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Abstract

This paper introduces a new learning based framework

for X-ray images that relies on a morphological decom-

position of the signal into two main components, separat-

ing images into local textures and piecewise smooth (car-

toon) parts. The piecewise smooth component corresponds

to the spatial variation of the average density of the ob-

jects, whereas the local texture component presents the in-

spected objects singularities. Our method builds on two

convolutional neural network (CNN) branches to decom-

pose an input image into its two morphological components.

This CNN is trained with synthetic data, generated by ran-

domly picking piecewise smooth and singular patterns in a

parametric dictionary and enforcing the sum of the CNN

branches to approximate the identity mapping. We demon-

strate the relevance of the decomposition by enhancing the

local textures component compared to the piecewise smooth

one. Those enhanced images compare favorably to the ones

obtained with existing works destined to visualize High Dy-

namic Range (HDR) images such as tone-mapping algo-

rithms.

1. Introduction

High Dynamic Range (HDR) imaging offers the abil-

ity to capture weakly contrasted details, due to a relatively

fine quantization of the intensity range, making it especially

popular and relevant in X-ray imaging. This is because the

intensity level of X-ray images does reflect the X-ray ab-

sorption power of the observed object [45]. Therefore, a

high dynamic range of intensities is required to simultane-

ously capture the large absorption discrepancies observed in

a scene (between high density objects and X-ray transparent

ones) and the small variations of X-ray absorption induced

by the object surface texture or by small object defects such

as cracks in metal. In medical and non-destructive evalu-
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ation imaging systems, X-ray images are recorded with 16

bits per pixel or more, which corresponds to 65536 possible

intensity levels per pixel [27], whereas most medical dis-

plays only support 8 bits (256 levels of gray) per pixel [34].

Even though several manufacturers offer new display sys-

tems with higher bit depth [26], the visualization of images

is itself limited by the human visual system capabilities: the

number of gray levels that an average user can perceive as

distinct [26] is indeed limited to around 1000 levels of dis-

tinguishable intensities for experts. Therefore, a monitor

offering an intensity range equivalent to the dynamic range

of the image is not enough to make the weakly contrasted

image structures visually perceptible.

In this context, tone-mapping has been largely investi-

gated in previous works to preserve the image details when

mapping the high dynamic range of the scene to the dis-

playable range [9]. Many of those algorithms rely on the

fact that the range of intensities in a local neighborhood

is extremely restricted compared to the dynamic range of

the entire HDR image. This is the main reason why they

typically design different mapping functions for distinct re-

gions of the image. However, adapting different mappings

for neighboring regions, potentially leads to aliasing effects.

Moreover, in X-ray imaging the intensity is related to the

physical characteristics of the object and more precisely to

its density [45] as described by the equation 1. For this rea-

son, adopting different gray levels to represent the same ma-

terial density in distinct parts of the object is not acceptable.

To address this problem, we assume that X-ray images con-

sists of the sum of two components. The first one is denoted

background component, and corresponds to the object’s av-

erage power of absorption. The second component reflects

the fine local variations of the absorption power induced by

the object singularities, e.g. including the industrial defects

(fractures, inclusions, shrinkage etc.) and the medical ab-

normalities (nodules, fractures, variant anatomic abnormal-

ities etc). Our original approach is based on the design of

a two-branch CNN architecture to predict these two com-

ponents from an input X-ray image. This decomposition of

X-ray images is then exploited to improve the visibility of
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the singularities and the weakly contrasted details by ampli-

fying their corresponding component.

To tackle the absence of ground-truth decomposition of

real X-ray images, we propose to train our CNN based on

a synthetic dataset that we construct by summing up the

piecewise smooth backgrounds with synthetic spot and frac-

tures. The training of our network is then based on the ex-

plicit supervision offered by synthetic data, for which the

ground truth components are known by construction. Our

trained model has been tested on both synthetic and real

datasets even if the network was not trained on real X-ray

images. Improved visualization of the image singularities

has been obtained by amplifying the predicted singular im-

age component, resulting in a contrast enhancement that

compares favorably to state-of-art methods.

