
Collaborative Image and Object Level Features for Image Colourisation

Rita Pucci

University of Udine

Udine, Italy

rita.pucci@uniud.it

Christian Micheloni

University of Udine

Udine, Italy

christian.micheloni@uniud.it

Niki Martinel

University of Udine

Udine, Italy

niki.martinel@uniud.it

Figure 1: Achieved automatic colourisation results. We introduce a colourisation model that promote the collaboration between image

(context) and object features to produce plausible and colourful results on different scenes with no human intervention.

Abstract

Image colourisation is an ill-posed problem, with mul-

tiple correct solutions which depend on the context and

object instances present in the input datum. Previous

approaches attacked the problem either by requiring in-

tense user-interactions or by exploiting the ability of con-

volutional neural networks (CNNs) in learning image-level

(context) features. However, obtaining human hints is not

always feasible and CNNs alone are not able to learn entity-

level semantics, unless multiple models pre-trained with su-

pervision are considered. In this work, we propose a single

network, named UCapsNet, that takes into consideration

the image-level features obtained through convolutions and

entity-level features captured by means of capsules. Then,

by skip connections over different layers, we enforce collab-

oration between such the convolutional and entity factors to

produce a high-quality and plausible image colourisation.

We pose the problem as a classification task that can be

addressed by a fully unsupervised approach, thus requires

no human effort. Experimental results on three benchmark

datasets show that our approach outperforms existing meth-

ods on standard quality metrics and achieves state-of-the-

art performances on image colourisation. A large scale

user study shows that our method is preferred over existing

solutions. Code available at https://github.com/

Riretta/Image_Colourisation_WiCV_2021.

1. Introduction

Adding a plausible colourisation to a monochromatic

(greyscale) image through an autonomous system is a chal-

lenging research topic in computer vision and pattern recog-

nition [36]. The colourisation task has multiple plausi-

ble choices due to the multi-modality of appearance of

entities (e.g., a car can be red, blue, green) [3]. Auto-

matic colourisation has significant impacts on historical im-

age/video restoration and image compression [22], while

also being a useful proxy task for learning visual repre-

sentations [26]. Previous works relied on intense user-

interaction procedures to guide the colourisation through

scribbles-based [21, 14, 36, 14, 23, 40, 29] and image

references-based [11, 41, 13, 7] methods. Fully automatic

solutions were proposed by introducing different deep ar-

chitectures [33, 6, 15, 4, 10, 13, 17, 37, 19, 27, 24] which

either considered image-level or entity-level features alone,

thus neglecting the importance of the interaction between

the global content and the object instances in an image.

Such methods also heavily relied on pre-trained models and

supervised learning tasks to learn object semantics.

On the contrary, we hypothesise that the colourisation

process can be tackled through (i) a single model that (ii)

captures image context and the object entities (iii) without

supervision to generate a plausible colourisation1. These

considerations motivate us to introduce a novel approach

1i.e., that has geometric, perceptual, and semantic photo-realism.
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that performs automatic colourisation by combining the im-

age context with the object instances, without the need of

labelled data. To capture such factors, we leverage convo-

lutional and capsules layers [32]. The former allows us to

identify and extract features which carry information about

the image context. Through the routing by agreement rou-

tine, the latter captures the presence and the features of

object entities. Skip connections over different layers are

used to encourage a collaboration between convolutional

representations, thus allowing us to leverage image-level

and entity-level features to produce a plausible colourisa-

tion. We considered the fact that any colour photo can be

used as a training sample by taking the image’s lightness

channel as input and its colour channels as the supervisory

signal. Following such an intuition, we pose the colourisa-

tion problem as a colourisation task that learns a distribution

of colours for each pixel. By exploiting such a distribution

through a trainable mapping function, we capture the fact

that a same object can have different colourisations (e.g., an

apple can be red, green or yellow).

Concretely, our contribution is a novel fully automatic

image colourisation approach that (i) learns image-level and

entity-level representations to grasp information about the

image context and object entities; (ii) exploits skip con-

nection at different network depths to enforce collabora-

tion between the features of downsampling and upsampling

phases; (iii) captures the multi-modality of the colourisa-

tion problem by learning to predict a distribution of plau-

sible colours; (iv) sets the learning problem to tackle the

colourisation problem with neither human intervention nor

pre-trained models.

We have conducted a comprehensive evaluation of our

model on three large scale benchmarks datasets, namely Im-

ageNet [31], COCOStuff [2] and Places205 [42]. We also

assessed the qualitative performance of the proposed ap-

proach through a large scale human-based evaluation study.

