
Matching Feature Sets for Few-Shot Image Classification

Arman Afrasiyabi⋆•, Hugo Larochelle⋄†•, Jean-FrancËois Lalonde⋆, Christian GagnÂe⋆†•

⋆UniversitÂe Laval, ⋄Google Brain, †Canada CIFAR AI Chair, •Mila

https://lvsn.github.io/SetFeat/

Abstract

In image classification, it is common practice to train

deep networks to extract a single feature vector per input

image. Few-shot classification methods also mostly follow

this trend. In this work, we depart from this established di-

rection and instead propose to extract sets of feature vectors

for each image. We argue that a set-based representation

intrinsically builds a richer representation of images from

the base classes, which can subsequently better transfer to

the few-shot classes. To do so, we propose to adapt existing

feature extractors to instead produce sets of feature vec-

tors from images. Our approach, dubbed SetFeat, embeds

shallow self-attention mechanisms inside existing encoder

architectures. The attention modules are lightweight, and as

such our method results in encoders that have approximately

the same number of parameters as their original versions.

During training and inference, a set-to-set matching metric

is used to perform image classification. The effectiveness

of our proposed architecture and metrics is demonstrated

via thorough experiments on standard few-shot datasetsÐ

namely miniImageNet, tieredImageNet, and CUBÐin both

the 1- and 5-shot scenarios. In all cases but one, our method

outperforms the state-of-the-art.

1. Introduction

The task of few-shot image classification is to transfer

knowledge gained on a set of ªbaseº categories, assumed

to be available in large quantities, to another set of ªnovelº

classes of which we are given only very few examples. To

solve this problem, a popular strategy is to employ a deep

feature extractor which learns to convert an input image into

a feature vector that is both discriminative and transferable

to the novel classes. In this context, the common practice is

to train a model to extract, for a given input, a single feature

vector from which classification decisions are made.

In this paper, we depart from this established strategy

by proposing instead to represent images as sets of feature

vectors. With this, we aim at learning a richer feature space

that is both more discriminative and easier to transfer to the

novel domain, by allowing the network to focus on different

characteristics of the image and at different scales. The

intuition motivating that approach is that decomposing the

representation into independent components should allow

the capture of several distinctive aspects of images that can

then be used efficiently to represent images of novel classes.

To do so, we take inspiration from Feature Pyramid Net-

works [34] which proposes to concatenate multi-scale feature

maps from convolutional backbones. In contrast, however,

we do not just poll the features themselves but rather embed

shallow self-attention modules (called ªmappersº) at various

scales in the network. This adapted network therefore learns

to represent an image via a set of attention-based latent rep-

resentations. The network is first pre-trained by injecting

the signal of a classification loss at every mapper. Then, it

is fine-tuned in a meta-training stage, which performs clas-

sification by computing the distance between a query (test)

and a set of support (training) samples in a manner similar to

Prototypical Networks [49]. Here, the main difference is that

the distance between samples is computed using set-to-set

metrics rather than traditional distance functions. To this end,

we propose and experiment with three set-to-set metrics.

This paper presents the following contributions. First, it

presents the idea of reasoning on sets and a set-based infer-

ence of feature vectors extracted from images. It shows that

set representation yields improved performance on few-shot

image classification without increasing the total number of

network parameters. Second, it presents a straightforward

way to adapt existing backbones to make them extract sets of

features rather than single ones, and processing them in order

to achieve decisions. To do so, it proposed to embed sim-

ple self-attention modules in between convolutional blocks,

with examples of adapted three popular backbones, namely

Conv4-64, Conv4-256, and ResNet12. It also proposes set-

to-set metrics for evaluation of differences between query

and support set. Third, it presents extensive experiments

on three few-shot datasets, namely miniImageNet, tieredIm-

ageNet and CUB. In almost all cases, our method outper-

forms the state-of-the-art. Notably, our method gains 1.83%,

1.42%, and 1.83% accuracy in 1-shot over the baselines in

miniImageNet, tieredImageNet and CUB, respectively.