The rest of our paper is organized as follows. Section

2 briefly surveys the related works associated to mapping

X-ray images and image morphological decomposition, in

addition to CNN-based frameworks for X-ray enhancement

and visualization. Section 3 provides a formal description

of our proposed framework. Based on the experiments pre-

sented in the first part of section 4, we demonstrate the ef-

fectiveness and the relevance of our approach in the second

part of this section. Section 5 concludes .

2. Related Works

Tone-mapping Algorithms. The question of tone-

mapping algorithms has been widely studied in the recent

years [9, 10, 17]. There are mainly two categories of meth-

ods developed to solve this issue: Global and local opera-

tors [9]. Global operators apply a predefined mapping func-

tion to all HDR pixel intensities. In other words, equal

intensity values in the input image are assigned to the ex-

act same level of the dynamic range in the output image

[54, 50, 7, 39, 11]. Even though this kind of methods is

easy to implement and generally preserves the intensity rel-

ative ordering of the original pixel intensities, the local con-

trast of fine variations remains insufficient and the resulting

visual attenuation of the details in the medical field or in

industrial non-destructive evaluation can have major draw-

backs in each field [51, 25]. In contrast, local operators

process pixel intensities as a function of their local con-

text. Even though local methods better preserve weakly

contrasted details, they usually suffer from higher compu-

tational cost, and poor global consistency of the resulting

image, inducing eventual visual artifacts [9].

In the domain of X-ray imaging, mapping the measured

intensities to the displayable ones is a highly ill-posed prob-

lem. Mathematically, the only known is the X-ray original

image thus there are two unknowns that corresponds to the

transformation function and the ideal output image. In or-

der to tackle this problem, conventional frameworks des-

tined to visualize X-ray images rely in practice on physi-

Figure 1: X-ray image formation process illustrated

based on a synthetic CT volume of the abdomen.

[Copied from [1]]

cal priors linked to the shape and the nature of the object

or the anomalies as extra constraints [31]. By definition,

those methods are destined to process a well defined type

of image content (e.g chest X-ray) and can not be consid-

ered to process a wild variety of X-ray images. The bilat-

eral histogram equalization introduced by [32] offers a good

balance between global and local tone-mapping by adapt-

ing the mapping locally based on the global distribution of

intensities but yet it is time consuming and can introduce

some ringing artefacts when it comes to process filiform

structures. In our study, we exploit the deep neutral net-

works to indirectly learn such transformation without defin-

ing a formal model that describes those variations.

Image Decomposition. The majority of local algo-

rithms that aim to fit an HDR image into a low dynamic

range screen are based on a layer decomposition of the im-

age [28, 2, 8, 43]. These approaches aim to enhance X-

ray image visualization based on a decomposition of the

image into two main layers, where the first layer is ob-

tained by filtering out the fine structures in the HDR im-

age. The second layer corresponds to the residues, ob-

tained by subtracting the filtered image from the original

HDR image. The final output is then reconstructed by scal-

ing down the first layer so as to fit the display dynamic

range, while preserving the details by adding the residue

to the scaled image. Several variants of this approach have

been proposed [61, 60, 56, 13] using different kinds of fil-

ters [38, 55, 42, 23]. Unfortunately, these signal processing

methods based on filtering have to be tuned depending on

the type of defect to be extracted. In practice, the filtering

based methods that aim to decompose the image into two

layers are not only parameter sensitive, but the choice of

the filter is itself intrinsically linked to the class of signal to

be extracted. In contrast, our approach targets universality,

and is inspired by the image morphological decomposition

frameworks [31]. One of the pioneering works in this field

is the morphological component analysis (MCA) based on

sparse representation of signals introduced by [47, 46]. The

MCA is based on the assumption that each signal is the
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linear mixture of several layers, that are morphologically

distinct. The core assumption of this method is that every

component behavior emanates from a sparse representation

construction of a dictionary of atoms [31]. In this context,

the separation of an image into its cartoon (background)

and texture layers have been popular among the commu-

nity of computer vision and machine learning and several

approaches have been proposed to learn the morphological

decomposition images [47, 41, 21, 24, 57]. In this context,

[30] proposed an intrinsic image decomposition based on a

separation of the natural input image into a reflecting and

a shading component for image-to-image transformations.