Results demonstrate that our approach outperforms existing

works in terms of the image colourisation quality both us-

ing common image-quality metrics as well as with respect

to the human preference. We also show its advantages in

generating plausible colourisation of different entities over

works leveraging labelled data to learn object semantics.

2. Related works

Existing image colourisation works are either based on

scribble and example images, or rely on learning processes.

Based on Scribbles and Example Images. The multi-

modal nature of image colourisation problem, was initially

tackled with local hints provided by humans [21, 14, 29,

23, 36, 40]. These approaches propagate similar colouri-

sations over specific areas, recognised with low-level sim-

ilarity metrics. In [21], pixels with similar luminescence

should have a similar colour, given by the scribble. This

method suffers of colours overcoming object’s edges, later

limited by means of edge detection [14] and texture similar-

ity [29, 23]. An up-grade was proposed in [36] by relaxing

constraints on the position of scribbles. In [40], scribbles

and human hints were jointly exploited to limit the manual

effort. Other works explore the “example image” technique

where colours are transferred from a reference (example)

image to a greyscale image. The reference images are spec-

ified by users or searched on internet [35, 3, 11, 5, 16, 13].

Information is transferred between reference and input im-

ages on the basis of low-level similarity metrics measured at

pixel level [35], semantic segments level [3] or super-pixel

level [11, 5]. A combination of scribbles and example im-

ages was proposed in [16, 13].

Even if the achieved results are interesting for some spe-

cific tasks, the required human effort is too intensive and

generally not affordable when the colourisation objective

considers large scale problems. Our approach is fully auto-

mated, thus suitable for large scale colourisation tasks.

Based on Learning Processes. The colourisation task

through machine learning has received great attention in

the recent past [15, 41, 37, 19, 24, 17, 34, 7, 6, 4, 27, 10].

In [15, 41] semantic labels are exploited to capture entity-

level features that, together with image-level features, im-

prove the colourisation. In [37], semantic interpretability

is obtained by a cross-channel encoding scheme, later ex-

ploited in [24] with a pre-trained classification model. Gen-

erative models [17, 25, 34] were also exploited together

with pre-trained classifiers. Other approaches [37, 19, 41]

focused on multi-task models and single pixel significance.

Recently, more focus was devoted to capture entity-level

features by embracing the capsules concept [27] or by ex-

ploiting pre-trained object detection models [33]

Such approaches either separately considered image-

level and entity-level features or hinge on models pre-

trained through supervised approaches. In contrast, we

jointly capture the two representations and introduce a

model that is trained with chromatic channels only.

The works in [27] and [33] are the closest to our ap-

proach. Differently from these, we introduce a single ar-

chitecture that (i) captures entity-level features through cap-

sules without using any prior knowledge to detect and ex-

tract object information; (ii) obtains the spatial information

discarded by capsules through image-level features from

CNNs; (iii) tackles the emerging problem of figure-ground

separation by enforcing collaboration between the image-

level and entity-level features with the introduction of skip

connections among layers computing such two represen-

tations. We also introduce (iv) a combination of a colour

quantisation loss [37] to learn a distribution of colours and

a colour error loss that allows us to deal with multiple plau-

sible colourisations of a same/similar object.
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Figure 2: Our proposed UCapsNet architecture takes the L channel of a CIELab image and processes it by a set of double block down

layers detecting image-level features. Then primary caps down layers extracts the entity-level features. Such representations at image and

object levels are then considered in a quantisation layer that allows us to learn a colour distribution, hence to generate plausible (a, b)
colours channels.

3. Proposed Approach

Our goal is to generate a plausible colourisation for a

grayscale input image. Towards such a goal, our architec-

ture, shown in Figure 2, starting from the CIELab lightness

channel L ∈ R
H×W×1 learns to predict the corresponding

colour channels (a, b) ∈ R
H×W×2. These represent the

chrominance channels signal used in training procedure.

The downsample phase is responsible of learning image-

level and entity-level representations. The former is ob-

tained through a preprocessing block followed by a set

of consecutive double block down operators which include

convolutional layers. The latter is computed by the primary

capsule down operator taking the image-level features to en-

code the entity-level ones into capsules.

The upsample phase leverages the image-level and

entity-level representations to generate a plausible image

colourisation. The primary capsules up operator decodes

the input capsules to transform them into spatial features

carrying information about object entities. Such features are

combined with image-level features obtained through skip

connections, then processed by a set of consecutive double

block up operators. The model learns a colour distribution

over pixels (Q layer) that is later exploited to predict the

colour channels (AB layer).

