
FastDOG: Fast Discrete Optimization on GPU

Ahmed Abbas Paul Swoboda
Max Planck Institute for Informatics, Saarland Informatics Campus

Abstract

We present a massively parallel Lagrange decomposition
method for solving 0–1 integer linear programs occurring
in structured prediction. We propose a new iterative update
scheme for solving the Lagrangean dual and a perturbation
technique for decoding primal solutions. For representing
subproblems we follow [40] and use binary decision dia-
grams (BDDs). Our primal and dual algorithms require
little synchronization between subproblems and optimiza-
tion over BDDs needs only elementary operations without
complicated control flow. This allows us to exploit the par-
allelism offered by GPUs for all components of our method.
We present experimental results on combinatorial problems
from MAP inference for Markov Random Fields, quadratic
assignment and cell tracking for developmental biology. Our
highly parallel GPU implementation improves upon the run-
ning times of the algorithms from [40] by up to an order
of magnitude. In particular, we come close to or outper-
form some state-of-the-art specialized heuristics while be-
ing problem agnostic. Our implementation is available at
https://github.com/LPMP/BDD.

1. Introduction

Solving integer linear programs (ILP) efficiently on paral-
lel computation devices is an open research question. Done
properly it would enable more practical usage of many ILP
problems from structured prediction in computer vision and
machine learning. Currently, state-of-the-art generally ap-
plicable ILP solvers tend not to benefit much from paral-
lelism [45]. In particular, linear program (LP) solvers for
computing relaxations benefit modestly (interior point) or
not at all (simplex) from multi-core architectures. In par-
ticular generally applicable solvers are not amenable for
execution on GPUs. To our knowledge there exists no prac-
tical and general GPU-based optimization routine and only
a few solvers for narrow problem classes have been made
GPU-compatible e.g. [1,48,58,65]. This, and the superlinear
runtime complexity of general ILP solvers has hindered ap-
plication of ILPs in large structured prediction problems, ne-
cessitating either restriction to at most medium problem sizes

CPU GPU

Specialized

General
Purpose

FastDOG

[1, 48, 58, 65]
several
hundred
works

Figure 1. Qualitative comparison of ILP solvers for structured
prediction. Our solver (FastDOG) is faster than Gurobi [23] and
comparable to specialized CPU solvers, but outperformed by spe-
cialized GPU solvers. FastDOG is applicable to a diverse set of
applications obviating the human effort for developing solvers for
new problem classes.

or difficult and time-consuming development of specialized
solvers as observed for the special case of MAP-MRF [33].

We argue that work on speeding up general purpose ILP
solvers has had only limited success so far due to compli-
cated control flow and computation interdependencies. We
pursue an overall different approach and do not base our
work on the typically used components of ILP solvers. Our
approach is designed from the outset to only use operations
that offer sufficient parallelism for implementation on GPUs.

We argue that our approach sits on a sweet spot between
general applicability and efficiency for problems in struc-
tured prediction as shown in Figure 1. Similar to general
purpose ILP solvers [15, 23], there is little or no effort to
adapt these problems for solving them with our approach. On
the other hand we outperform general purpose ILP solvers
in terms of execution speed for large problems from struc-
tured prediction and achieve runtimes comparable to hand-

439

crafted specialized CPU solvers. We are only significantly
outperformed by specialized GPU solvers. However, de-
velopment of fast specialized solvers especially on GPU
is time-consuming and needs to be repeated for every new
problem class.

Our work builds upon [40] in which the authors proposed
a Lagrange decomposition into subproblems represented by
binary decision diagrams (BDD). The authors proposed se-
quential algorithms as well as parallel extensions for solving
the Lagrange decomposition. We improve upon their solver
by proposing massively parallelizable GPU amenable rou-
tines for both dual optimization and primal rounding. This
results in significant runtime improvements as compared to
their approach.

2. Related Work
General Purpose ILP Solvers & Parallelism The most
efficient implementation of general purpose ILP solvers [15,
23] provided by commercial vendors typically benefit only
moderately from parallelism. A recent survey is this direc-
tion is given in [45]. The main ways parallelism is utilized
in ILP solvers are:

Multiple Independent Executions State-of-the-art
solvers [15, 23] offer the option of running mul-
tiple algorithms (dual/primal simplex, interior point,
different parameters) solving the same problem in
parallel until one finds a solution. While easy and
worthwhile for problems for which best algorithms
and parameters configurations are not known, such a
simple approach can deliver parallelization speedups
only to a limited degree.

Parallel Branch-and-bound tree traversal While appealing
on first glance, it has been observed [46] that the order
in which a branch-and-bound tree is traversed is crucial
due to exploitation of improved lower and upper bounds
and generated cuts. Consequently, it seems hard to
obtain significant parallelization speedups and many
recent improvements rely on a sequential execution. A
separate line of work [50] exploited GPU parallelism
for domain propagation allowing to decrease the size
of the branch-and-bound tree.

Parallel LP-Solver Interior point methods rely on comput-
ing a sequence of solutions of linear systems. This
linear algebra can be parallelized for speeding up the
optimization [20, 49]. However, for sparse problems
sequential simplex solvers still outperform parallelized
interior point methods. Also, a crossover step is needed
to obtain a suitable basis for the simplex method for
reoptimizing for primal rounding and in branch-and-
bound searches, limiting the speedup obtainable by
this sequential bottleneck. The simplex method is less

straightforward to parallelize. The work [28] reports a
parallel implementation, however current state-of-the-
art commercial solvers outperform it with sequentially
executed implementations.

Machine Learning Methods Recently deep learning based
methods have been proposed for choosing variables to
branch on [17, 43] and for directly computing some
easy to guess variables of a solution [43] or improving
a given one [51]. While parallelism is not the goal of
these works, the underlying deep networks are executed
on GPUs and hence the overall computation heavy ap-
proach is fast and brings speedups. Still, these parallel
components do not replace the sequential parts of the
solution process but work in conjunction with them,
limiting the overall speedup attainable.

A shortcoming of the above methods in the application to
very large structured prediction problems in machine learn-
ing and computer vision is that they still do not scale well
enough to solve problems with more than a millions variables
in a few seconds.