Further, [21] addresses the task of single image denoising

based on a semantic decomposition of the image. In [22]

the authors suggest a single image rain removal method

based on image decomposition by learning dictionaries for

the high-frequency components. Recently, [59] reformu-

late the problem of image dehazing as a restoration of the

image base component. Based on the learning of the de-

composition of a hazy image into the base and the detail

components, the authors achieved haze removal (or dehaz-

ing). Building on these ingredients, we will provide leaning

based framework for X-ray image local contrast enhance-

ment and tone-mapping via the X-ray Morphological De-

composition (XMD).

Convolutional Neural Networks. A major factor that

affects the quality of the image according to quality mea-

surement literature is the change of spatial correlation [52].

Research in deep learning has shown that the hidden lay-

ers of a convolutional neural network can capture a variety

of spatial correlation properties of the input image and de-

scribe its fine variations and local structure [20]. As one of

the most important goals of X-ray visualization, the preser-

vation of the integrity and the overall appearance of the

image is necessary. It follows that the spatial correlations

of the reconstructed output should be consistent with those

of the input [19]. As the deep features of a CNN capture

the spatial correlations of the input image, our research on

the design of a learning based operator for local structures

enhancement will be based on Convolutional Neural Net-

works. In the field of image enhancement, CNNs have been

exploited in several applications because of their ability to

make a decision in function of the local structure analysis of

the image. A key advantage of CNNs consists of detecting

local features at different positions in the input feature maps

with learnable kernels [58]. As a matter of fact, CNNs have

proven their efficiency for multiple HDR imaging applica-

tions such as reconstructing HDR from a single-exposure

Low Dynamic Range (LDR) [35] or HDR reconstruction

from several low exposure images [12]. CNNs have also

been widely used to learn image-to-image transformations

that enhance the visual quality of images e.g tone-mapping,

denoising and colorization [19, 14, 15, 5]. Only few map-

ping operators destined for X-ray images have been pro-

posed in the literature [25, 32, 21]. This is mainly due

to the ground truth data unavailability [16]. In the exist-

ing frameworks, this issue is typically tackled considering a

pre-defined tone-mapping operator as an ideal transforma-

tion to generate the ground truth. Unfortunately this training

strategy is characterized by a strong restriction of the per-

formances and the domain of application. Unlike the usual

tasks that aim to offer a high level vision, the mapping of

X-ray images is mainly physics based [18]. Consequently,

the design of a learning based method that aims to better

map the X-ray intensities to the available intensities should

heavily rely on physics based assumptions linked to the for-

mation process of X-ray images. For this reasons, and in

the aim of designing a generic method destined to X-ray

images visualization, we do not consider a framework that

requires an explicit prior on the content of the X-ray image.

Instead, we adopt a generic learning-based strategy based

on a morphological decomposition of the single input X-ray

image. In addition, we suggest to handle the lack of refer-

ence images by relying on a synthetic dataset to learn how

to decompose the input into physics based components.

3. The X-ray Morphological Decomposition

(XMD)

This section first refers to the X-ray formation process to

motivate our proposed decomposition of the image into two

components. It then presents our envisioned CNN architec-

ture for X-ray image decomposition, and explains how this

network can be trained based on synthetic data to promote

the decomposition of its input into morphological compo-

nents.

3.1. Xray Image Formation Process

As illustrated in Figure 1, the X-ray intensity measured

in a pixel p can be formally written as:

I(p) = I∗(p) · exp(−

∫
T

µ(x)dx), [49] (1)

where I∗(p) denotes the X-ray intensity measured by

the receptor at the pixel p in absence of any interac-

tion/attenuation with the materials, and T (p) the path be-

tween the source and the pixel p, denoted T to simplify the

notations. The path is indexed by x, so that µ(x) defines the

X-ray energy absorption coefficient in position x along the

trajectory T .