3.1. Image­Level Features

Convolutional layers extract a feature map indicating the

location and strength of a detected feature in an image.

These define the image-level representation carrying the

context information that is important to perform a suitable

colourisation. We obtain such a representation through the

introduction of a preprocessing block, followed by the dou-

ble block down (DBD). The former is composed of a Conv–

BN–ReLU–MaxPool sequence. To design the latter, we

followed a common practice [12] by which image-level fea-

tures can be obtained through a hierarchical structure of re-

peated convolutional, normalisation, and non-linearity lay-

ers. Thus, we let a DBD be composed of two consecutive se-

quences of Conv -BN-ReLU layers. Four DBD are stacked

in the downsample phase with Di being the output of DBDi,

for i = 1, · · · , 4.

3.2. Entity­Level Features

While image-level features are important to capture in-

formation about the context of an image, the colourisation

process also hinges on the entities present in the scene. To

capture entity-level features, we exploit the concepts behind

capsules [32], i.e., groups of neurons generating vectors that

indicate the probability of existence of object entities.

3



Algorithm 1: Routing by Agreement [32]

Input: Weighted capsule features ûj|i

Output: Entity-level feature vector: vj

for all capsule i in the first layer and capsule j

in the second layer: bij ← 0
for routing iterations do

for each capsule i in the first layer:

ci ← softmax(bi);
for each capsule j in the second layer:

sj ←
∑

i cijûj|i;

vj ← squash(sj); ⊲squash as in [32]

for each capsule i in the first layer and capsule j

in second layer: bij ← bij + ûj|ivj

end

3.2.1 Primary Caps Down (PCD)

The PCD operator is composed of two capsule lay-

ers. The first layer of capsules computes U =
[Flatten(Conv1(D4))

T , · · · ,Flatten(Convk(D4))
T ].

With each column of U being the capsule output

ui ∈ R
k. To identify entity-level features, a weight

matrix Wij ∈ R
k×k̂ is introduced to obtain the second

layer capsules ûj|i = Wijui, later grouped through the

“routing by agreement” mechanism in Algorithm 1. At

each iteration of the routine, ûj|i’s are grouped in agree-

ment with the coupling coefficient ci to identify clusters of

features, i.e., the entity-level feature vector vj ∈ R
k̂. This

carries information about how strong the capsules agree on

the presence of an entity.

3.2.2 Primary Caps Up (PCU)

The PCD capsule outputs vj’s contain entity-level features

but lack details about their spatial displacement. Since this

information is fundamental for the colourisation task, we

introduce a mechanism that inverts the PCD procedure to

reconstruct the spatial information. We introduce a weight

matrix Wr
ji ∈ R

k̂×k connecting each PCD output to the

PCU capsules. This computes ur
i = Wr

jivj , that are then

stacked to obtain Ur –with the same size of U. The re-

sulting k rows of Ur are then reshaped, processed by k in-

dependent TransposeConv operators, then concatenated

to obtain an output matrix X having the same dimensional-

ity of D4. Thus, X contains spatial information generated

through the entity-level features obtained through capsules.

3.3. Image­Level and Entity­Level Collaboration

Through the introduction of the capsule layers, we are

able to extract entity-level features. However, generating

the colourisation output requires a precise answer at pixel

level, which is likely not to be directly achievable through

the PCU layer alone (see § 4.3). Thus, to promote such

an output, we enforce collaboration between image-level

and entity-level features by introducing a mechanism to

project the image-level features learnt at different stages of

the downsample phase into the pixel space [30]. This is

achieved by introducing skip connections from the down-

sample phase to the upsample one. The upsample phase

is composed of four double block up (DBU) operators de-

signed following the same considerations adopted for the

DBD, hence composed of two consecutive sequences of

UpSample-BN-ReLU layers. As shown in Figure 2, DBUi,

with i = 4, · · · , 1 receives as input the concatenation of Di

and the output of the preceding DBUi+1, denoted as Yi+1.

DBU4 processes the concatenation between the de-routed

entity-features in X and D4. The up-sampling operations

in each DBU allow us to reconstruct the (a, b) channels hav-

ing the same size of the input image. The skip connections

enforce exploitation of higher resolution features that can be

missing due to the sparsity of the up-sampling operations.

3.4. Objective Function

A same/similar object can have different colourisations.

