
Open-Domain, Content-based, Multi-modal Fact-checking of
Out-of-Context Images via Online Resources

Sahar Abdelnabi, Rakibul Hasan, and Mario Fritz
CISPA Helmholtz Center for Information Security
{sahar.abdelnabi,rakibul.hasan,fritz}@cispa.de

David Cameron speaks 
during a campaign visit to 
Frinton-on-Sea Essex

Visual evidence

Textual evidence

Q: Does this caption match its image?

: Let's find out!

'David Cameron', 'Tony Blair', 'Andrew Holness', 'Jamaica',  
'Jamaica Labour Party', 'United Kingdom', 'Economy',  
'Prime minister', '2020 Jamaican general election','General election' 

 

David Cameron speaking in Kingston, Jamaica.
David Cameron addressing Jamaica's parliament.
Jamaican election: Labour Party wins narrow victory.
Jamaica accuses David Cameron of misrepresenting prisoner deal.
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Figure 1. To evaluate the veracity of image-caption pairings, we leverage visual and textual evidence gathered by querying the Web. We
propose a novel framework to detect the consistency of the claim-evidence (text-text and image-image), in addition to the image-caption
pairing. Highlighted evidence represents the model’s highest attention, showing a difference in location compared to the query caption.

Abstract

Misinformation is now a major problem due to its poten-
tial high risks to our core democratic and societal values
and orders. Out-of-context misinformation is one of the
easiest and effective ways used by adversaries to spread vi-
ral false stories. In this threat, a real image is re-purposed
to support other narratives by misrepresenting its context
and/or elements. The internet is being used as the go-to way
to verify information using different sources and modali-
ties. Our goal is an inspectable method that automates this
time-consuming and reasoning-intensive process by fact-
checking the image-caption pairing using Web evidence. To
integrate evidence and cues from both modalities, we intro-
duce the concept of ‘multi-modal cycle-consistency check’

/ ; starting from the image/caption, we gather tex-
tual/visual evidence, which will be compared against the
other paired caption/image, respectively. Moreover, we
propose a novel architecture, Consistency-Checking Net-

work (CCN), that mimics the layered human reasoning
across the same and different modalities: the caption vs.
textual evidence, the image vs. visual evidence, and the
image vs. caption. Our work offers the first step and bench-
mark for open-domain, content-based, multi-modal fact-
checking, and significantly outperforms previous baselines
that did not leverage external evidence1.

1. Introduction
Recently, there has been a growing and widespread con-

cern about ‘fake news’ and its harmful societal, personal,
and political consequences [1, 18, 24], including people’s
own health during the pandemic [6, 7, 30]. Misusing gen-
erative AI technologies to create deepfakes [13, 21, 36]
further fuelled these concerns [5, 14]. However, image-
repurposing— where a real image is misrepresented and
used out-of-context with another false or unrelated narrative

1For code, checkpoints, and dataset, check: https : / / s -
abdelnabi.github.io/OoC-multi-modal-fc/
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to create more credible stories and mislead the audience—
is still one of the easiest and most effective ways to create
realistically-looking misinformation. Image-repurposing
does not require profound technical knowledge or experi-
ence [2, 27], which potentially amplifies its risks. Images
usually accompany real news [41]; thus, adversaries may
augment their stories with images as ‘supporting evidence’
to capture readers’ attention [15, 27, 47].

Image re-purposing datasets and threats. Gathering
large-scale labelled out-of-context datasets is hard due to
the scarcity and substantial manual efforts. Thus, previ-
ous work attempted to construct synthetic out-of-context
datasets [20, 39]. A recent work [27] proposed to auto-
matically, yet non-trivially, match images accompanying
real news with other real news captions. The authors used
trained language and vision models to retrieve a close and
convincing image given a caption. While this work con-
tributes to misinformation detection research by automat-
ically creating datasets, it also highlights the threat that
machine-assisted procedures may ease creating misinfor-
mation at scale. Furthermore, the authors reported that both
defense models and humans struggled to detect the out-of-
context images. In this paper, we use this dataset as a chal-
lenging benchmark; we leverage external evidence to push
forward the automatic detection.

Fact-checking. To fight misinformation, huge fact-
checking efforts are done by different organizations [33,34].
However, they require substantial manual efforts [43]. Re-
searchers have proposed several automated methods and
benchmarks to automate fact-checking and verification [32,
42]. However, most of these works focus on textual claims.
Fact-checking multi-modal claims has been under-explored.