Considering that we are interested in differentiating the

X-ray attenuation induced by the core object from the

one caused by the object singularity/texture, let Ao(p) =
exp(−

∫
T
µo(x)dx) denote the absorption induced by the

core and ‘ideal’ (without singularities) object and and

As(p) = exp(−
∫
T
µs(x)dx) the singularities. In these
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Figure 2: Overview of the network architecture. The network is composed of two main branches, one for the prediction

of the piecewise component and the other for fine structures, both of which are based on a 6-layer deep U-Net with skip

connections. The piecewise branch has one output channel whereas the fine structures branch has two output channels.

notations, µo(x) denotes the absorption coefficient associ-

ated to an object without fine texture nor singularities, while

µs(x)
∆
= µ(x) − µo(x) reflects the attenuation increase or

decrease induced by singularities. In most positions along

the path, µs(x) = 0, so that As(p) ≃ 1.

To reflect the fact that singularities only slightly affect

the X-ray absorption, we write:

As(p) = 1 + ǫ(p), (2)

so as to reflect that the singularity slightly increases (ǫs(p)
is a small negative value) or decreases (ǫs(p) is a small pos-

itive value) the absorption induced by the object without

singularity. Hence, we have:

I(p) = I∗(p) ·Ao(p) + I∗(p) ·Ao(p) · ǫ(p), (3)

and the X-ray image can be envisioned as the sum of two

components, respectively corresponding to the (piecewise

smooth) object and to its texture or singularity. This de-

composition makes it trivial to improve the visibility of the

singularities, simply by multiplying the corresponding com-

ponent by a constant factor. Our work aims at deriving a

network that decomposes an input into those two compo-

nents.

3.2. The CNN Architecture for Image Decomposi
tion

The network used to decompose an input X-ray image

into its components is based upon the U-Net architecture,

which was originally developed for the segmentation of

biomedical images. The U-Net architecture has also been

considered as a generative model, e.g. for denoising pur-

poses [4]. Our proposed model is presented in Figure 2. It

is composed of two branches that operate in parallel. The

first branch aims at reconstructing the piecewise smooth

component, whereas the second branch is responsible of

recovering the fine structures magnitude components, in-

duced by textures and singularities. Each branch consists in

a U-Net, whose convolutional blocks at each resolution are

composed of six operations: a 2D convolution, a batch nor-

malization, a rectified linear unit (ReLu) [36], followed by

a second convolution, batch normalization and ReLu. The

neural network involves six resolution levels to ensure the

coverage of a large receptive field. As illustrated in Figure

2, the output of the second branch consists in two images

that respectively define the positive and negative values of

the fine structures variation component. Since the compo-

nents are expected to decompose the input, their sum should

reconstruct the input image, which provides a natural con-

straint when defining the losses involved in the training of

the network, as detailed in the next section.

3.3. Morphological Components Prediction

Assumptions and Hypothesis. The training of our CNN

builds on two main assumptions. (i) Based on the X-ray

image formation process defined by Equation 3, we assume

that an X-ray HDR image is composed of two main com-

ponents. The first one is defined as a piecewise smooth

class of signals representing the object’s average power of

absorption in X-ray images (Background/cartoon). The sec-

ond one corresponding to the fine structures including fabric
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Figure 3: Synthetic X-ray image generation. (a) X-ray syn-

thetic image. (b) Fine structure variations component. (c)

Smooth piecewise component.

defects, fractures and other meaningful singularities of the

signal (Textures). (ii) Based on the physical characteristics

of the X-ray signal, we assume that each component of an

X-ray HDR image can be described by a linear combination

of functions with specific shapes, forming a dictionary [41].

Following the terminology adopted for blind source separa-

tion, the components are then named morphological compo-

nents since their morphological characteristics are defined

by the shapes of the dictionary functions.

Generating the Synthetic Dataset. We propose to cre-

ate a synthetic dataset mimicking the desired morpholog-

ical decomposition of X-ray images. As a consequence of

the X-ray image model presented in Equation 3, each image

x(u, v) in this dataset is defined as the sum of two compo-

nents x1(u, v) and x2(u, v) that are synthesized by combin-

ing functions picked-up in dictionaries respectively chosen

to reproduce the piecewise smooth nature of X-ray absorp-

tion maps, and to reflect the singularities encountered in real

images (defects, cracks, nodules).

