ICON: Implicit Clothed Humans Obtained From Normals

Yuliang Xiu, Jinlong Yang, Dimitrios Tzionas, Michael J. Black; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 13296-13306


Current methods for learning realistic and animatable 3D clothed avatars need either posed 3D scans or 2D images with carefully controlled user poses. In contrast, our goal is to learn the avatar from only 2D images of people in unconstrained poses. Given a set of images, our method estimates a detailed 3D surface from each image and then combines these into an animatable avatar. Implicit functions are well suited to the first task, as they can capture details like hair or clothes. Current methods, however, are not robust to varied human poses and often produce 3D surfaces with broken or disembodied limbs, missing details, or non-human shapes. The problem is that these methods use global feature encoders that are sensitive to global pose. To address this, we propose ICON ("Implicit Clothed humans Obtained from Normals"), which uses local features. ICON has two main modules, both of which exploit the SMPL body model. First, ICON infers detailed clothed-human normals(front/back) conditioned on the SMPL normals. Second, a visibility-aware implicit surface regressor produces an iso-surface of the human occupancy field. Importantly, at inference time, a feedback loop alternates between refining the SMPL mesh using the inferred clothed normals and then refining the normals. Given multiple reconstructed frames of a subject in varied poses, we use modified SCANimate to produce an animatable avatar from them. Evaluation on the AGORA and CAPE datasets shows that ICON outperforms the state-of-the-art in reconstruction, even with heavily limited training data. Additionally, it is much more robust to out-of-distribution samples, e.g., in-the-wild poses/images and out-of-frame cropping. ICON takes a step towards pose-robust 3D clothed human reconstruction from in-the-wild images. This enables creating avatars directly from video with personalized and nature pose-dependent cloth deformation. Our models and code will be available for research.

Related Material

[pdf] [supp] [arXiv]
@InProceedings{Xiu_2022_CVPR, author = {Xiu, Yuliang and Yang, Jinlong and Tzionas, Dimitrios and Black, Michael J.}, title = {ICON: Implicit Clothed Humans Obtained From Normals}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {13296-13306} }