Parallel Combinatorial Solvers For specialized combi-
natorial problem classes highly parallel algorithms for GPU
have been developed. For Maximum-A-Posteriori inference
in Markov Random Fields [48, 65] proposed a dual block
coordinate ascent algorithm for sparse and [58] for dense
graphs. For multicut a primal-dual algorithm has been pro-
posed in [1]. Max-flow GPU implementations have been
investigated in [60, 64]. While some parts of the above
specialized algorithms can potentially be generalized, other
key components cannot, limiting their applicability to new
problem classes and requiring time-consuming design of
algorithms whenever attempting to solve a different problem
class.

Specialized CPU solvers There is a large literature of
specialized CPU solvers for specific problem classes in
structured prediction. For an overview of pursued algo-
rithmic techniques for the special case of MRFs we re-
fer to the overview article [33]. Most related to our
approach are the so called dual block coordinate ascent
(a.k.a. message passing) algorithms which optimize a La-
grange decomposition. Solvers have been developed for
MRFs [19, 30, 31, 36, 37, 42, 47, 58, 59, 61, 62], graph match-
ing [54, 55, 66], multicut [1, 39, 52], multiple object track-
ing [27] and cell tracking [24]. Most of the above algorithms
require a sequential computation of update steps.

Optimization with Binary Decision Diagrams Our
work builds upon [40]. The authors proposed a Lagrange
decomposition of ILPs that can be optimized via a sequential

440

xi Optimization variable i ∈ [n]
Xj Feasible set of constraint j ∈ [m]
Ij Set of variables in constraint j ∈ [m]
Ji Set of constraints containing variable i ∈ [n]

mβ
ij

Min-marginal for variable i taking value β in
subproblem j ∈ [m]

λj
i Lagrange multiplier for variable i in subproblem j

Table 1. Notation of symbols used in our problem decomposition.

dual block coordinate ascent method or a decomposition
based approach that can utilize multiple CPU cores.

The works [5, 6, 41] similarly consider decompositions
into multiple BDDs and solve the resulting problem with
general purpose ILP solvers. The work [7] investigates op-
timization of Lagrange decompositions with multi-valued
decision diagrams with subgradient methods. An extension
for job sequencing was proposed in [26] and in [14] for
routing problems. Hybrid solvers using mixed integer pro-
gramming solvers were investigated in [21, 22, 56]. The
works [3, 8, 9] consider stable set and max-cut and propose
optimizing (i) a relaxation to get lower bounds [3] or (ii) a
restriction to generate approximate solutions [8, 9].

In contrast to previous BDD-based optimization methods
we propose a highly parallelizable and problem agnostic
approach that is amenable to GPU computation.

3. Method
We first introduce the optimization problem and its La-

grange decomposition. Next we elaborate our parallel update
scheme for optimizing the Lagrangean dual followed by our
parallel primal rounding algorithm. For the problem decom-
position and dualization we follow [40]. Our notation is
summarized for reference in Table 1.

Definition 1 (Binary Program). Consider a linear objective
c ∈ Rn and m variable subsets Ij ⊂ [n] of constraints with
feasible set Xj ⊂ {0, 1}Ij for j ∈ [m]. The corresponding
binary program is defined as

min
x∈{0,1}n

c⊤x s.t. xIj ∈ Xj ∀j ∈ [m] , (BP)

where xIj
is the restriction to variables in Ij .

Example 1 (ILP). Consider the 0–1 integer linear program

min c⊤x s.t. Ax ≤ b, x ∈ {0, 1}n. (ILP)

The system of linear constraints Ax ≤ b may be split into
m blocks, each block representing a single (or multiple)
rows of the system. For instance, let a⊤j x ≤ bj denote the
j-th row of Ax ≤ b, then the problem can be written in
the form (BP) by setting Ij = {i ∈ [n] : aji ̸= 0} and
Xj = {x ∈ {0, 1}Ij :

∑
i∈Ij

ajixi ≤ bj}.

3.1. Lagrangean Dual

While (BP) is NP-hard to solve, optimization over a single
constraint is typically easier for example by using Binary
Decision Diagrams. To make use of this possibility we
dualize the original problem using Lagrange decomposition
similarly to [40]. This allows us to solve the Lagrangean dual
of the full problem (BP) by solving only the subproblems.

Definition 2 (Lagrangean dual problem). Define the set of
subproblems that constrain variable xi as Ji = {j ∈ [m] |
i ∈ Ij}. Let the energy for subproblem j ∈ [m] w.r.t.
Lagrangean dual variables λj ∈ RIj be

Ej(λj) = min
x∈Xj

x⊤λj . (1)

Then the Lagrangean dual problem is defined as

max
λ

∑
j∈[m]

Ej(λj) s.t.
∑
j∈Ji

λj
i = ci ∀i ∈ [n]. (D)

If optima of the individual subproblems Ej(λj) agree
with each other then the consensus vector obtained from
stitching together individual subproblem solutions solves
the original problem (BP). In general, (D) is a lower bound
on (BP). Formal derivation of (D) is given in [40].

3.2. Min-Marginals

To optimize the dual problem (D) and also to obtain a
primal solution we use min-marginals [40] defined as

Definition 3 (Min-marginals). For i ∈ [n], j ∈ Ji and
β ∈ {0, 1} let

mβ
ij = min

x∈Xj

x⊤λj s.t. xi = β (MM)

denote the min-marginal w.r.t. primal variable i, subproblem
j and β.

Definition 4 (Min-marginal differences). For notational con-
venience let us also define

Mij = m1
ij −m0

ij , (MD)

which denote min-marginal difference computed
through (MM).

If Mij > 0 then assigning a value of 0 to variable i has
a lower cost than assigning a 1 in the subproblem j and
viceversa. Thus, the quantity |Mij | indicates by how much
Ej(λj) increases if xi is fixed to 1 (if Mij > 0), respectively
0 (if Mij < 0).

Min-marginals have been used in various ways to design
dual block coordinate ascent algorithms [1, 4, 19, 24, 27, 30,
31, 36, 37, 40, 42, 47, 52, 54, 55, 58, 59, 61–63, 66].