Our approach. People frequently use the Internet to
verify information. We aggregate evidence from images,
articles, different sources, and we measure their consensus
and consistency. Our goal is to design an inspectable frame-
work that automates this multi-modal fact-checking process
and assists users, fact-checkers, and content moderators.

More specifically, we propose to gather and reason over
evidence to judge the veracity of the image-caption pair.
First , we use the image to find its other occurrences on
the internet, from which, we crawl textual evidence (e.g.,
captions), which we compare against the paired caption.
Similarly , we use the caption to find other images as
visual evidence to compare against the paired image. We
call this process: ‘multi-modal cycle-consistency check’.
Importantly, we retrieve evidence in a fully automated and
flexible open-domain manner [8]; no ‘golden evidence’ is
pre-identified or curated and given to the model.

To evaluate the claim’s veracity, we propose a novel
architecture, the Consistency-Checking Network (CCN),
that consists of 1) memory networks components to eval-
uate the consistency of the claim against the evidence (de-

scribed above), 2) a CLIP [35] component to evaluate the
consistency of the image and caption pair themselves. As
the task requires machine comprehension and visual un-
derstanding, we perform different evaluations to design
the memory components and the evidence representations.
Moreover, we conduct two user studies to 1) measure the
human performance on the detection task and, 2) under-
stand if the collected evidence and the model’s attention
over the evidence help people distinguish true from falsified
pairs. Figure 1 depicts our framework, showing a falsified
example from the dataset along with the retrieved evidence.

Contributions. We summarize our contributions as
follows: 1) we formalize a new task of multi-modal
fact-checking. 2) We propose the ‘multi-modal cycle-
consistency check’ to gather evidence about the multi-
modal claim from both modalities. 3) We propose a new
inspectable framework, CCN, to mimic the aggregation of
observations from the claims and world knowledge. 4) We
perform numerous evaluations, ablations, and user studies
and show that our evidence-augmented method significantly
improves the detection over baselines.

2. Related Work
Multi-modal Misinformation. Previous work has stud-

ied multi-modal misinformation [22, 29, 46]. For instance,
Khattar et al. [22] studied multi-modal fake news on Twitter
by learning representations of images and captions which
were used in classification. The images in the dataset could
be edited. In contrast, we focus on out-of-context real news
images and verifying them using evidence.

Moreover, Zlatkova et al. [50] studied the factuality of
the image-claim pairs using information from the Web.
They collected features about the claim image, such as its
URL. The actual content of the claim image is not consid-
ered against evidence. Our work is different in how we col-
lect both visual and textual evidence to perform the cycle-
consistency check. In addition, they only calculate features
from the claim text such as TF-IDF, while we use memory
networks with learned representations.

Related to the out-of-context threat, Aneja et al. [2] con-
structed a large, yet unlabelled, dataset of different contexts
of the same image. They propose a self-supervised ap-
proach to detect whether two captions (given an image) are
having the same context. However, unlike our work, they
do not judge the veracity of a single image-caption claim.
Also, the unlabelled dataset collected in this work does not
allow the veracity detection training and evaluation.

In order to produce labelled out-of-context images, pre-
vious work created synthetic datasets by changing the cap-
tions, either by naive swapping or named entities manipu-
lations [20, 39], however, the falsified examples were either
too naive or contained linguistic biases that are easy to de-
tect even by language-only models [27].
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Therefore, Luo et al. [27] proposed to create falsi-
fied examples by matching real images with real cap-
tions [26]. They created the large-scale NewsCLIPpings
dataset that contains both pristine and convincing falsi-
fied examples. The matching was done automatically us-
ing trained language and vision models (such as SBERT-
WK [45], CLIP [35], or scene embeddings [49]). The falsi-
fied examples could misrepresent the context, the place, or
people in the image, with inconsistent entities or semantic
context. The authors show that both machine and human
detection are limited, indicating that the task is indeed chal-
lenging. Thus, to improve the detection, we propose to use
external Web evidence to verify the image-caption claim.

Open-domain QA and Fact-verification. Our work is
similar to textual work in open-domain QA [8] and fact-
verification [42] (from Wikipedia) in having a large-scale
and open-domain task that involves automatic retrieval and
comprehension. We do not assume that the input to the
model is already labelled and identified as relevant, simu-
lating real-life fact-checking. Moreover, we do not restrict
the evidence to be from a specific curated source only, such
as fact-checking websites, in contrast to [44].

