Planar].

Figure 4. Results of decomposition using proposed point cloud decomposition architecture on ModelNet40 dataset. (Top row) Input point

cloud (8096 points), (Bottom row) Decomposed point cloud [Green for Cylindrical, Magenta for Conical, Blue for Spherical and Black for

Planar].



Figure 5. Results of point cloud decomposition using proposed architecture considering various point cloud densities, (left to right) 4096,

2048, 1024, 512. (Top row) ModelNet40 dataset and (Bottom row) ANSI mechanical components dataset.

3.1. Dataset

We choose to use American National Standards Institute

mechanical component dataset, provided by Traceparts [43]

to train our decomposer module. It includes 3D models

of mechanical tools such as nuts, bolts shown in Figure 3,

which ranges from smooth to steep rigid objects. We use

a train/test split of 12984/3172 respectively. The categories

are different in both sets, making training and testing sets

disjoint. Each object has 8096 points, with their coordinates

and normals. We have the associated ground truth primitive

labels for training which is provided by Traceparts itself. As

a part of pre processing we remove the models with more

than 90% planar primitive category to prevent dataset skew-

ness towards planar primitive.

For 3D model classifier module we utilize ModelNet40

[49] dataset, which consists of 12,311 CAD models with

a total of 40 categories, where 9,843 objects are used for

training and 2,468 for testing. We use point normals as ad-

ditional feature along with point coordinates. From each 3D

object we sample 1024 points as training inputs and train

our variant of Pointnet++ for 3D object categorization.

3.2. Network and implementation details

Here we discuss the network and implementation de-

tails our decomposition module. This module has two

sub-modules of which are LSL and LFPL. In the train-

ing phase of point cloud decomposition module, we set

N1 = 512 for both the units, which are the number of

centroids for local patches. We set r = [0.05, 0.1, 0.15]
and r = [0.05, 0.1] for the first and second unit of LSL

respectively for obtaining patch representations at differ-

ent scales. In the Pointnet layer we use individual set of

MLP’s for each patch radius as follows: 1st unit MLP’s

[32, 32, 64], [64, 64, 128], [64, 96, 128] and 2nd unit MLP’s

[128, 128, 256], [128, 196, 256]. Similarly there are 2 units

of LFPL with set of MLP’s which are: 1st unit MLP’s

[256, 128] and 2nd unit MLP’s [512, 256]. At the end, our

PointDCCNet architecture has a FCNN unit (Fully Con-

nected Neural Network) as another 3 MLP’s which are

[256, 128, 4] has we have M = 4. We set a dropout of 0.4

in the last MLP layer.

During training both decomposer and classifier module,

we augment the network inputs by random rotation, scaling

and point perturbation with Gaussian noise. We train the de-

composer module for 22 epochs using the Adam optimizer.



We set batch size to be 16 and learning rate to be 0.001. For

the classifier module, we train the network for 100 epochs

using Adam optimizer with a batch size of 24 and learning

rate of 0.001. We implemented out network using PyTorch

and trained it on Nvidia Quadro P5000 GPU.

4. Results and Discussions

In this section, we show the results of proposed PointDC-

CNet architecture using ModelNet40 and ANSI mechanical

components dataset. We also compare the results with state-

of-the-art techniques and show improved 3D object catego-

rization.

4.1. Shape decomposition

We evaluate our decomposition model on ANSI mechan-

ical component dataset as shown in Figure 3 and on Mod-

elNet40 dataset as shown in Figure 4. Decomposition net-

work achieves an accuracy of 97.4% on the Traceparts test

set. In Figure 3, we can see that there is clear demarca-

tion at the edges separating the primitive shapes, thus the

decomposer is able to preserve sharp edges. However, it

faces some difficulty when the surface complexity increases

as seen in Figure 4. It is worth noting that in Model-

Net40 dataset there is a smooth transition between primitive

shapes, due to which the decomposer fails to map similar

points into their respective primitives. Although the per-

plexity between spherical, cylindrical and conical is accept-

able to some extent as they all have a positive curvature.

We test the robustness of the decomposition module on

varying sampling density. With the increase in the sparsity

of the point cloud, there is proportional increase in diffi-

culty in surface prediction and thus, increasing the difficulty

for shape decomposition. We observe that our proposed

model is density-invariant and is shown in Figure 5; us-

ing sparse point clouds having total number of points 4096,

2048, 1024 and 512 respectively, as input to a model trained

on 8096 points.

4.2. Shape classification

We evaluate our proposed PointDCCNet architecture for

3D object categorization task on ModelNet40 classification

benchmark [48]. It consists of 9843 train objects and 2469

test objects having 40 classes. We uniformly sample 1024

points from each object and normalized to a unit sphere, for

training and testing. The quantitative comparisons with the

state-of-the-art techniques is shown in Table 1. We show

improved results of object categorization over many tech-

niques. As discussed in Section 2.3, we provide decompo-

sition information to the classifier module. There is a signif-

icant increase in categorization performance by adding a de-

composer network prior to the classification network. Our

Table 1. Results of 3D object categorization considering Mod-

elNet40 benchmark dataset and comparison with state-of-the-art

techniques (nor: normal)

Method Input #points acc.

Pointwise-CNN [13] xyz 1k 86.1

Deep Sets [52] xyz 1k 87.1

ECC [38] xyz 1k 87.4

PointNet [27] xyz 1k 89.2

SCN [50] xyz 1k 90.0

Flex-Conv [11] xyz 1k 90.2

Kd-Net(depth=10) [17] xyz 1k 90.6

PointNet++ [29] xyz 1k 90.7

KCNet [37] xyz 1k 91.0

MRTNet [6] xyz 1k 91.2

Spec-GCN [45] xyz 1k 91.5

PointCNN [20] xyz 1k 91.7

DGCNN [47] xyz 1k 92.2

PCNN [2] xyz 1k 92.3

RSCNN [22] xyz 1k 93.6

Spec-GCN [45] xyz, nor 1k 91.8

Ours (PointDCCNet) xyz, nor 1k 92.5

PointNet++ [29] xyz, nor 5k 91.9

SpiderCNN [51] xyz, nor 5k 92.4

PointDCCNet equipped with a shape decomposer achieves

an accuracy of 92.5% in 3D object categorization. This

shows that PointDCCNet classifier is able to exploit rela-

tion between shape primitives and object class distribution.

5. Conclusions

In this paper, we have proposed PointDCCNet for 3D

object categorization empowered by its underlying geomet-

ric structure. This deep architecture learns the local topol-

ogy of the object and provides this information to the classi-

fier network. We have demonstrated the results of proposed

PointDCCNet using benchmark datasets (ModelNet40 and

ANSI mechanical components) and compared the results

with state of the art techniques and show improved results

for 3D object categorization. We have shown that, knowing

the topological information shows improved performance

for categorization task.
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