441

minx∈{0,1}−5x1 + x2 + 4x3 + 3x4
X1 : x1 + x2 + x3 ≤ 2, X2 : x2 + x3 − x4 = 0

rx1

x2 x3

>

⊥
−5

0.5

0.5

2

2

λ1 = (−5, 0.5, 2), (x1, x2, x3) ∈ X1

rx2

x3 x4

>

⊥
0.5

2

2
3

3

λ2 = (0.5, 2, 3), (x2, x3, x4) ∈ X2

Figure 2. Example decomposition of a binary program into two subproblems, one for each constraint. Each subproblem is represented by a
weighted BDD where solid arcs model the cost λ of assigning a 1 to the variable and dashed arcs have 0 cost which model assigning a 0. All
r−⊤ paths in BDDs encode feasible variable assignments of corresponding subproblems (and r−⊥ infeasible). Optimal assignments w.r.t
current (non-optimal) λ are highlighted in green i.e. x1 = 1, x2 = x3 = 0 for X1 and x2 = x3 = x4 = 0 for X2. Our dual update scheme
processes multiple variables in parallel which are indicated in same color (e.g. x1, x2 in X1,X2 resp.).

Algorithm 1: Parallel Deferred Min-Marg. Averag-
ing

Input: Lagrange variables λj
i ∈ R∀i ∈ [n], j ∈ Ji,

Constraint sets Xj ⊂ {0, 1}Ij ∀j ∈ [m],
Damping factor ω ∈ (0, 1]

1 Initialize deferred min-marginal diff. M = 0
2 while (stopping criterion not met) do
3 for j ∈ J in parallel do
4 for i ∈ Ij in ascending order do
5 Compute min-marginal diff. Mij (MD)
6 Update dual variables λj

i via (3)
7 Update deferred min-marginal diff. M ←M
8 Repeat lines 3-6 in descending order of Ij
9 for j ∈ J , i ∈ Ij do

10 Add deferred min-marginal differences:
λj
i += ωM ij

3.3. Parallel Deferred Min-Marginal Averaging

To exploit GPU parallelism in solving the dual prob-
lem (D) we would like to update multiple dual variables
in parallel. However, conventional dual update schemes are
not friendly for parallelization. For example the dual update
scheme of [40] for variable i in subproblem j is

λj
i ← λj

i −Mij +
1

|Ji|
∑
k∈Ji

Mik ,︸ ︷︷ ︸
min-marginal averaging

(2)

where Mij is defined in (MD). This update scheme (2)
requires communication between all subproblems Ji con-
taining variable i for the min-marginal averaging step and
thus requires synchronization. To overcome this limitation
we propose a novel dual optimization procedure which per-
forms this averaging step on min-marginal differences M
from the previous iteration as follows

λj
i ← λj

i − ωMij +
ω

|Ji|
∑
k∈Ji

M ik. (3)

Since M was computed in the previous iteration, the above
dual updates can be performed in parallel for all subproblems
without requiring synchronization. Following [63] we use a
damping factor ω ∈ (0, 1) (0.5 in our experiments) to obtain
better final solutions.

Our proposed scheme is given in Algorithm 1. We iterate
in parallel over each subproblem j. For each subproblem,
variables are visited in order and min-marginals are com-
puted and stored for updates in the next iteration (lines 4-5).
The current min-marginal difference is subtracted and the
one from previous iteration is added (line 6) by distributing
it equally among subproblems Ji. At termination (line 10)
we perform a min-marginal averaging step to account for
the deferred update from last iteration. For stopping criteria
we use relative change in dual objective between two subse-
quent iterations. We initialize the input Lagrange variables
by λj

i = ci/|Ji|, ∀i ∈ [n], j ∈ Ji.
Proposition 1. In each dual iteration the Lagrange multi-
pliers along with the deferred min-marginals can be used

442

to satisfy dual feasibility and the dual lower bound (D) is
non-decreasing.

Similar to other dual block coordinate ascent schemes
Algorithm 1 can get stuck in suboptimal points, see [62, 63].
As seen in our experiments these are usually not far away
from the optimum, however.

In Section 5 we will explain how we can incrementally
compute min-marginals reusing previous computations if we
represent subproblems as Binary Decision Diagrams. This
saves us from computing min-marginals from scratch leading
to greater efficiency.

4. Primal Rounding

In order to obtain a primal solution to (BP) from an ap-
proximative dual solution to (D) we propose a GPU friendly
primal rounding scheme based on cost perturbation. We
iteratively change costs in a way that variable assignments
across subproblems agree with each other. If all variables
agree by favoring a single assignment, we can reconstruct
a primal solution (not necessarily the optimal). Instead of
only using variable assignments of all subproblems we use
min-marginal differences (MD) as they additionally indicate
how strongly a variable favours a particular assignment.

Algorithm 2 details our method. We iterate over all vari-
ables in parallel and check min-marginal differences. If for a
variable i all min-marginal differences indicate that the opti-
mal solution is 0 (resp. 1) Lagrange variables λ are increased
(resp. decreased) leaving even more certain min-marginals
differences for these variables. This step imitates variable
fixation as done in branch-and-bound, however we only
perform soft fixation implicitly through cost perturbation.
In case min-marginal differences are equal we randomly
perturb corresponding dual costs. Lastly, if min-marginals
differences indicate conflicting solutions we compute to-
tal min-marginal difference and decide accordingly. In the
last two cases we add more perturbation to force towards
non-conflicts. For faster convergence we increase the pertur-
bation magnitude after each iteration.

Note that the modified λ variables via Alg. 2 need not
be feasible for the dual problem (D). Although, our primal
rounding algorithm is not guaranteed to terminate, in our
experiments a solution was always found in less than 100
iterations.

Remark. The primal rounding scheme in [40] and typical
primal ILP heuristics [10] are sequential and build upon
sequential operations such as variable propagation. Our
primal rounding lends itself to parallelism since we perturb
costs on all variables simultaneously and reoptimize via
Algorithm 1.