9014

2. Related work

Our work falls within the domain of inductive few-shot

image classification [17,43,49,58], unlike transductive meth-

ods [6, 12, 28,72] which exploit the structural information of

the entire novel set. The following covers the most relevant

works under few-shot learning research area, and beyond.

Training framework Two main training frameworks have

been explored so far, namely meta learning or standard trans-

fer learning. On one hand, meta learning [17, 43, 49, 58],

also named episodic training, repeatedly samples small sub-

sets of base classes to train the network, thereby simulating

few-shot ªepisodesº during training. For example, some

methods (e.g. [4, 17, 68]) aim at training a model to clas-

sify the novel classes with a small number of gradient up-

dates. On the other hand, standard transfer learning meth-

ods [1, 8, 22, 41, 54] usually rely on a generic batch training

with a metric-based (such as margin-based) criteria. Re-

cently, several works [65,67,73] have shown that combining

both standard transfer learning, following by a second meta-

training stage can offer good performance. We employ a

similar two-stage training procedure in this paper.

Metrics Metric-based approaches [5, 20, 29, 32, 33, 40, 45,

49, 52, 55, 58, 62, 73, 76] aim at improving how the distance

is calculated for better performance at training and inference.

In this aspect, our work is related to ProtoNet [49] as it also

seeks to reduce the distance between a query and the cen-

troid of a set of support examples of the corresponding class,

while differing by proposing the use of set-to-set distance

metrics for computing distance over several feature vectors.

Other highly related works include FEAT [67], CTX [13],

TapNet [69] and ConstellationNet [66], which apply atten-

tion embedding adaptation functions on the episodes before

computing the distance between query and the prototypes of

the support set. Unlike them, our method extracts a set of

feature vectors given a query and support set, over which a

set-to-set metric is applied for computing the distances.

Extra data Relying on extra data [10,11,19,21,23,25,36,

37, 44,46, 60,61,74, 75,77] is another strategy for building a

well-generalized model. The augmented data can be in the

form of hallucination with a data generator function [25, 60],

using unlabelled data under semi-supervised [44, 70] or self-

supervised [21,50] frameworks, or aligning the novel classes

to the base data [1]. In contrast, our approach does not

require any additional data beyond the base classes.

Vision transformers Our method employs shallow atten-

tion mappers that are inspired by the multi-head attention

mechanism proposed in [57] and adapted to images by Doso-

vitskiy et al. [14]. In contrast to these works, our feature

mappers are independent, are shallow (thus lightweight), are

not unified by FC-layers, and can extend to convolutions as

in [24, 63]. We also employ several independent mappers at

different depths/scales in the network.

Feature sets Feature sets have long been investigated in

computer vision [27,30,42]. In the more recent deep learning

literature, our method bears resemblance to FPN [34] which

extracts multi-scale features for object detection, and deep

sets [71] which proposed permutation-invariant networks

that operate on input sets. In contrast, our work computes

feature sets to tackle few-shot image classification. From the

few-shot perspective, our work is related to the transductive

approach of [28], which employs the unlabeled query set to

augment the support set, and [73] which uses Earth Mover’s

Distance over the representations of multi-cropped images

with a generic data augmentation. Here, we focus on the

extraction of feature sets for each support example in an

inductive setting.

3. Preliminaries

In N -way K-shot (where K is small) image classifica-

tion, we aim to predict the class of a given query example

xq using a support set S containing K examples for each

of the N different classes considered. Let Sn ∈ S and

Sn = {(xn
i , yi = n)}Ki=1

be a set of example-label pairs,

all pairs of that set Sn belonging to class n. In addition, let

f(x|θf) be a convolutional feature extractor composed of B

blocks parameterized by θf = {θfb }Bb=1
, where θfb are the pa-

rameters of the b-th block. Here, a ªblockº broadly refers to

a group of convolutional layers (with or without skip links),

typically followed by a downscaling operation reducing the

features spatial dimensions (e.g., pooling). The features after

a given block b can be obtained from zb ≡ f(x|{θfi }bi=1
).