Similar to our work, Popat et al. [32] built a credibility
assessment end-to-end method of textual claims using ex-
ternal evidence. However, to the best of our knowledge, no
previous work attempted to verify multi-modal claims using
both modalities. Also, their model is designed to predict the
per-source credibility of claims, while we learn the aggre-
gated consistency from multiple sources.

3. Dataset and Evidence Collection
Dataset. We use the NewsCLIPpings [27] that contains

both pristine and falsified (‘out-of-context’) images. It is
built on the VisualNews [26] corpus that contains news
pieces from 4 news outlets: The Guardian, BBC, USA
Today, and The Washington Post. The NewsCLIPpings
dataset contains different subsets depending on the method
used to match the images with captions (e.g., text-text sim-
ilarity, image-image similarity, etc.). We use the ‘balanced’
subset that has representatives of all matching methods and
consists of 71,072 train, 7,024 validation, and 7,264 test ex-
amples. To kick-start our evidence-assisted detection, we
use the image-caption pairs as queries to perform Web
search, as depicted in Figure 1.

Textual evidence. We use the query image in an inverse
search mode using Google Vision APIs [4] to retrieve tex-
tual evidence . The API returns a list of entities that
are associated with that image, which we collect as part of
the textual evidence. They might describe the content of
the image and, further, the contexts of where these images
appeared, such as the entities’ list in Figure 1.

In addition, the API returns the images’ URLs and the
containing pages’ URLs. In contrast to previous work [50]

that only considered the containing pages’ titles, we also
collect the images’ captions. We designed a Web crawler
that visits the page, searches for the image’s tag using its
URL or by image content matching (using perceptual hash-
ing), then retrieves the captions if found. We scrape the
<figcaption> tag, as well as the <img> tag’s textual at-
tributes such as alt, image-alt, caption, data-caption, and
title. In addition, we observed the returned pages for a few
hundreds of the API calls and implemented other strate-
gies to scrape the captions based on them. We also save
the titles of the pages. From each page, we collect all the
non-redundant text snippets that we found. The API returns
up to 20 search results. We discard a page if the detected
language of the title is not English, using the fastText li-
brary [12] for language identification. We collect the do-
mains of each evidence item as metadata.

Visual evidence. Second, we use the caption as tex-
tual queries to search for images . We use the Google
custom search API [10] to perform the image search. We
retrieve up to 10 results, while also saving their domains.
It is important to note that, unlike the inverse image search,
the search results here are not always corresponding to the
exact match of the textual query. Therefore, the visual ev-
idence might be more loosely related to the query image.
However, even if it is not exactly related to the event, it
works as a useful baseline of the type of images that could
be associated with that topic.

Dataset decomposition. We summarize the dataset
components and task as follows:

Dataset. Unless no search results were found, a single
example in the dataset consists of the following:

• A query image Iq .
• A query caption Cq .
• Visual evidence:

– A list of images: Ie = [Ie1 , ..., I
e
K ].

• Textual evidence:
– A list of entities: ENT = [E1, ...,EM ].
– A list of captions/sentences:

S = [S1, ..., SN ].
Task. Classify {Iq, Cq} to: Pristine or Falsified.

4. The Consistency-Checking Network
We introduce the task of evidence-assisted veracity as-

sessment of image-caption pairing. As shown in Figure 1,
we perform the ‘multi-modal cycle-consistency check’ by
comparing the textual evidence against the query caption,
and the visual evidence against the query image.

Challenges. The task is significantly more complex than
the merely one-to-one matching of the query against the ev-
idence. First, many search results may be unrelated to the
query (neither falsify nor support) and act as noise. Second,
comparing the query against the evidence requires further
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Figure 2. Overview of our Consistency-Checking Network, CCN.

comprehension and reasoning. For pristine examples, the
textual evidence might range from being paraphrases of
the query caption to distantly related but supporting. For
falsified examples, they might range from having different
named entities to having the same ones but in a different
context, such as the example in Figure 1. Similarly, com-
paring the visual evidence against the query image requires
visual and scene understanding or regions comparison.

We propose a novel architecture, the Consistency-
Checking Network (CCN), to meet these challenges. We
show an overview of the method in Figure 2. At the
core of our approach is the memory networks architec-
ture [9, 23, 28, 40], which selectively compares the claim to
the relevant items of the possibly large list of evidence. In
addition, the attention mechanism allows inspecting which
evidence items were most relevant to the decision. The
model consists of a visual reasoning component, a textual
reasoning component, and a ‘CLIP’ component.