Algorithm 2: Perturbation Primal Rounding

Input: Lagrange variables λj
i ∈ R ∀i ∈ [n], j ∈ Ji,

Constraint sets Xj ⊂ {0, 1}Ij ∀j ∈ [m],
Initial perturbation strength δ ∈ R+,
perturbation growth rate α

Output: Feasible labeling x ∈ {0, 1}n
1 Compute min-marginal differences Mij ∀i, j (MD)
2 while ∃i ∈ [n] and j ̸= k ∈ Ji s.t.

sign(Mij) ̸= sign(Mik) do
3 for i = 1, . . . , n in parallel do
4 Sample r uniformly from [−δ, δ]
5 if Mij > 0 ∀j ∈ Ji then
6 λj

i += δ ∀j ∈ Ji
7 else if Mij < 0 ∀j ∈ Ji then
8 λj

i −= δ ∀j ∈ Ji
9 else if Mij = 0 ∀j ∈ Ji then

10 λj
i += r · δ ∀j ∈ Ji

11 else
12 Compute total min-marginal difference:

Mi =
∑

j∈Ji
Mij

13 λj
i += sign(Mi) · |r| · δ ∀j ∈ Ji

14 Increase perturbation: δ ← δ · α
15 Reoptimize perturbed λ via Algorithm 1
16 Recompute Mij ∀i, j w.r.t optimized λ

5. Binary Decision Diagrams
We use Binary Decision Diagrams (BDDs) to represent

the feasibility sets Xj , j ∈ [m] and compute their min-
marginals (MM). BDDs are in essence directed acyclic
graphs whose paths between two special nodes (root and
terminal) encode all feasible solutions. Specifically, we use
reduced ordered Binary Decision Diagrams [12] as in [40].

Definition 5 (BDD). Let an ordered variable set I =
{w1, . . . , wk} ⊂ [n] corresponding to a constraint be given.
A corresponding BDD is a directed acyclic graph D =
(V,A) with

Special nodes: root node r, terminals ⊥ and ⊤.

Outgoing Arcs: each node v ∈ V \{⊤,⊥} has exactly two
successors s0(v), s1(v) with outgoing arcs vs0(v) ∈ A
(the zero arc) and vs1(v) ∈ A (the one arc).

Partition: the node set V is partitioned by {P1, . . . ,Pk},
∪̇iPi = V \{⊤,⊥}. Each partition holds all the nodes
corresponding to a single variable e.g. Pi corresponds
to variable wi. It holds that P1 = {r} i.e. it only
contains the root node.

Partition Ordering: when v ∈ Pi then s0(v), s1(v) ∈
Pi+1 ∪ {⊥} for i < k and s0(v), s1(v) ∈ {⊥,⊤}
for v ∈ Pk.

443

Definition 6 (Constraint Set Correspondence). Each BDD
defines a constraint set X via the relation

x ∈ X ⇔
∃(v1, . . . , vk, vk+1) ∈ Paths(V,A) s.t.

v1 = r, vk+1 = ⊤,
vi+1 = sxi(vi)∀i ∈ [k]

(4)

Thus each path between root r and terminal ⊤ in the BDD
corresponds to some feasible variable assignment x ∈ X .

Figures 2 and 3 illustrate BDD encoding of feasible sets
of linear inequalities.

Remark. In the literature [12, 35] BDDs have additional re-
quirements, mainly that there are no isomorphic subgraphs.
This allows for some additional canonicity properties like
uniqueness and minimality. While all the BDDs in our algo-
rithms satisfy the additional canonicity properties, only what
is required in Definition 5 is needed for our purposes, so we
keep this simpler setting.

5.1. Efficient Min-Marginal Computation

In order to compute min-marginals for subproblems we
need to consider weighted BDDs. For notational conve-
nience we will drop dependence on subproblem j in upcom-
ing text e.g., we will use λi instead of λj

i .

Definition 7 (Weighted BDD). A weighted BDD is a BDD
with arc costs. Let a function f(x) be defined as

f(x) =

{
x⊤λ x ∈ X
∞ otherwise

. (5)

The weighted BDD represents f if it satisfies Def. 6 for the
given X and the arc costs for an i ∈ [k], v ∈ Pi, vw ∈ A are

set as

{
0 w ∈ s0(v)

λi w ∈ s1(v)
.

Min-marginals for variable i ∈ I of a subproblem can
be computed by its weighted BDD by calculating shortest
path distances from r to all nodes in Pi and shortest path
distances from all nodes in Pi+1 to ⊤. We use SP(v, w) to
denote the shortest path distance between nodes v and w of
a weighted BDD. An example shortest path calculation is
shown in Figure 3. The min-marginals as defined in (MM)
can be computed as

mβ
i = min

vsβ(v)∈A
v∈Pi

[
SP(r, v) + β · λi + SP(sβ(v),⊤)

]
(6)

For efficient min-marginal computation in Algorithm 1
we reuse shortest path distances used in (6). Specifically,
for computing min-marginals in lines 4-5 of Alg. 1 we use
Alg. 3 for ascending variable order and Alg. 4 for descending
variable order in line 8.

a

b1

b2

c1

c2

c3

d1

d2

>

⊥
2

3

3

1

1

1

4

4

0 0

0 0

2 1

0 0

3 4

2 1

1 4

0 0

0 0

0 ∞

SP(a, ·) SP(·,>)

P1 P2 P3 P4

Figure 3. Weighted BDD of a subproblem containing variables:
I = {a, b, c, d} with costs (λ): 2, 3, 1, 4 resp. and constraint a−
b − c + d = 0. Shortest path costs from the root node a and the
terminal node ⊤ are shown for each node. Here P1 = {a},P2 =
{b1, b2},P3 = {c1, c2, c3},P4 = {d1, d2}, s0(c2) = d1 and
s1(c2) = ⊥. Dashed arcs have cost 0 as they model assigning a 0
value to the corresponding variable.