Formally, letting D denote a dictionary of smooth func-

tions with finite spatial support, we have:

x(u, v) = x1(u, v) + x2(u, v), (4)

with

x1(u, v) =
∑
k

ak · dk(u, v), dk ∈ D, (5)

and

x2(u, v) = x1(u, v) · ǫ(u, v), (6)

where ǫ(u, v) corresponds to small positive (absorption

power increase) and negative (absorption power decrease)

values that are spatially distributed to reflect typical X-ray

image singularities.

In practice, in our experiments, the dictionary D has been

defined based on elliptic and rectangular geometric shapes.

The shapes, displayed in Figure 3, have a varying orienta-

tion, size and shade of gray, to mimic materials of different

shape and density represented in the same X-ray image. In

addition, an intensity gradient was added randomly to some

images to simulate the possibility of a increasing absorption

power, due to increased object thickness, for example.

Two types of functions have been considered to gen-

erate the ǫ(u, v) singularities (defects) : (i) Branches, as

illustrated in Figure 3, mimic bone fractures, respiratory

branches, shrinkage or cracks that are defects usually found

in casting pieces for example. Each branch is created us-

ing a random walk approach, with all parameters being ran-

domly selected within a pre-defined window at each step of

the random walk. These parameters include the branch-off

probability, the branch death probability and the percentage

of intensity gain or loss at each step. (ii) Round or elon-

gated soft shady spots are generated to mimic nodules or

cystic masses for the medical field and gas holes, porosi-

ties, inclusions and dross in the industrial domain. They

are also added at random positions with varying sizes and

intensities. An example of ǫ image can be seen in Figure 3.

Network Training. During training, the branches of the

network are updated so as to minimize the reconstruction

error of each component (when available, i.e. for synthetic

images only), but also the reconstruction error of their sum

(which has to be equal to the input, available both for real

and synthetic images). Therefore, four losses are intro-

duced. L1 compares the prediction of the first branch to

the reference piecewise smooth component. L2+ and L2−

ensure that the two maps predicted by the second branch re-

spectively reconstruct (in absolute value) the positive and

negative parts of the second reference component. Lrec

measures how well the input image is approximated by the

sum of the two predicted components.

We adopt the Multi-scale Structural Similarity Index

Measure (MS-SSIM) [53] for each loss.

The global objective function that combines the three losses

is defined as:

Lg =
α · (L2+ + L2−) + β · L1 + γ · Lrec

2 · α+ β + γ
, (7)

with α, β, γ ∈ [0, 1].

4. Experiments and Results

This section validates our proposed approach both on

synthetic and real images1. For synthetic image, since we

have access to the ground-truth components, we verify that

the trained model generalizes properly on unseen images. In

contrast, for real images, we verify that the two components

that are predicted by the network sum-up to the input im-

age, and assess the relevance of the partition. Therefore, we

reconstruct images in which the local structure component

is amplified compared to the piecewise smooth one. This

1Python source code for generating the synthetic dataset, as

well as the Pytorch implementation of the network is available on

https://github.com/tahanimadmad/CNN-Based-X-ray-

Morphological-Decomposition-.
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Figure 4: Results of the X-ray morphological decomposition (XMD). (a) Input. (b) The smooth piecewise prediction. (c) The

smooth piecewise target. (d) The positive fine structures magnitude prediction. (e) The positive fine structures magnitude

target. (f) The negative fine structures magnitude prediction. (g) The negative fine structures magnitude target.

results in a tone-mapped image, in which local structures

have been magnified, and that can be assessed using con-

ventional objective image quality assessment metrics. The

images considered in the real image dataset include archae-

ological images, medical images and industrial images. The

large application range of those images allows to demon-

strate that, despite it has been trained on synthetic data, our

method is not restricted to a specific kind of imaged objects.