In this work, we introduce a set-feature extractor, dubbed

ªSetFeatº, which extracts a set of M feature vectors from

images, rather than a single vector as it is typically done in

the literature [17, 49, 58]. Formally, SetFeat produces the set

H = {hm}Mm=1
of M feature vectors hm through shallow

self-attention mappers, and employs set-to-set matching met-

rics to establish the similarity between images in set-feature

space. The following section presents our approach in detail.

4. Set-based few-shot image classification

In this section, we first discuss our proposed set-feature

extractor SetFeat, then dive into the details of our proposed

set-to-set metrics. Finally, our proposed inference and train-

ing procedures are presented.

4.1. Set-feature extractor

The overall architecture of SetFeat is illustrated in fig. 1.

As mentioned in sec. 3, its goal is to map an input image

9015

b
lo

ck
 1

b
lo

ck
 2

b

lo
ck

 3

b
lo

ck
 4

re
si

d
u

al

Matrix Multiplication

Average Pooling

+

Norm

score

Matrix Multiplication

& Softmax

(a) Set-feature extractor (SetFeat) (b) Mapper g(·|θgm)

Figure 1. The schematic overview of the proposed set-feature

extractor (SetFeat) and detail of a single attention-based mapper:

(a) given an input x, SetFeat first extracts (convolutional) feature

vectors zb at each of its blocks, while at each block attention-

based mappers (illustrated as small rectangles) convert zb into a

different embedding hm; (b) a single mapper m at block b extracts

embedding hm using an attention mechanism containing query θqm
and key θkm to build attention scores βm, with self-attention inferred

using value θvm and score βm. This work focuses on backbones

made of B = 4 blocks, consistent with popular few-shot image

classification backbones such as Conv4 [58] and ResNet [26].

x to a feature set H. To this end, and inspired by [14, 57],

we embed segregated self-attention mappers g(·) throughout

the network, as shown in fig. 1a. We reiterate (cf . sec. 2),

however, that our mappers are different from multi-head

attention-based models [14, 57] for two main reasons. First,

each mapper in our approach is composed of a single atten-

tion head, thus we do not rely on fully connected layers to

concatenate multi-head outputs. Our feature mappers are

therefore separate from each other and each extract their

own set of features. Second, our feature mappers are shallow

(unit depth), with the learning mechanisms relying on the

convolutional layers of the backbone.

The detail of the m-th feature mapper g(zbm |θgm), where

bm represents the block preceding the mapper, is illustrated

in fig. 1b. The learned representation zbm ∈ R
P×Dp

is sepa-

rated into P non-overlapping patches of Dp dimensions. In

this work, we use patches of size 1×1, each patch is therefore

a 1-D vector of Dp elements. Following Vaswani et al. [57],

an attention map is first computed using two parameterized

elements q(zbm |θqm) and k(zbm |θkm):

βm = Softmax
(

q(zbm |θqm)k(zbm |θkm)⊤/
√

dk

)

, (1)

where βm ∈ R
P×P is the attention score over the patches

of zbm , and
√
dk is the scaling factor. Then, we com-

pute the dot-product attention over the patches of βm using

v(zbm |θvm) in the following form:

am = βm v(zbm |θvm) , (2)

where am ∈ R
P×Da

consists of P patches of Da dimen-

sions and Da is the dimension of zb. If the backbone feature

extractor is ResNet [26] (see sec. 5.1), we add a residual

to the computed attention (am + zbm). In this case, if the

dimensions mismatch (Da ̸= Dp), we use 1× 1 convolution

of unit stride and kernel size similar to downsampling. Fi-

nally, the feature vector hm is computed by taking the mean

of over the patches (over the P dimension).