Algorithm 3: Forward Pass Min-Marginal Compu-
tation

1 for v ∈ Pi do

2 SP(r, v) = min

min

u:s0(u)=v
SP(r, u),

min
u:s1(u)=v

SP(r, u) + λi

3 Compute mβ

i via (6)

Algorithm 4: Backward Pass Min-Marginal Com-
putation

1 for v ∈ Pi+1 do

2 SP(v,⊤) = min

{
SP(s0(v),⊤),

SP(s1(v),⊤) + λi+1

}
3 Compute mβ

i via (6)

Efficient GPU implementation In addition to solving all
subproblems in parallel, we also exploit parallelism within
each subproblem during shortest path updates. Specifically
in Alg. 3, we parallelize over all v ∈ Pi and perform the
min operation atomically. Similarly in Alg. 4 we parallelize
over all v ∈ Pi+1 but without requiring atomic update.

To enable fast GPU memory access via memory coalesc-
ing we arrange BDD nodes in the following fashion. First,
all nodes within a BDD which belong to the same partition
P (thus corresponding to same variable) are laid out consec-
utively. Secondly, across different BDDs, nodes are ordered
w.r.t increasing hop distance from their corresponding root
nodes. Such arrangement for the ILP in Figure 2 is shown in
Figure 4.

444

r r ⊥ ⊥. . .

ascending order

descending order

X1 X1 X1

X2 X2

X1

X2

Figure 4. Arrangement of BDD nodes in GPU memory for the ILP
in Figure 2. For ascending order in Alg. 1 we proceed from root to
terminal nodes and vice versa for descending.

6. ExperimentsWe show effectiveness of our solver against a state-of-
the-art ILP solver [23], the general purpose BDD-based
solver [40] and specialized CPU solvers for specific problem
classes. We have chosen some of the largest structured
prediction ILPs we are aware of in the literature that are
publicly available. Our results are computed on a single
NVIDIA Volta V100 (16GB) GPU unless stated otherwise.
For CPU solvers we use AMD EPYC 7702 CPU.

Datasets Our benchmark problems obtained from [53] can
be categorized as follows.

Cell tracking: Instances from [24] which we partition into
small and large instances as also done in [40].

Graph matching (GM): Quadratic assignment problems (of-
ten called graph matching in the literature) for corre-
spondence in computer vision [57] (hotel, house)
and developmental biology [32] (worms).

Markov Random Field (MRF): Several datasets from the
OpenGM [33] benchmark, containing both small and
large instances with varying topologies and number of
labels. We have chosen the datasets color-seg, color-
seg-n4, color-seg-n8 and object-seg.

QAPLib: The widely used benchmark dataset for quadratic
assignment problems used in the combinatorial opti-
mization community [13]. We partition QAPLib in-
stances into small (up to 50 vertices) and large (up
to 128 vertices) instances. For large instances we use
NVIDIA RTX 8000 (48GB) GPU.

Algorithms We compare results on the following algo-
rithms.

Gurobi: The commercial ILP solver [23] as reported
in [40]. The barrier method is used for QAPLib and
dual simplex for all other datasets.

BDD-CPU: BDD-based min-marginal averaging approach
of [40]. The algorithm runs on CPU with 16 threads
for parallelization. Primal solutions are rounded using
their BDD-based depth-first search scheme.

Specialized solvers: State-of-the-art problem spe-
cific solver for each dataset. For cell-tracking we use
the solver from [24], the AMP solver for graph matching
proposed in [55] and TRWS for MRF [36].

FastDOG: Our approach where for the GPU implementa-
tion we use the CUDA [44] and Thrust [25] program-
ming frameworks. For rounding primal solutions with
Algorithm 2 we set δ = 1.0 and α = 1.2. For construct-
ing BDDs out of linear (in)equalities we use the same
approach as for BDD-CPU.

For MRF, parallel algorithms such as [58] exist however
TRWS is faster on the sparse problems we consider. While we
are aware of even faster purely primal heuristics [11, 38] for
MRF and e.g. [29] for graph matching they do not optimize
a convex relaxation and hence do not provide lower bounds.
Hence, we have chosen TRWS [36] for MRF and AMP [55]
for graph matching which, similar to FastDOG, optimize an
equivalent resp. similar Lagrange decomposition and hence
can be directly compared.

Results In Table 2 we show aggregated results over all
instances of each specific benchmark dataset. Runtimes are
taken w.r.t. computation of both primal and dual bounds. A
more detailed table with results for each instance is given in
the Appendix.

In Figure 5 we show averaged convergence plots for var-
ious solvers. In general we offer a very good anytime per-
formance producing at most times and in general during the
beginning better lower bounds than our baselines.

Discussion In general, we are always faster (up to a fac-
tor of 10) than BDD-CPU [40] and except on worms we
achieve similar or better lower bounds. In comparison to
the respective hand-crafted Specialized CPU solvers
we also achieve comparable runtimes with comparable lower
and upper bounds. While Gurobi achieves, if given un-
limited time, better lower bounds and primal solutions, our
FastDOG solver outperforms it on the larger instances when
we abort Gurobi early after hitting a time limit. We argue
that we outperform Gurobi on larger instances due to its
superlinear iteration complexity.

When comparing the number of dual iterations to
BDD-CPU we need roughly 3-times as many to reach the
same lower bound. Nonetheless, as we can perform more
iterations per second this still leads to an overall faster algo-
rithm.

Since we are solving a relaxation the lower bounds and
quality of primal solutions are dependent on the tightness of
this relaxation. For all datasets except QAPLib our (and also
baselines’) lower and upper bounds are fairly close, reflect-
ing the nature of commonly occurring structured prediction
problems.