4.1. Training Setup and Parameters

We adopt the Rectified Adam optimizer (RAdam) [29]

with the following hyper-parameters : an initial learning

rate lr=1e-5 and β=(0.9, 0.999). The learning rate is ad-

justed using the a scheduler on plateau using the torch opti-

mization package. In addition, an early stopper, interrupting

the learning process when the loss has not decreased for a

specified amount of epochs, has been implemented as pro-

posed by [48] The loss functions, is based on the MS-SSIM

with a window size of 5 and a with a maximum scale level

of 7 ([40] implementation). To have a loss behavior similar

to the MSE-like methods, we consider 1-MS SSIM instead

of the MS-SSIM value. The coefficients defined in Equa-

tion 7 have been fixed as follows: α = 1, β = 2 and γ =

1. Instead of using a dropout or a parameter norm penalty

to ensure the regularization, we consider a data augmenta-

tion on the fly during its training phase and we do not forget

to activate the shuffle of the data in the data loader of both

training and validation.The early stopper ends the learning

after 125 epochs. The size of the synthetic dataset used for

training = 1400, validation = 400 and test = 200, and images

are sized 256x256.

4.2. Synthetic Xray Images Decomposition

The morphological decomposition of the synthetic

dataset has been validated using a sample of images that

were not used in the training or validation sets, used to train

the neural network. Result samples are displayed in Fig-

ure 4, where the input (a) is decomposed into three com-

ponents : the smooth piecewise component prediction (b)

and the positive (d) and negative (f) fines structures. The

differences between the predictions (b-d-f) and their corre-

sponding targets (c-e-g) are difficult to distinguish at a first

glance, which is an indicator of the quality of the decom-

position. However, upon closer inspection, there are some

small variations of pixel intensities between the targets and

the predictions, as well as some fine structures that have not

been entirely removed from the smooth piecewise by the

network. An example of these remaining fine structures is

the shady spot in the bottom of the dark grey ellipse on the

second row of images.

4.3. Generalization to Real Xray Images

Despite the simplicity of the shapes and fine structures

considered in the synthetic dataset used to train the network,

the decomposition learned by the network generalizes sur-

prisingly well to real X-ray images. Figure 5 presents how

the network extracts morphological components in a multi-

tude of X-ray images coming from different domains, such

as medical imaging and industrial applications. Since the

images are separated into three different components, it is
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Figure 5: Results of the X-ray morphological decomposition (XMD) for a set of 2images archaeological and security ap-

plications. (a) Archaeological X-ray image. (b) Industrial X-ray image. (1) Input. (2) Our local contrast enhancement. (3)

The smooth piecewise prediction. (4) The positive fine structures magnitude prediction. (5) The negative fine structures

magnitude target.

possible to enhance the contrast in areas presenting fine de-

tails (more information on the contrast enhancement is pre-

sented in Section 4.4). The enhanced images are presented

in Figure 5-(2). In these images, regions with an initial low

contrast (such as the head and belly of the animal on row (a)

and the circular object on row (b)) now present more visible

fine details.

4.4. Enhancing Local Structures in Xray Images

In this part, we leverage image decomposition to im-

prove the visualization of details and defects in X-ray im-

ages. Therefore, we propose to highlight the local structures

of X-ray images, which are supposed to represent defects or

abnormalities. Those local structures are generally invisible

when the image is displayed on the standard display, using

a linear mapping. By reducing the intensity of the smooth

piecewise component compared to the intensity of the fine

details, regions that are over- or under-exposed can bene-

fit from an enhanced contrast and an increased fine details

visibility. Examples of an enhanced contrast using our al-

gorithm can be seen in Figure 5-[2] and 6-[f].

For the image objective quality assessment, we adopted

widely used and well-known measures including the Tone-

Mapped Image Quality Index (TMQI) and the High Dy-

namic Range Visible Difference Predictor (HDR-VDP) in

its second version [37]. The TMQI is a widely used met-

ric for quality assessment of tone-mapped images, it eval-

uates the structural fidelity and naturalness of transformed

images. the TMQI takes 1 for the best quality score and 0

for the worst score. The HDR-VDP-2 [33] is a calibrated

visual metric for visibility and quality predictions in all lu-

minance conditions, known to evaluate if the differences be-

tween the HDR input image and the reconstructed image are

visible by the human eye in terms of the ”Just Noticeable

Differences” (JND) introduced by [6] and used in the med-

ical field to describe how the human visual system views a

medical image [3]. This metric takes the value of 10 as a

maximum value and represents the best quality score. Ta-

ble 1 and 2 show how mapping X-ray images from different

backgrounds based on our X-ray morphological decompo-

sition better preserves the global appearance of the image

and enhances the local structures of the image.