4.2. Set-to-set matching metrics

Having covered how SetFeat extracts a feature set for

each input instance to process, we now proceed to how it

leverages this set for image classification. In this context, we

need to compare the feature set of the query with the feature

sets corresponding to each instance of the support set of

each class, to infer the class of the query. More specifically,

in order to proceed with a distance-based approach as we

do with prototypical networks, we need a set-to-set metric

allowing the measure of distance over sets. We now present

three distinct set-to-set metrics dset(xq,Sn), which measure

the distance between multiple feature sets, where xq is the

query, and Sn is a support set for class n (cf . sec. 3). We

employ the shorthand hm(x) ≡ gm(zbm |θgm) to refer to a

feature extracted by mapper m. In addition, we also define

h̄m(S) ≡ 1

|S|

∑

x∈S hm(x) as the centroid of features ex-

tracted by mapper m on the support set S . The following set

metrics are built upon a generic distance function d(·, ·). In

practice, we employ the negative cosine similarity function,

i.e., d(·, ·) = − cos(·, ·).

Match-sum aggregates the distance between matching

mappers for the query and supports:

dms(xq,Sn) =

M
∑

i=1

d
(

hi(xq), h̄i(Sn)
)

. (3)

We use this metric as a baseline, as it parallels a common

strategy of building representations simply by concatenating

several feature vectors and invoking a standard metric on the

flattened feature space.

Min-min uses the minimum distance across all possible

pairs of elements from the query and support set centroids:

dmm(xq,Sn) =
M

min
i=1

M

min
j=1

d
(

hi(xq), h̄j(Sn)
)

. (4)

Such a metric leverages directly the set structure of features.

9016

F
E

A
T

[6
7
]

M
N

[5
8
]

P
N

[4
9
]

q
u

er
y

su
p

p
o

rt
q

u
er

y

CNN

su
p

p
o

rt
q

u
er

y

CNN

su
p

p
o

rt

CNN

embedding

adaptation

shared

CNN

shared

embedding

function

shared

shared

CNN

CNN

embedding

function

…
…

…

SetFeat

mapper
1

mapper
2

mapper
3

mapper
M

shared

su
p

p
o

rt
…mapper

1

mapper
2

mapper
3

mapper
M

SetFeatq
u

er
y

…

…

(a) Three baseline methods (b) Set matching with sum-min

Figure 2. Illustration of 1-shot image classification using (a) three

existing methods and (b) our approach with the sum-min metric.

(a) Given a query and support, existing methods either directly

match the query to support (ProtoNet (PN) [49]), apply a single

embedding function over both support and query (MatchingNet-

work (MN) [58]), or perform embedding adaptation on the support

before matching it with the query (FEAT [67]). (b) Our SetFeat

method extracts sets of features for both of the support and query,

which are then processed by the self-attention mappers. The set

metric is then computed over the embeddings.

Sum-min departs from the min-min metric by aggregating

with a sum the minimum distances between the mappers

computed on query and support set centroids:

dsm(xq,Sn) =

M
∑

i=1

M

min
j=1

d
(

hi(xq), h̄j(Sn)
)

. (5)

A schematic illustration of the sum-min metric is shown in

fig. 2, which also illustrates its difference with respect to

three baseline few-shot models. Our method is different

from FEAT [67] (and MN [58]) in two main ways. First, we

define sets over features extracted from each example while

FEAT/MN do so over the support set directly. In an extreme

1-shot case, the FEAT ªsetº degenerates to a single element (1

support). Beneficial for few-shot, our work always keeps sets

of many elements, regardless of the support set cardinality.

Second, our method employs the parameterized mappers for

set feature extraction. Here, we adjust the backbone (unlike

FEAT and MN) so that adding mappers results in the same

total number of parameters. Third, our method employs

non-parametric set-to-set metrics, used for inference.