4.1. Visual Reasoning

Figure 3 outlines the visual reasoning component that
inspects the consistency between the query image and the
visual evidence. First, we represent the images using
ResNet152 [16], pretrained on the ImageNet dataset. Each
image is represented as: Iq/Ie ∈ R2048, where q denotes
the query representation and e denotes evidence. More-
over, to reason over the overlap of regions and objects in
the query image vs. evidence images, we used the label de-
tection Google API [3] to get a list of labels for each image.
Then, for each evidence image, we compute the number of
overlapping labels between it and the query. We use this

Query image
ResNet

(ImageNet)

ResNet 
(Scenes) Visual evidence

Labels overlap 
feature 

Memory 
networks

Query features

Memory  
output

Memory  
output

Memory 
networks

Evidence features

Concatenate

Query features

Concatenate

Evidence features

Figure 3. Visual evidence reasoning component.

number as an additional feature, and we concatenate it with
the evidence images’ representations.

The memory holds the evidence images. Each input to
the memory is embedded into input and output memory rep-
resentations [40], denoted by a and c, respectively. The im-
age memory vectors mi ∈ R1024 are represented by:

ma
i = ReLU(W a

i I
e + bai ), (1)

mc
i = ReLU(W c

i I
e + bci ) (2)

The learned parameters are W a
i and W c

i ∈ R2048×1024, and
bai and bci ∈ R1024. The query image Iq is also projected
into a 1024-dimension vector (Îq) by another linear layer
for modelling convenience. The matching between Îq and
the memory vectors ma

i are then computed by:

pij = Softmax(Îq
T
ma

i j), (3)

where i denotes the image memory, j is a counter for the
memory items, and pi is a probability vector over the items.
The output of the memory is the sum of the query and the
average of the output representations mc

i , weighted by pi:

oi =
∑
j

pijm
c
i j + Îq (4)

In addition, for some mismatched examples, there could
be context discrepancies based on the place. To make the
model aware of scenes and places similarity, we also repre-
sent the images using a ResNet50 trained on the Places365
dataset [49]. We form a separate memory for the scene rep-
resentations to allow more flexibility. Similar to the previ-
ous formulation, each image is represented as: P q/P e ∈
R2048, and the scenes memory vectors mp ∈ R1024 are rep-
resented by:

ma/c
p = ReLU(W a/c

p P e + ba/cp ) (5)

Similar to Eqn. 3 and Eqn. 4, we get the output of the scenes
(places) memory op.

4.2. Textual Reasoning

The second component of our model evaluates the con-
sistency between the query caption and the textual evi-
dence. As shown in Figure 1, we have two types of textual
evidence: sentences (captions or pages’ titles), and entities.
As they have different granularities and might differ in im-
portance, we form a separate memory for each.

As shown in Figure 4, we represent the query caption
and each evidence item using a sentence embedding model.
We experiment with state-of-the-art inference models that
were trained on large corpuses such as Wikipedia and were
shown to implicitly store world knowledge [25, 31, 38],
making them suitable for our task. We evaluate two meth-
ods in our experiments: 1) a pre-trained sentence trans-
former model [37] that is trained for sentence similarity, 2)
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Figure 4. Textual evidence reasoning component.

using BERT [11] to get strong contextualized embeddings,
in addition to an LSTM to encode the sequence. In the sec-
ond method, we use the second-to-last BERT layer [48] as
the tokens’ embeddings. We concatenate the last time-step
LSTM output and the average of all time-steps’ outputs.

In addition, to help the model be entity-aware, we uti-
lize a binary indicator feature to denote if there is a named
entity overlap between the query caption and the evidence
item. We used the spaCy NER [17] to extract the entities
and concatenated the binary feature with the evidence (both
captions and entities) representations.

Using either of these previously mentioned methods, we
get embeddings for the query caption Cq , the evidence enti-
ties E, and the evidence captions/sentences S. The entities
input and output memory representations are given by:

ma/c
e = ReLU(W a/c

e E + ba/ce ), (6)

similarly, the captions/sentences input and output memory
representations are given by:

ma/c
s = ReLU(W a/c

s S + ba/cs ), (7)

where W
a/c
e ,W

a/c
s ∈ Rd×d and b

a/c
e , b

a/c
s ∈ Rd are train-

able weights, and d is the dimension of the sentence embed-
ding model (768 in the case of the pre-trained model, and
512 in the case of using BERT+LSTM).