445

Cell tracking Graph matching MRF QAPLib

Small Large Hotel House Worms C-seg C-seg-n4 C-seg-n8 Obj-seg Small Large

instances 10 5 105 105 30 3 9 9 5 105 29
nmax 1.2M 10M 0.3M 0.3M 1.5M 3.3M 1.2M 1.4M 681k 3M 49M
mmax 0.2M 2.3M 52k 52k 0.2M 13.6M 4.2M 8.3M 2.2M 245k 2M

Dual objective (lower bound) ↑
Gurobi [23] −4.382e6 −1.545e8 −4.293e3 −3.778e3 −4.849e4 3.085e8 1.9757e4 1.9729e4 3.1311e4 2.913e6 4.512e4
BDD-CPU [40] −4.387e6 −1.549e8 −4.293e3 −3.778e3 −4.878e4 3.085e8 1.9643e4 1.9631e4 3.1248e4 3.675e6 8.172e6
Specialized −4.385e6 −1.551e8 −4.293e3 −3.778e3 −4.847e4 3.085e8 2.0012e4 1.9991e4 3.1317e4 - -
FastDOG −4.387e6 −1.549e8 −4.293e3 −3.778e3 −4.893e4 3.085e8 2.0011e4 1.9990e4 3.1317e4 3.747e6 8.924e6

Primal objective (upper bound) ↓
Gurobi [23] −4.382e6 −1.524e8 −4.293e3 −3.778e3 −4.842e4 3.085e8 2.8464e4 2.7829e4 1.4981e5 5.186e7 1.431e8
BDD-CPU [40] −4.337e6 −1.515e8 −4.293e3 −3.778e3 −4.783e4 3.086e8 2.1781e4 2.2338e4 3.1525e4 5.239e7 1.452e8
Specialized −4.361e6 −1.531e8 −4.293e3 −3.778e3 −4.845e4 3.085e8 2.0012e4 1.9991e4 3.1317e4 - -
FastDOG −4.376e6 −1.541e8 −4.293e3 −3.778e3 −4.831e4 3.085e8 2.0016e4 1.9995e4 3.1322e4 4.330e7 1.376e8

Runtimes [s] ↓
Gurobi [23] 1 1584 4 7 1048 132 980 1337 1506 3948 6742
BDD-CPU [40] 14 216 6 12 528 70 107 218 232 357 5952
Specialized 1.5 90 3 3 214 155 9 30 3 - -
FastDOG 13 110 0.2 0.4 54 14 9 13 39 137 6928

Table 2. Results comparison on all datasets where the values are averaged within a dataset. For each dataset, the results on corresponding
specialized solvers are computed using [24, 34, 55]. Numbers in bold highlight the best performance. nmax,mmax: Maximum number of
variables, constraints in the category.

100 101 102 103
−1.65

−1.6

−1.55

−1.5
·108

time [s]

P
ri
m
al

&
D
u
al

ob
j.

(×
10

8
)

Gurobi BDD CPU
Spec. FastDOG

(a) Cell tracking: Large

101 102 103
−5.4

−5.2

−5

−4.8

−4.6
·104

time [s]

P
ri
m
al

an
d
D
u
al

ob
j.

(×
10

4
)

Gurobi BDD CPU
Spec. FastDOG

(b) Graph Matching: Worms

100 101 102 103
1

1.5

2

2.5

3
·104

time [s]

P
ri
m
al

&
D
u
al

ob
j.

(×
10

4
)

Gurobi BDD CPU
Spec. FastDOG

(c) MRF: Color-seg-n8

Figure 5. Convergence plots averaged over all instances of a dataset. Lower curves depict increasing lower bounds while markers denote
objectives of rounded primal solutions. The x-axis is plotted logarithmically.

7. Conclusion

We have proposed a massively parallelizable generic al-
gorithm that can solve a wide variety of ILPs on GPU. Our
results indicate that the performance of specialized efficient
CPU solvers can be matched or even surpassed by a com-
pletely generic GPU solver. Our implementation is a first
prototype and we conjecture that more speedups can be
gained by elaborate implementation techniques, e.g. com-
pression of the BDD representation, better memory layout
for better memory coalescing, multi-GPU support etc. We
argue that future improvements in optimization algorithms
for structured prediction can be made by developing GPU

friendly problem specific solvers and with improvements
in our or other generic GPU solvers that can benefit many
problem classes simultaneously. Another future avenue is
optimization of ILPs from other domains, e.g. on the MIPLib
benchmark [18]. These problems include constraints that
are harder to represent as BDDs and additional encoding
techniques are needed [2, 16].

8. Acknowledgments

We would like to thank all reviewers, especially Reviewer
1 for valuable feedback and Jan-Hendrik Lange for insightful
discussions.

446

References
[1] Ahmed Abbas and Paul Swoboda. RAMA: A Rapid Multicut

Algorithm on GPU. arXiv preprint arXiv:2109.01838, 2021.
1, 2, 3

[2] Ignasi Abı́o, Robert Nieuwenhuis, Albert Oliveras, Enric
Rodrı́guez-Carbonell, and Valentin Mayer-Eichberger. A
new look at bdds for pseudo-boolean constraints. Journal of
Artificial Intelligence Research, 45:443–480, 2012. 8

[3] Henrik Reif Andersen, Tarik Hadzic, John N Hooker, and
Peter Tiedemann. A constraint store based on multivalued
decision diagrams. In International Conference on Principles
and Practice of Constraint Programming, pages 118–132.
Springer, 2007. 3

[4] Chetan Arora and Amir Globerson. Higher order matching
for consistent multiple target tracking. In Proceedings of the
IEEE International Conference on Computer Vision, pages
177–184, 2013. 3

[5] David Bergman and Andre A. Cire. Decomposition based on
decision diagrams. In Claude-Guy Quimper, editor, Integra-
tion of AI and OR Techniques in Constraint Programming,
pages 45–54, Cham, 2016. Springer International Publishing.
3

[6] David Bergman and Andre A Cire. Discrete nonlinear opti-
mization by state-space decompositions. Management Sci-
ence, 64(10):4700–4720, 2018. 3

[7] David Bergman, Andre A Cire, and Willem-Jan van Hoeve.
Lagrangian bounds from decision diagrams. Constraints,
20(3):346–361, 2015. 3

[8] David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and
John Hooker. Decision diagrams for optimization, volume 1.
Springer, 2016. 3

[9] David Bergman, Andre A Cire, Willem-Jan van Hoeve, and
John N Hooker. Discrete optimization with decision diagrams.
INFORMS Journal on Computing, 28(1):47–66, 2016. 3

[10] Timo Berthold. Primal heuristics for mixed integer programs.
2006. 5

[11] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approxi-
mate energy minimization via graph cuts. IEEE Transactions
on pattern analysis and machine intelligence, 23(11):1222–
1239, 2001. 7

[12] Randal E Bryant. Graph-based algorithms for boolean
function manipulation. Computers, IEEE Transactions on,
100(8):677–691, 1986. 5, 6