4.3. Inference

Given one of our metrics dset ∈ {dms, dmm, dsm} defined

in the previous section, we follow the approach of Prototyp-

ical Networks [49] with SetFeat and model the probability

of a query example xq belonging to class y = n, where

Algorithm 1: SetFeat meta-training and validation.

Data: Network parameterized by θ = {θf , θg} made of a

backbone of B convolution blocks (θf = {θfb }
B
b=1)

and M mappers (θg = {θgm}
M
m=1); episodic train

dataset Xtrain containing episodes of support set S
and a query example xq; validation dataset Xvalid;

maximum number of epochs tmax; 0-1 loss function

ℓ0−1 used to measure the validation accuracy.

Result: Best model defined as θbest = {θ
f
best, θ

g
best}

Ebest
valid ←∞

for t = 1, . . . , tmax do

for (xq,S) ∈ Xtrain do

ℓt ← − log p(yq|xq,S) using eq. 6

Update network θ with backpropagation of loss ℓt

end

ŷq ← argminSn∈Sdset(xq,S
n), ∀(xq,S) ∈ Xvalid

Evalid ←
1

|Xvalid|

∑
(xq ,S)∈Xvalid

ℓ0−1(ŷq, yq)

if Evalid < Ebest
valid then

Ebest
valid ← Evalid

θbest ← θ
end

end

n ∈ {1, . . . , C} (N -way), using a softmax function:

p(y = n|xq,S) =
exp(−dset(xq,Sn))

∑

Si∈S exp(−dset(xq,Si))
, (6)

with S as the (few-shot) support set.

4.4. Training procedure

We follow recent literature [65, 67, 73] and leverage a

two-stage procedure to train SetFeat using one of our pro-

posed set-to-set metrics. The first stage performs standard

pre-training where a random batch Xbatch of instances x from

base classes are drawn from the training set. Here, we ap-

pend fully-connected (FC) layers om to convert each of the

mapper features hm into logits in order to achieve classifi-

cation over the C classes. From that, cross-entropy loss is

used to train each mapper independently:

ℓpre = −
∑

xi∈Xbatch

M
∑

m=1

log
exp(om,yi

(hm,i))
∑C

c=1
exp(om,c(hm,i))

, (7)

where om,c is the FC layer output of mapper m for class c,
hm,i is the feature set of mapper m for instance xi, and yi
is the target output corresponding to instance xi.

The second stage discards the FC layers that were added

in the first stage, and employs episodic training [49, 58]

which simulates the few-shot scenario on the base training

dataset. This stage is presented in algorithm 1. Specifically,

we randomly sample N -way K-shot and Q-queries, then

we compute the probability scores for each query using

eq. 6. Finally, we update the parameters of the network after

computing the cross-entropy loss.

9017

5. Evaluation

This section first covers the details of our experiments

with SetFeat, which are based on conventional backbones

employed in the few-shot image classification literature. This

is followed by description of the datasets and implementation

details are described next. Finally, we present the evalua-

tions of SetFeat with our set-matching metrics using four

backbones with three datasets.

5.1. Backbones

We adopt the following three popular backbones, each

composed of four blocks: (a) Conv4-64 [58], which consists

of 4 convolution layers with 64/64/64/64 filters for a total

of 0.113M parameters, (b) Conv4-512 [58]: 96/128/256/512

for 1.591M parameters, and (c) ResNet12 [26, 40]:

64/160/320/640 for 12.424M parameters. In all experiments

below, we embed a total of 10 self-attention mappers through-

out each backbone by following this per-block pattern: 1

mapper after block 1, then 2, 3 and 4 mappers for the three

subsequent blocks. We experiment with other choices of

mapper configurations in sec. 6.3.