Table 1: Tone-mapped Image Quality Index (TMQI)

(1) (2) (3) (4) (5) (6)

Fattal [13] 0.879 0.798 0.799 0.879 0.900 0.697

Ashikhmin [2] 0.844 0.892 0.798 0.977 0.961 0.689

Reinhard [44] 0.913 0.927 0.920 0.902 0.934 0.799

Durand [8] 0.936 0.874 0.895 0.933 0.912 0.687

XMD (ours) 0.980 0.932 0.984 0.944 0.959 0.856

Table 2: HDR Visual Difference Predictor (HDR-VDP 2)

(1) (2) (3) (4) (5) (6)

Fattal [13] 5.155 4.632 4.737 4.888 6.419 4.081

Ashikhmin [2] 7.493 6.396 6.254 7.478 7.382 6.162

Reinhard [44] 8.066 9.046 7.569 8.521 7.437 8.424

Durand [8] 6.207 4.736 5.096 6.034 5.139 5.521

XMD (ours) 9.684 9.317 9.033 9.582 8.424 8.838

Interestingly, our method offers the end-user the oppor-

tunity to evolves progressively from the visualization of the

absorptive power variations rendered by a linear mapping,

to the observation of the fine textural and structural object

details.
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Figure 6: X-ray images tone-mapping based on our morphological decomposition learning and comparison for a set of 6

X-ray HDR images from medical, industrial and archaeological applications. (a) Original HDR image. (b) Fattal [13]. (c)

Ashikhmin [2]. (d) Reinhard02 [44]. (e) Durand [8]. (f) XMD (ours) .

5. Conclusion

This paper has introduced an original CNN-based strat-

egy to decompose X-ray images into their morphological

components. Our network is trained on a synthetic dataset

generated based on the X-ray image formation process to

tackle the lack of ground truth. The X-ray morphological

decomposition is shown to generalize well on real data. We

demonstrate the relevance of the decomposition by enhanc-

ing the local textures component compared to the piecewise

smooth one. Those enhanced images compare favorably to

the ones obtained with existing works geared towards the

visualization of HDR images such as tone-mapping algo-

rithms.
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Hasinoff, and Frédo Durand. Deep bilateral learning for real-

time image enhancement. ACM Transactions on Graphics

(TOG), 36(4):1–12, 2017. 4323

[16] Eli Gibson, Wenqi Li, Carole Sudre, Lucas Fidon,

Dzhoshkun I Shakir, Guotai Wang, Zach Eaton-Rosen,

Robert Gray, Tom Doel, Yipeng Hu, et al. Niftynet: a deep-

learning platform for medical imaging. Computer methods

and programs in biomedicine, 158:113–122, 2018. 4323

[17] Philippe Hanhart, Marco V Bernardo, Manuela Pereira,

António MG Pinheiro, and Touradj Ebrahimi. Benchmark-

ing of objective quality metrics for hdr image quality assess-

ment. EURASIP Journal on Image and Video Processing,

2015(1):39, 2015. 4322

[18] Randolf Hanke, Theobald Fuchs, and Norman Uhlmann.

X-ray based methods for non-destructive testing and mate-

rial characterization. Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment, 591(1):14–18, 2008.

4323

[19] Xianxu Hou, Jiang Duan, and Guoping Qiu. Deep fea-

ture consistent deep image transformations: Downscal-

ing, decolorization and hdr tone mapping. arXiv preprint

arXiv:1707.09482, 2017. 4323

[20] Xianxu Hou, Linlin Shen, Ke Sun, and Guoping Qiu.

Deep feature consistent variational autoencoder. In 2017

IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 1133–1141. IEEE, 2017. 4323

[21] D. Huang, L. Kang, Y. F. Wang, and C. Lin. Self-learning

based image decomposition with applications to single im-

age denoising. IEEE Transactions on Multimedia, 16(1):83–

93, 2014. 4323

[22] D. Huang, L. Kang, M. Yang, C. Lin, and Y. F. Wang.

Context-aware single image rain removal. In 2012 IEEE In-

ternational Conference on Multimedia and Expo, pages 164–

169, 2012. 4323
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