[13] Rainer E Burkard, Stefan E Karisch, and Franz Rendl.
QAPLIB–a quadratic assignment problem library. Journal of
Global optimization, 10(4):391–403, 1997. 7

[14] Margarita P Castro, Andre A Cire, and J Christopher Beck.
An mdd-based lagrangian approach to the multicommodity
pickup-and-delivery tsp. INFORMS Journal on Computing,
32(2):263–278, 2020. 3

[15] Cplex, IBM ILOG. CPLEX optimization studio 12.10, 2019.
1, 2

[16] M. Fujita, Y. Lu, E. Clarke, and J. Jain. Efficient variable
ordering using abdd based sampling. In Design Automation
Conference, pages 687–692, Los Alamitos, CA, USA, jun
2000. IEEE Computer Society. 8

[17] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent
Charlin, and Andrea Lodi. Exact combinatorial optimiza-
tion with graph convolutional neural networks. arXiv preprint
arXiv:1906.01629, 2019. 2

[18] Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias
Achterberg, Michael Bastubbe, Timo Berthold, Philipp M.
Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, Marco
Lübbecke, Hans D. Mittelmann, Derya Ozyurt, Ted K. Ralphs,
Domenico Salvagnin, and Yuji Shinano. MIPLIB 2017: Data-
Driven Compilation of the 6th Mixed-Integer Programming
Library. Mathematical Programming Computation, 2021. 8

[19] Amir Globerson and Tommi S Jaakkola. Fixing max-
product: Convergent message passing algorithms for MAP
LP-relaxations. In Advances in neural information processing
systems, pages 553–560, 2008. 2, 3

[20] Jacek Gondzio and Robert Sarkissian. Parallel interior-point
solver for structured linear programs. Mathematical Program-
ming, 96(3):561–584, 2003. 2

[21] Jaime E González, Andre A Cire, Andrea Lodi, and Louis-
Martin Rousseau. BDD-based optimization for the quadratic
stable set problem. Discrete Optimization, page 100610, 2020.
3

[22] Jaime E González, Andre A Cire, Andrea Lodi, and Louis-
Martin Rousseau. Integrated integer programming and deci-
sion diagram search tree with an application to the maximum
independent set problem. Constraints, pages 1–24, 2020. 3

[23] Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2021. 1, 2, 7, 8

[24] Stefan Haller, Mangal Prakash, Lisa Hutschenreiter, Tobias
Pietzsch, Carsten Rother, Florian Jug, Paul Swoboda, and
Bogdan Savchynskyy. A primal-dual solver for large-scale
tracking-by-assignment. In AISTATS, 2020. 2, 3, 7, 8

[25] Jared Hoberock and Nathan Bell. Thrust: A parallel template
library, 2010. Version 1.7.0. 7

[26] John N. Hooker. Improved job sequencing bounds from deci-
sion diagrams. In Thomas Schiex and Simon de Givry, editors,
Principles and Practice of Constraint Programming, pages
268–283, Cham, 2019. Springer International Publishing. 3

[27] Andrea Hornakova, Timo Kaiser, Paul Swoboda, Michal Ro-
linek, Bodo Rosenhahn, and Roberto Henschel. Making
higher order MOT scalable: An efficient approximate solver
for lifted disjoint paths. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6330–
6340, 2021. 2, 3

[28] Qi Huangfu and J. A. J. Hall. Parallelizing the dual revised
simplex method. Math. Program. Comput., 10(1):119–142,
2018. 2

[29] Lisa Hutschenreiter, Stefan Haller, Lorenz Feineis, Carsten
Rother, Dagmar Kainmüller, and Bogdan Savchynskyy. Fu-
sion moves for graph matching. 2021. 7

[30] Jeremy Jancsary and Gerald Matz. Convergent decomposition
solvers for tree-reweighted free energies. In Proceedings of
the Fourteenth International Conference on Artificial Intelli-
gence and Statistics, pages 388–398, 2011. 2, 3

[31] Jason K Johnson, Dmitry M Malioutov, and Alan S Will-
sky. Lagrangian relaxation for MAP estimation in graphical
models. arXiv preprint arXiv:0710.0013, 2007. 2, 3

447

[32] Dagmar Kainmueller, Florian Jug, Carsten Rother, and Gene
Myers. Active graph matching for automatic joint segmenta-
tion and annotation of C. elegans. In International Conference
on Medical Image Computing and Computer-Assisted Inter-
vention, pages 81–88. Springer, 2014. 7

[33] Jörg H. Kappes, Björn Andres, Fred A. Hamprecht, Christoph
Schnörr, Sebastian Nowozin, Dhruv Batra, Sungwoong Kim,
Bernhard X. Kausler, Thorben Kröger, Jan Lellmann, Nikos
Komodakis, Bogdan Savchynskyy, and Carsten Rother. A
comparative study of modern inference techniques for struc-
tured discrete energy minimization problems. International
Journal of Computer Vision, 115(2):155–184, 2015. 1, 2, 7

[34] Jörg Hendrik Kappes, Markus Speth, Gerhard Reinelt, and
Christoph Schnörr. Towards efficient and exact MAP-
inference for large scale discrete computer vision problems
via combinatorial optimization. In 2013 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1752–1758,
2013. 8

[35] Donald E Knuth. The art of computer programming, volume
4A: combinatorial algorithms, part 1. Pearson Education
India, 2011. 6

[36] Vladimir Kolmogorov. Convergent tree-reweighted message
passing for energy minimization. IEEE transactions on pat-
tern analysis and machine intelligence, 28(10):1568–1583,
2006. 2, 3, 7

[37] Vladimir Kolmogorov. A new look at reweighted message
passing. IEEE transactions on pattern analysis and machine
intelligence, 37(5):919–930, 2014. 2, 3

[38] Nikos Komodakis and Georgios Tziritas. Approximate la-
beling via graph cuts based on linear programming. IEEE
transactions on pattern analysis and machine intelligence,
29(8):1436–1453, 2007. 7

[39] Jan-Hendrik Lange, Andreas Karrenbauer, and Bjoern Andres.
Partial optimality and fast lower bounds for weighted corre-
lation clustering. In International Conference on Machine
Learning, pages 2892–2901. PMLR, 2018. 2