Since our attention-based feature mappers require ad-

ditional parameters, we correspondingly reduce the num-

ber of kernels in the backbone feature extractors to ensure

that the performance gains are not simply due to the over-

parameterization. Specifically, our SetFeat4-512, the coun-

terpart of Conv4-512, uses a reduced set of 96/128/160/200

convolution kernels for a total of 1.583M parameters (com-

pared to 1.591M for Conv4-512). SetFeat12, counterpart of

ResNet12, consists of 128/150/180/512 kernels for 12.349M

parameters (comp. 12.424M for ResNet12). For Conv4-64,

reducing the amount of parameters collapses the training (as

noted in [16, 64, 67]) since it contains very few parameters

already. Our SetFeat4-64 therefore has more parameters

(0.238M vs 0.113M for Conv4-64), but in sec. 6.2 we artifi-

cially augment the number of parameters for Conv4-64 and

show our approach still outperforms it.

Convolutional attention [63] is used in SetFeat4-512 and

SetFeat12. Particularly, we used single depth convolution

and batch normalization to parameterize key, query and value

in each mapper. The output dimension of the feature map-

pers is set to the number of channels in the last layer of the

feature extractor Ð having all mappers producing feature

vectors of the same dimension is a necessary condition for

our proposed metrics. For SetFeat4, FC-layers are used to

compute the attention in order to limit the number of addi-

tional parameters as much as possible. The supplementary

material includes the details of our implementation.

5.2. Datasets and implementation details

We conduct experiments on miniImageNet [58]

(100/50/50 train/validation/test classes), tieredImageNet [44]

Table 1. Evaluation on miniImageNet in 5-way. Bold/blue is

best/second, and± is the 95% confidence intervals in 600 episodes.

Method Backbone 1-shot 5-shot

ProtoNet [49]

Ð
Ð

Ð
Ð

C
o

n
v

4
-6

4
Ð

Ð
Ð

Ð 49.42±0.78 68.20±0.66

MAML [18] 48.07±1.75 63.15±0.91

RelationNet [52] 50.44±0.82 65.32±0.70

Baseline++ [8] 48.24±0.75 66.43±0.63

IMP [3] 49.60±0.80 68.10±0.80

MemoryNet [7] 53.37±0.48 66.97±0.35

Neg-Margin [35] 52.84±0.76 70.41±0.66

MixtFSL [2] 52.82±0.63 70.67±0.57

FEAT [67] 55.15±0.20 71.61±0.16

MELR [16] 55.35±0.43 72.27±0.35

BOIL [39]

S
F

4
-6

4

49.61±0.16 66.45±0.37

±
O

u
rs

± Match-sum 55.74±0.65 72.18±0.70

Min-min 56.22±0.89 72.70±0.65

Sum-min 57.18±0.89 73.67±0.71

ProtoNet† [49]

Ð
C

o
n
v

4
-5

1
2

Ð 53.52±0.43 73.34±0.36

MAML [17] 49.33±0.60 65.17±0.49

Relation Net [52] 50.86±0.57 67.32±0.44

PN+rot [22] 56.02±0.46 74.00±0.35

CC+rot [21] 56.27±0.43 74.30±0.33

MELR [16]

S
F

4
-5

1
2

57.54±0.44 74.37±0.34

±
O

u
rs

± Match-sum 56.50±0.85 72.69±0.68

Min-min 58.57±0.87 73.46±0.68

Sum-min 59.10±0.87 74.97±0.66

AdaResNet [38]
Ð

Ð
Ð

Ð
R

es
N

et
1

2
Ð

Ð
Ð

Ð
56.88±0.62 71.94±0.57

TADAM [40] 58.50±0.30 76.70±0.30

MetaOptNet [31] 62.64±0.61 78.63±0.46

Neg-Margin [35] 63.85±0.76 81.57±0.56

MixtFSL [2] 63.98±0.79 82.04±0.49

Meta-Baseline [9] 63.17±0.23 79.26±0.17

Distill [54] 64.82±0.60 82.14±0.43

DeepEMD [73] 65.91±0.82 82.41±0.56

DMF [65] 67.76±0.46 82.71±0.31

MELR [16] 67.40±0.43 83.40±0.28

ProtoNet§ [49] 62.39 80.53

FEAT§ [67]