As per Eqn. 3 and Eqn. 4, we compute the output of the
entities and sentences memories as oe and os, respectively.

Encoding the evidence’s domain. Features of websites,
e.g., how frequently they appear and the types of news they
feature, could help to prioritize evidence items. Thus, we
learn an embedding of the evidence’s domain names. We
represent the domains as one-hot vectors and project them
into a 20-dimensional space. We consider the domains that
appeared at least three times, resulting in 17148 unique do-
mains, the rest are set to UNK. The domain embeddings are
then concatenated with the evidence representations (both
visual and textual, excluding entities).

4.3. CLIP

In addition to reasoning over evidence, we leverage
CLIP [35], used in [27], to integrate the query image-
text consistency into the decision. We first fine-tune CLIP

ViT/B-32 on the task of classifying image-caption pairs into
pristine or falsified, without considering the evidence.

During fine-tuning, we pass the image and text through
the CLIP encoders and normalize their embeddings. We
produce a joint embedding that is a dot product of the image
and text ones, and we add a linear classifier on top. The
model is trained to classify the pair into pristine or falsified.
Then, we freeze the fined-tuned CLIP and integrate the joint
CLIP embeddings (Jclip) into the final classifier of CCN.

4.4. Classifier

Now that we individually evaluated the text-text, image-
image, and image-text consistency, we aggregate these ob-
servations in order to reach a unified decision.

We found it helpful during training to apply a batch nor-
malization layer [19] to the output of each component. We
then concatenate all previous components in one feature
vector ot as follows:

ot = BN(oi)⊕ BN(op)⊕ BN(oe)⊕ BN(os)⊕ BN(Jclip),
(8)

where BN denotes the batch normalization. ot is then fed to
a simple classifier that has two fully connected layers with
ReLU and batch normalization after the first one (dimen-
sion: 1024), and Sigmoid after the second one that outputs
a final falsified probability (pf ). The model is trained, with
freezing the backbone embedding networks, to binary clas-
sify the examples using the binary cross-entropy loss:

L = −ytrue log(pf )− (1− ytrue) log(1− pf ) (9)

More implementation details can be found in Supp. 1.

5. Experimental Results
In this section, we show the quantitative analysis of dif-

ferent variants of the model and baselines. We then present
our user studies, qualitative analysis, and discussion.

5.1. Quantitive Analysis

We evaluated our model and other variants of it in order
to understand the effect of each component. Table 1 shows
our experiments. We summarize different aspects and high-
light the most interesting observations in what follows.

Evidence types. We first show the effect of each evi-
dence type in the first four rows. Removing the evidence
images or the evidence captions dropped the performance
significantly; these results indicate the importance of inte-
grating both modalities for verification. Removing the En-
tities had less effect. This might be due to having some
redundant information with the evidence captions already,
or because of sometimes having generic named entities that
are not helpful to verify the caption claim.

Memory design. Adding a batch normalization layer af-
ter each component, as in Eqn. 8, improved the training and
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increased the accuracy by nearly 11 percentage points. An-
other variant we studied had a unified memory containing
images, captions, and entities. The query here was a con-
catenation of the image and caption pairs. As shown in row
6, this was less successful than the separate memory setup,
suggesting that the explicit text-text and image-image con-
sistency comparison aids the learning.

Evidence filtering. As the dataset is constructed from
real news articles, the Google search may return the ex-
act news as the query search (i.e., exact news with the ex-
act webpage). While this is needed in a real fact-checking
setup, it might bias the training; the model might use it/or
its absence as a shortcut to predict pristine/falsified pairs,
respectively, without stronger reasoning. Therefore, we fil-
tered the evidence as follows: for pristine examples, we dis-
card an evidence item if it matches the query and comes
from the same website as the query. To detect matching,
we use perceptual hashing for images. For captions, we
remove punctuations and lower-case all the sentences and
then check if they are an exact match. We then trained and
evaluated with this filtered dataset. As shown in row 7, this
did not significantly reduce the accuracy, suggesting that the
model reasons about consistency beyond exact matches.