[40] Jan-Hendrik Lange and Paul Swoboda. Efficient message
passing for 0–1 ILPs with binary decision diagrams. In Inter-
national Conference on Machine Learning, pages 6000–6010.
PMLR, 2021. 1, 2, 3, 4, 5, 7, 8

[41] Leonardo Lozano, David Bergman, and J Cole Smith. On the
consistent path problem. Optimization Online e-prints, 2018.
3

[42] Talya Meltzer, Amir Globerson, and Yair Weiss. Convergent
message passing algorithms-a unifying view. arXiv preprint
arXiv:1205.2625, 2012. 2, 3

[43] Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von
Glehn, Pawel Lichocki, Ivan Lobov, Brendan O’Donoghue,
Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang,
et al. Solving mixed integer programs using neural networks.
arXiv preprint arXiv:2012.13349, 2020. 2

[44] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. CUDA,
release: 11.2, 2021. 7

[45] Kalyan Perumalla and Maksudul Alam. Design Considera-
tions for GPU-Based Mixed Integer Programming on Parallel
Computing Platforms. Association for Computing Machinery,
New York, NY, USA, 2021. 1, 2

[46] Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch.
Parallel solvers for mixed integer linear optimization. In
Handbook of parallel constraint reasoning, pages 283–336.
Springer, 2018. 2

[47] B. Savchynskyy, S. Schmidt, Jörg H. Kappes, and Christoph
Schnörr. Efficient MRF energy minimization via adaptive
diminishing smoothing. UAI. Proceedings, pages 746–755,
2012. 1. 2, 3

[48] Alexander Shekhovtsov, Christian Reinbacher, Gottfried
Graber, and Thomas Pock. Solving dense image matching in
real-time using discrete-continuous optimization. In Proceed-
ings of the 21st Computer Vision Winter Workshop (CVWW),
page 13, 2016. 1, 2

[49] Edmund Smith, Jacek Gondzio, and Julian Hall. GPU accel-
eration of the matrix-free interior point method. In Roman
Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy
Waśniewski, editors, Parallel Processing and Applied Math-
ematics, pages 681–689, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. 2

[50] Boro Sofranac, Ambros Gleixner, and Sebastian Pokutta. Ac-
celerating domain propagation: an efficient GPU-parallel
algorithm over sparse matrices. In 2020 IEEE/ACM 10th
Workshop on Irregular Applications: Architectures and Algo-
rithms (IA3), pages 1–11. IEEE, 2020. 2

[51] Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bar-
tunov, and Vinod Nair. Learning a large neighborhood
search algorithm for mixed integer programs. arXiv preprint
arXiv:2107.10201, 2021. 2

[52] Paul Swoboda and Bjoern Andres. A message passing algo-
rithm for the minimum cost multicut problem. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1617–1626, 2017. 2, 3

[53] Paul Swoboda, Andrea Hornakova, Paul Roetzer, and Ahmed
Abbas. Structured prediction problem archive. arXiv preprint
arXiv:2202.03574, 2022. 7

[54] Paul Swoboda, Ashkan Mokarian, Christian Theobalt, Florian
Bernard, et al. A convex relaxation for multi-graph matching.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 11156–11165, 2019. 2, 3

[55] Paul Swoboda, Carsten Rother, Hassan Abu Alhaija, Dagmar
Kainmuller, and Bogdan Savchynskyy. A study of lagrangean
decompositions and dual ascent solvers for graph matching.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1607–1616, 2017. 2, 3, 7, 8

[56] Christian Tjandraatmadja and Willem-Jan van Hoeve. Incor-
porating bounds from decision diagrams into integer program-
ming. Mathematical Programming Computation, pages 1–32,
2020. 3

[57] Lorenzo Torresani, Vladimir Kolmogorov, and Carsten Rother.
Feature correspondence via graph matching: Models and
global optimization. In European conference on computer
vision, pages 596–609. Springer, 2008. 7

[58] Siddharth Tourani, Alexander Shekhovtsov, Carsten Rother,
and Bogdan Savchynskyy. MPLP++: Fast, parallel dual block-
coordinate ascent for dense graphical models. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 251–267, 2018. 1, 2, 3, 7

448

[59] Siddharth Tourani, Alexander Shekhovtsov, Carsten Rother,
and Bogdan Savchynskyy. Taxonomy of dual block-
coordinate ascent methods for discrete energy minimization.
In AISTATS, 2020. 2, 3

[60] Vibhav Vineet and PJ Narayanan. CUDA cuts: Fast graph cuts
on the GPU. In 2008 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops, pages
1–8. IEEE, 2008. 2

[61] Huayan Wang and Daphne Koller. Subproblem-tree calibra-
tion: A unified approach to max-product message passing. In
ICML (2), pages 190–198, 2013. 2, 3

[62] Tomas Werner. A linear programming approach to max-sum
problem: A review. IEEE transactions on pattern analysis
and machine intelligence, 29(7):1165–1179, 2007. 2, 3, 5

[63] Tomáš Werner, Daniel Průša, and Tomáš Dlask. Relative
interior rule in block-coordinate descent. In Proceedings of
the IEEE International Conference on Computer Vision, 2020.
To appear. 3, 4, 5

[64] Jiadong Wu, Zhengyu He, and Bo Hong. Chapter 5 - efficient
CUDA algorithms for the maximum network flow problem.
In Wen mei W. Hwu, editor, GPU Computing Gems Jade
Edition, Applications of GPU Computing Series, pages 55–
66. Morgan Kaufmann, Boston, 2012. 2

[65] Zhiwei Xu, Thalaiyasingam Ajanthan, and Richard Hartley.
Fast and differentiable message passing on pairwise markov
random fields. In Proceedings of the Asian Conference on
Computer Vision, 2020. 1, 2

[66] Zhen Zhang, Qinfeng Shi, Julian McAuley, Wei Wei, Yan-
ning Zhang, and Anton Van Den Hengel. Pairwise matching
through max-weight bipartite belief propagation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1202–1210, 2016. 2, 3

449