To allow the model capture such a multi-modality of ap-

pearance of entities, we propose a Q layer to learn a dis-

tribution over quantised pixel colours. However, learning

such a distribution is not the final objective of the colourisa-

tion process. We ultimately want the model to generate the

chrominance (a, b) colours for the L input. Towards such a

goal, we exploit the learned distribution to produce a plau-

sible colourisation. This is achieved through the AB layer

learning a mapping from the quantised space to the chromi-

nance one by means of the colour error loss.

Colour Quantisation Loss. To generate a plausible

colourisation, we want to learn a distribution over per-pixel

colours. Towards such an objective, inspired by [37], we

quantised the (a, b) space into bins with grid size 10. We

then kept only the Q = 313 values which are in-gamut.

These denote the distinct classes a pixel can belong to.

Starting from the input channel L, our model learns to gen-

erate a distribution over such classes. This is achieved by

introducing the Q layer composed of UpSample and 1×1-

Conv layers, processing the Y1 feature map to predict the

colour distribution Ẑ ∈ R
H×W×Q. This is used to compute

the quantisation loss

Lq = −
∑

h,w

v(Zh,w)
∑

q

Zh,w,qlog(Ẑh,w,q) (1)

where Zh,w,q is the ground-truth colour distribution for the

(h,w) pixel obtained through a soft-encoding scheme and

v(·) re-weights the loss for each pixel based on pixel colour

rarity. We have considered the soft-encoding and the v(·)
values introduced [37].

4



Table 1: Quantitative comparison. Top rows show the results achieved by approaches that do not consider labels for training nor models

pre-trained with supervision (i.e., unsupervised/self-supervised methods). Bottom rows show the performance obtained by methods that

need semantic labels for training or require models pre-trained with supervision (i.e., supervised methods). Columns follow a red-to-green

colour-coded representation: the better the performance the greener the table cell. Best results for each of the two groups are in bold. Best

overall results are also underlined. (Best viewed in colours.)

ImageNet ctest10k COCOStuff validation split Places205 validation split
Method

LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑
Publication

UCapsNet 0.141 30.42 0.132 30.59 0.131 30.61 Proposed

Lei et al. 0.202 24.52 0.191 24.59 0.175 25.07 CVPR2019 [20]

Isola et al. – 21.57 – – – – CVPR2017 [17]

Zhang et al. 0.238 22.04 0.234 21.83 0.205 22.58 ECCV2016 [37]

Su et al. 0.134 26.98 0.125 27.77 0.130 27.16 CVPR2020 [33]

Vitoria et al. – 25.57 – – – – WACV2020 [34]

Larsson et al. 0.188 24.93 0.183 25.06 0.161 25.72 ECCV2016 [19]

Iizuka et al. 0.200 23.63 0.185 23.86 0.146 25.58 ACMToG2016 [15]

Colour Error loss. Our final objective is to generate the

(a, b) chrominance channels. To achieve this, the AB layer

takes Ẑ as input and processes it with a 1 × 1-Conv layer

reducing the Q feature maps to 2. These represent the pre-

dicted (â, b̂) ∈ R
H×W×2 channels obtained by minimising

their difference with the real chrominance ones (a, b) as:

Lc = ||â− a||22 + ||b̂− b||22. (2)

Combined Loss. We optimise our model for Lq + Lc.

This allows us to generate a plausible colourisation for a

same/similar object by exploiting the quantised distribution

(learned through Lq) while avoiding the weakness of using

Lc alone, which produces desaturated colours [37].

4. Experiments

To validate our approach, we present extensive experi-

mental results on three benchmark datasets using different

evaluation metrics (§ 4.1). Precisely, in § 4.2, we validate

and compare our colourisation performance with recent and

relevant works [33], also through a large scale user-study.

In § 4.3, we evaluate the key components of our approach.

In § 4.4, we test colourisation as a method for representation

learning. Finally, in § 4.5, we show qualitative examples on

legacy black and white images.

4.1. Settings

Datasets. To assess the performance of our approach, we

have considered three benchmark datasets coming with dif-

ferent features and colourisation challenges.

ImageNet[31] is widely used as colourisation bench-

mark. The 1.3M training images (with no labels) were con-

sidered for model training for all the following experiments.

The ctest10k [19] samples have been used for evaluation.

COCOStuff [2] contains a wide variety of natural scenes

with multiple objects present in the 118k images. We used

the provided validation split containing 5000 images.

Places205 [42] is a scene-centric dataset containing sam-

ples 205 different categories. We considered the 20500 val-

idation images.