Other improvements. We show that our other enhance-
ments, including adding CLIP and improving visual and
textual representations, recovered the performance drop due
to the evidence filtering. CLIP had relatively the largest ef-
fect, with around a 1.5 percentage points increase. Training
the LSTM with BERT embeddings performed better than
using a pre-trained sentence transformer model. This might
be because it allowed the model to learn on the token level
and focus on the consistency in, e.g., named entities, lo-
cation, etc., which are more specific cues in our use-case
than general sentence entailment tasks. Finally, the last row
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1 all 3 7 7 7 3 7 7 3 7 7 73.5%
2 all w/o Images 3 7 7 7 - - - 3 7 7 62.5%
3 all w/o Captions 3 7 7 7 3 7 7 3 7 7 57.4%
4 all w/o Entities 3 7 7 7 3 7 7 3 7 7 71.8%
5 all 3 3 7 7 3 7 7 3 7 7 84.2%
6 all 7 3 7 7 3 7 7 3 7 7 81.7%
7 all 3 3 3 7 3 7 7 3 7 7 80.3%
8 all 3 3 3 7 3 7 7 3 7 3 81.2%
9 all 3 3 3 3 3 7 7 3 7 3 82.6%
10 all 3 3 3 3 3 3 7 3 7 3 83.4%
11 all 3 3 3 3 3 3 3 3 7 3 83.9%
12 all 3 3 3 3 3 3 3 7 3 3 84.7%
13 all w/o domains 3 3 3 3 3 3 3 7 3 3 83.9%

Table 1. Classification performance on the test set for different
variants of the model. Highlighted cells represent the changed fac-
tor in that experiment. The green box represents the best model.

Method Evidence Pair All Falsified Pristine

CLIP 7 3 66.1% 68.1% 64.2%
Averaged 3 7 70.6% 72.4% 68.9%

CCN 3 3 84.7% 84.8% 84.5%

Table 2. Classification performance on the test set for our model
in comparison with baselines.

shows that including the evidence’s domain helps to some
extent, as it might help the model to attend to and prioritize
evidence items. Additional experiments are in Supp. 2.

Baselines. We compare our evidence-assisted detection
against the CLIP-only baseline used in [27] in Table 2. We
fine-tuned CLIP [35], reaching a higher accuracy than orig-
inally reported in [27] on this dataset subset. As the dataset
pairing is not trivial, this baseline achieved a relatively low
performance. In contrast, we achieve a significant improve-
ment of a nearly 19 percentage points increase, indicating
that leveraging evidence is important to solve the task.

As there are no previous baselines for evidence-assisted
out-of-context detection, we design a baseline that uses ev-
idence. We use the pretrained image and text representa-
tions of ResNet-152 and sentence transformer in the same
setup of text-text and image-image similarity. We com-
pute the matching between the query and the evidence via
dot product. Then, we use an average pooling layer across
all evidence items, which will be used for classification. As
shown in Table 2, this baseline outperforms the CLIP-only.
However, our proposed model with the other improvements
achieves a ∼14 percentage points increase.

5.2. User Studies

We conducted user studies to estimate the human perfor-
mance on the dataset and evaluate the usefulness of the evi-
dence in detection, as well as the relevancy of the evidence
items that the model highly attends to.

5.2.1 Study 1: Human Performance Baseline

We aim to establish a human baseline as an upper bound es-
timate of the out-of-context images detection accuracy. Due
to the automatic open-world evidence retrieval, we do not
have a labelled dataset to indicate if an evidence item is rel-
evant to the claim. Furthermore, some examples might not
have any relevant evidence retrieved. Also, the falsified ex-
amples could be very close to the original context, making
them hard to verify even with the presence of evidence.

Setup. We randomly selected 100 examples (48 pristine,
52 falsified) from the test dataset. Along with the image-
caption pairs, we presented the gathered evidence (images,
captions, and entities). For each pair, first, we asked users
if the caption matches the image, considering any of: in-
consistency cues between them, the evidence presented, or
their prior knowledge about the subject. Then, they an-
swered which source(s) of information helped them label
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Study All Falsified Pristine

Average
1st 81.0%±4.71 79.5%±8.31 82.3%±9.31

2nd, Highest 86.2%±4.9 84.5%±9.3 88.0%±7.2
2nd, Lowest 77.7%±6.0 76.0%±9.0 79.5%±7.5

Best worker
1st 89.0% 92.0% 93.7%

2nd, Highest 94.0% 98.0% 98.0%
2nd, Lowest 88.0% 90.0% 86.0%

Table 3. Our two user studies. The first is to label random 100
examples. The second is to label another 100 examples using 1)
the highest-attention, and 2) the lowest-attention evidence.

the pair, or indicated ‘None’ if it was hard to verify. We in-
structed them not to search for other evidence, so that both
our model and humans have access to the same evidence,
and to evaluate the usefulness of the evidence gathered by
our framework. We recruited 8 experienced native English-
speaking crowd workers through Amazon Mechanical Turk.

Results. Table 3 shows the average performance across
all workers and the results of the best worker. Compared
to the findings reported in [27], human performance signifi-
cantly increased when presented with evidence (average de-
tection was 65.6%, with only 35% falsified detection rate).
Additionally, CCN achieved 80% accuracy on these 100 ex-
amples, which is lower than the best worker but on a par
with the average worker.

Figure 5 shows which information helped workers to la-
bel the image-caption pairs during the study. We highlight
the following observations: 1) In 77.2% of the examples,
on average, the evidence contributed to the workers’ deci-
sion, in comparison with 59.3% only for the image-caption
pair. In 28.3%, the evidence was the only helpful cue. 2)
Among the evidence types, the images were the most help-
ful (64%), possibly because it is easier to grasp different im-
ages at a glance. 3) 12.3% of the examples were hard to ver-
ify. When checking some of them (Supp. 3), we observed
that they do not have obvious cues (e.g., generic scenes with
event-specific captions, an image for the same person with
a similar context). Also, they sometimes had poor retrieval
(the inverse search did not find the image, so there are no
evidence captions, and the evidence images are unrelated
or not conclusive). Our model struggled in detecting these
examples as well. Augmenting with looser retrieval (e.g.,
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Figure 5. Workers indicated the factors that helped their decision.
‘Any evid.’ means that any evidence type was helpful. ‘Evid. only’
means that only the evidence was helpful.

searching with keywords of the caption, finding captions of
other similar images) might help in these cases.

5.2.2 Study 2: Evaluating the Attention
One of our main goals is to have an automated fact-checking
tool while also allowing humans to be in the loop, if needed.
We hypothesize that the attention weights given by the
model can be used to retrieve the most relevant and useful
evidence, which enables a quick inspection.

We design a second study to evaluate this hypothesis. We
randomly selected 100 examples (50 each) that at least have
8 evidence items in each type2. We designed two variants
using the same 100 pairs; in the first, we display the highest-
attention 4 items from each evidence type, in the second, we
display the lowest-attention 4 ones. The two variants are
labelled by non-overlapping groups (8 workers each). We
follow the rest of the first study’s setup and instructions.

Results. Table 3 and Figure 5 show that the highest-
attention evidence had higher performance and generally
better ratings as ‘helpful’ compared to the lowest-attention
evidence. These findings suggest that the model learned to
prioritize the most relevant items, as intended, and can po-
tentially be beneficial for 1) inspectability and, 2) assistive
fact-checking; as workers had a higher performance with
only a subset of evidence.

5.3. Qualitative Analysis

We show some successful predictions of our model in
Figure 6. When inspecting the attention in the case of pris-
tine examples, we found that the highest attention is on
items that are most relevant to the query (e.g., a similar
image in the first example, named entities that are present
in or similar to the query caption such as cities’ names,
and semantically similar captions). The model also pre-
dicted the second example correctly, despite not having an
image of the same scene. For falsified examples, we ob-
serve that the third one is predicted correctly despite having
a similar falsified topic (‘Affordable health care’ and ‘Law-
suits’). Moreover, the fourth one shows the highest atten-
tion on contradicting locations in entities, and on the most
syntactically similar caption. This was predicted correctly,
despite having similar-style evidence to the query. Simi-
larly, the falsified example in Figure 1 was similar in the
persons’ names and images (‘David Cameron’), but differ-
ent in context and scene details. Finally, the last example
shows a pristine example that was misclassified as falsified.
When inspecting the textual evidence, we observed that al-
though it is revolving around the same topic, there is little
connection to the context of the query caption, in addition
to having a diverse set of visual evidence that is not similar
to the query image. Other examples are in Supp. 4.

2In this first study, some examples might not have enough evidence.
However, we keep them to have a representative set of the dataset.
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Image-caption pair Textual evidence Visual evidence

The Futenma marine corps
airbase on the southern
Japanese island of Okinawa

‘United States’, ‘Ginowan’,
‘Governor’, ‘Military base’,
‘Politics’, ‘Japan’, ‘Takeshi Onaga’,
‘Governor of Okinawa Prefecture’,
,‘Hirokazu Nakaima’,‘Shinzo Abe’,
‘Okinawa’, ‘airport’

1- Hercules aircraft parked on the tarmac
at Marine Corps Air Station Futenma
in Ginowan on Okinawa.
2- Japan Decides to Stop Works on US
Airbase Relocation in Okinawa.
3- Japan Decides to Restart Relocation
of US Base in Okinawa Despite Protests.