Note that, COCOStuff and Places205 have been used

only for evaluating the colourisation transferability. We do

not use the corresponding training sets to learn the model

parameters.

Evaluation metrics. To assess the colourisation quality,

we followed the experimental protocol proposed in [20] and

considered the Peak Signal to Noise Ratio (PSNR) and the

the Learned Perceptual Image Patch Similarity (LPIPS) [39]

(version 0.1 with VGG backbone).

Implementation Details. We train our network for 20

epochs with a batch size of 32 on the 1.3M ImageNet train-

ing samples (with no labels) resized to 224×224. Each im-

age is first projected into the CIELab colourspace, then the

resulting L channel is used as the input. The (a, b) chan-

nels are considered to compute the Lq (after quantisation)

and Lc losses. We used the Adam optimiser with a learning

rate of 2×10−5.The precise details of the whole UCapsNet

architecture are in the supplementary material. Using the

PyTorch framework, a single epoch takes about 10 hours on

an NVidia Titan RTX.

4.2. State­of­the­art Comparisons

4.2.1 Quantitative Performance

Standard Evaluation Metrics. Table 1 shows the current

leaderboard on the three considered datasets. Results show

that our approach outperforms all existing solutions in terms

of PSNR with a significant margin over methods exploiting

labelled data, i.e., we increase the PSNR of [33] by more

than 10% on the three datasets on average. LPIPS perfor-

mance significantly improve with respect to existing meth-

ods that do not using semantic labels for training or exploit

pre-trained models with supervision (e.g., 0.141 vs 0.202
obtained by [20]). Concerning approaches exploiting la-

belled data, our method achieves very similar LPIPS per-
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Figure 3: Comparison between state-of-the-art automatic colourisation methods. Our method generates vivid colours that are well defined

inside the contours of the entities and contain no splotches. Images are plausible and pleasing for different complex scenes with multiple

object instances. Results obtained on COCOStuff dataset.
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Figure 4: Analysis of the importance of image-level and entity-level features, and their collaboration in UCapsNet on three image samples

from COCOStuff. The first row compares the predicted colourisations of a baseline model where capsules and skip connections are not

considered (UCapsNet No Capsules No Skip) with three variants were we included (i) capsules (UCapsNet No Skip), (ii) skip connections

(UCapsNet No Capsules), and (iii) both together (UCapsNet). In the second row, an expanded view showing detailed differences on

the predicted images. These demonstrate the advantage of exploiting both the image and object representations, then enforcing their

collaborations to produce a plausible colourisation.

formance to [33] which hinges on a pre-trained model for

object detection. Note that for Places205 the performance

difference with [33] is only of 0.1%. Such results demon-

strate that our approach is able to capture relevant image

and entity features to achieve competitive results, without

the need of explicit information (e.g., labelled data or dedi-

cated object detection models).

User Study. We conducted a user study to quantify the per-

ceptual realism of the colourisation results obtained with

our method in comparison with Vitoria et al. [34], DeOld-

ify [1], Zhang et al. [37], and Su et al. [33]. We ran-

domly selected 200 images from the COCOStuff validation

dataset. We show to each participant 20 image pairs com-

posed of our generated image and an image generated by

one of the above methods (randomly) and we asked for pref-

erence. We collected a total of 3600 votes from 180 partic-

ipants. Results show that our method is preferred over Vi-

toria et al. [34] (53% vs 47%), DeOldify [1] (64% vs 36%),

Zhang et al. [37] (54% vs 46%), and Su et al. [33] (54%

vs 46%). From a qualitative analysis, we noted that images

with saturated/vivid colours are preferred even in presence

of colour splotches or implausible colours.

4.2.2 Qualitative Performance

Figure 3 compares the colourisation results of our approach

and competing solutions on the COCOStuff dataset. In gen-

eral, we notice that our method provides a consistent ob-

ject/background separation also reducing the colour blur-

ring on contours thus generating more detailed outputs.

Colours look vivid in all the images, and this is more ev-

ident when our results are compared with Deoldify [1], Vi-

toria et al. [34] and Su et al. [33] (e.g., examples at rows 1,

2, 5, and 7). With respect to Zhang et al. [37] (fifth column),

our generated colours are better defined inside the contours

of the entities and contain no splotches (e.g., examples at

rows 3, 4, 6). Finally, it is worth noting UCapsNet provides

specific colours entangled with the nature of the entities in

the image (e.g., examples at rows 1, 2, 4).