Prediction: Pristine

The soaring number of
Syrian refugees has
sparked increasing
resentment in Lebanon

‘Syria’, ‘Lebanon’,
‘United Kingdom’, ‘Tent’,
‘Syrians’, ‘Language’,
‘Refugee’, ‘Recreation’,
‘Tourism’, ‘Camping’,
‘Language barrier’,
‘rural area’

1- Syrian refugees at a camp
in eastern Lebanon, December 2014.
2- Syrians entering Lebanon face
new restrictions
3- Among those displaced, 1.6
million children have fled Syria.
4- Syrian refugees in the UK: ‘We
will be good people. We will build
this country’

Prediction: Pristine

Healthcare activists say the ruling
against Novartis ensures poor
people will be able to access
cheap versions of cancer medicines

‘United States Capitol’,
‘Affordable Care Act’
‘Supreme Court of the United States’,
‘Presidency of Donald Trump’,
‘President of the United States’,
‘United States’, ‘us capitol grounds’

1- Demonstrators from Doctors for
America in support of Obamacare
march in front of the Supreme
Court on March 4, 2015.
2-The Affordable Care Act Is Back
In Court, 5 Facts You Need To Know.
3- As Court Hears Arguments in
Lawsuit To Eliminate Obamacare,
Conn. Senators Plead Their Case.

Prediction: Falsified

Smoke rises following an
Israeli air strike in Gaza City

‘Kobane’, ‘Kurdistan Region’,
‘United States’, ‘Peshmerga’,
‘Turkey’, ‘Kurds’,‘Syria’,
‘Iraq’, ‘kobani war’

1- Smoke rises after a U.S.-led airstrike
in the Syrian town of Kobani
2- The border town of Kobani is under
threat after the Islamists drove 180,000
Kurds into Turkey.
3-Former Kurdish Sniper Claims To Have
Killed Around 250 ISIS Fighters.

Prediction: Falsified

How can our young readers
persuade their parents
to get them a Playstation 3

‘Grand Theft Auto V’,‘Gamer’,
‘Grand Theft Auto IV’, ‘Wii’,
‘Grand Theft Auto VI’,
‘PlayStation 3’,
,‘Rockstar Leeds’,
‘terry seeborne marshall’,
‘Gordon Hall’,
‘Rockstar Games’

1- A court order banning Sony from
importing PS3s into the Netherlands
has been lifted.
2- Rockstar Games, creators of the
Grand Theft Auto franchise, said
it was ”very saddened” to hear of
Mr Hall’s death
3- Oakland Athletics to Begin
Accepting Bitcoin for Private Suites

Prediction: Falsified

Figure 6. Qualitative examples of news pairs along with the collected evidence. Examples with green background are pristine, red back-
ground are falsified. Highlighted items are the ones with the highest attention. Only a subset of the evidence is shown for display purposes.

5.4. Discussion and Limitations

We propose a multi-modal fact-checking framework that
significantly outperforms baselines and is comparable to
human performance. However, the task has yet many chal-
lenges, and fully relying on automated tools might have
dangerous consequences. Therefore, humans should still be
in the loop. Thus, we offer an inspectable and assistive tool
that helps to reduce the load of the otherwise fully manual
process [43]. We further discuss potential risks in Supp. 5.

Moreover, our approach relies on the retrieval results of
the search engine. However, as we show in our analysis
(Tables 1 and 2), naively considering the evidence is not ad-
equate, and a careful design of the model is needed to meet
the challenges of the task, including the noisy open-domain
setup with no relevancy supervision, and the high resem-
blance of evidence across pristine and falsified examples.

Finally, in some situations, some evidence items might
contradict others, e.g., due to the websites’ opposing politi-

cal orientations, or misinformation on the Web. We did not
observe such scenarios with the used dataset; identifying
and studying them might require poisoning the search re-
sults, or carefully curating claims that lead to contradicting
results, which is beyond the scope of this work.

6. Conclusion
We mimic the complex fact-checking process in an au-

tomated framework, CCN, that aggregates consistency sig-
nals and consensus from multi-modal evidence found on the
Web, and the given image-caption pairing. Our work sig-
nificantly outperforms previous baselines and offers a new
task and benchmark of multi-modal fact-checking, and an
automated, inspectable tool to assist manual fact-checking.
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