4.3. Ablation Study

We validate the main design choices of our model by

analysing the role of the key architecture components, then

we evaluate the effects of the considered loss functions.

UCapsNet Variants. To assess the importance of image-

level features, entity-level features and their collaboration

for the colourisation objective, we start from the model

baseline (UCapsNet No Capsules, No Skip) and progres-

sively included our contributions. In Figure 4, we report on

the results obtained considering (i) capsules (UCapsNet No

Skip), (ii) skip connections (UCapsNet No Capsules) and

(iii) both (UCapsNet). The baseline model (UCapsNet No

capsules No skip) does not respect object boundaries, e.g.,

the fur of the dog is partially green as the grass, and gener-

ates inconsistent entity colourisations, like the hands of the

man which are grey. By adding entity-level features (UCap-

sNet No Skip), object are recognised and their boundaries

respected. No splotches are also present in the results.

When skip-connections are included and capsules rejected

(UCapsNet No Capsules), the colourisation overflows the

object boundaries, thus demonstrating that capsules carry

important entity-level features, e.g., the seal image, where

the animal shape is not recognised. Such results substantiate

the importance of the image-level and entity-level features

extraction then promoting their collaboration to generate a

well defined colourisation, i.e., UCapsNet results.
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Figure 5: Applying UCapsNet to black and white photographs from Henri Cartier Bresson, Ansel Adams, Alinari. Historical archives.

Table 2: Analysis of the importance of the considered losses. Re-

sults are computed for UCapsNet optmised by considering the loss

functions defined in § 3.4. Best resutls are in bold.

Method LPIPS↓ PSNR↑

UCapsNet Lq 0.439 28.67

UCapsNet Lc 0.206 30.40

UCapsNet Lc + Lq 0.141 30.42

Losses. To evaluate the role of the loss functions compos-

ing our optimisation objective, we have trained our model

separately considering Lq and Lc. LPIPS and PSNR per-

formance in Table 2 show that the combination of the two

losses improves the results achieved by exploiting either Lc

or Lq . Such a result substantiates the importance of jointly

learning a colour distribution as well as a mapping to the

chroma channels to generate a plausible colourisation able

to handle the multi-modality of appearance of entities.

4.4. Colourisation task as Pretext

In Figure 6, we evaluate the trained model for repre-

sentation learning. For a fair comparison, we followed the

protocol in [37] and evaluated the generalisation capability

of the convolutional features learned in the downsampling

phase, hence excluded the entity-level representations. At

the output of each DBD, we stacked a MaxPool layer, with

equal kernel and stride sizes such that the generated fea-

ture dimensionality is below 10k [37]. Then, we added a

linear classifier for the ImageNet classes that is trained for

100 epochs. In Figure 6, we compare with methods work-

ing on RGB inputs [8, 9, 28, 38], with models trained on

grayscale images [37] (like we do) and with models initial-

ized with random/Gaussian weights or using the k-means

scheme [18]. Performance obtained with layer1 output (i.e.,

DBD4 in our architecture), is in line with the methods based

on grayscale input. With increasing depths, i.e., at layer3

and layer4 our method reaches competitive results. The

classification accuracy obtained with the layer4 features

(i.e., 29%) is in line with existing methods working on an

RGB input. This shows that, despite the input handicap,

representations obtained as a pretext task carry relevant in-

formation to discriminate among different semantic classes.

Figure 6: Task Generalisation on ImageNet. We freeze each

downsampling layer and evaluate the features extracted at different

depths by stacking a classification layer on top of those. Methods

working on a greyscale input are shown with dotted lines while

approaches considering an RGB input are with solid lines.

4.5. Colourising Legacy Black and White Photos

Our model is trained using generated grayscale images

by removing the (a, b) channels from coloured photos.

In Figure 5, we show that UCapsNet is able to produce re-

alistic colourisations on real legacy black and white photos,

even though the low-level statistics of the such photos are

different from the modern-day images used for training.

5. Conclusion

Image colourisation is an instance of a difficult pixel pre-

diction problem in computer vision. We have demonstrated

that extracting image-level (through CNN) and entity-level

(via capsules layers) features, then enforcing collaboration

among them, produces results indistinguishable from real

colour photos. Without any prior knowledge, we are able

to colourise a greyscale picture respecting the relevant im-

age details and entities differences. Through extensive ex-

periments, we demonstrated that our method outperforms

existing colourisation approaches methods that hinge on la-

belled training data. We have also shown that our model

works very well as a pretext task for representation learning,

performing strongly compared to other pre-trained colouri-

sation methods.
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