-
S

F
-1

2
-

66.78 82.05

±
O

u
rs

± Match-sum 67.41±0.64 81.79±0.55

Min-min 67.88±0.55 82.07±0.61

Sum-min 68.32±0.62 82.71±0.46

§confidence interval not provided † taken from [16]

Mappers dimension: SF4-64∈ R
64, SF4-512∈ R

200, SF12∈ R
512

(351/97/160) for object recognition, and CUB [59]

(100/50/50) for fine-grained classification. To pretrain Set-

Feat4, we used Adam [40] with a learning rate (lr) of 0.001

and weight decay of 5× 10−4. Batch size is fixed to 64. For

9018

Table 2. TieredImageNet evaluation. Bold/red is best/second best,

and± indicates the 95% conf. intervals over 600 episodes of 5-way.

Method Backbone 1-shot 5-shot

OptNet [31]

Ð
Ð

Ð
Ð

Ð
-

R
es

N
et

1
2

Ð
Ð

Ð
Ð

Ð 65.99±0.72 81.56±0.53

MTL [51] 65.62±1.80 80.61±0.90

DNS [47] 66.22±0.75 82.79±0.48

Simple [54] 69.74±0.72 84.41±0.55

TapNet [69] 63.08±0.15 80.26±0.12

ProtoNet† [49] 68.23± 0.23 84.03±0.16

FEAT [67] 70.80±0.23 84.79±0.16

MixtFSL [2] 70.97±1.03 86.16±0.67

Distill [54] 71.52±0.69 86.03±0.49

DeepEMD [73] 71.16±0.87 86.03±0.58

DMF [65] 71.89±0.52 85.96±0.35

MELR [16] 72.14±0.51 87.01±0.35

Distill [45] 72.21±0.90 87.08±0.58

±
O

u
rs

± Match-sum

-
S

F
1

2
- 71.22±0.86 85.43±0.55

Min-min 71.75±0.90 86.40±0.56

Sum-min 73.63±0.88 87.59±0.57

†taken from [31]; Mappers dimension: SF12 ∈ R
512

SetFeat12, we used Nesterov momentum with an initial lr of

0.1, momentum of 0.9 and weight decay of 5 × 10−4. We

follow [65, 67, 73] for normalization and data augmentation.

In the meta-training stage, SGD is used for all architectures.

Validation sets are used to tune the schedule of the optimizer.

5.3. Quantitative and comparative evaluations

miniImageNet Table 1 presents evaluations of SetFeat

with our set-to-set metrics on the miniImageNet dataset.

First, we observe that our sum-min metric outperforms both

the other proposed metrics and the state-of-the-art except in

the 5-shot with SetFeat12. In particular, SetFeat4-64 (sum-

min) results in an accuracy gain of 1.83% and 1.4% over

MELR [16] in 1- and 5-shot, respectively.

tieredImageNet Table 2 presents the tieredImageNet eval-

uation of SetFeat12 with our proposed metrics. Our sum-min

metric results in 1.42% and 0.51 % improvement over the

baseline Distill [45] in 1- and 5-shot. Please note that base-

lines such as Distill [45], MELR [16], and FEAT [67] contain

more parameters than the original ResNet12 and SetFeat12.

CUB Table 3 illustrates the fine-grained classification

evaluation of our approach, compared to Conv4-64 and

ResNet18. We observe that SetFeat4-64 (min-min) again sur-

passes all baselines by providing gains of 1.83% and 2.04%

over MELR [16] in 1- and 5-shot respectively. When com-

paring with ResNet18, we further reduce the number of con-

volution kernels to 128/150/196/480 (dubbed SetFeat12∗)

Table 3. Fine-grained evaluation using CUB in 5-way. ± is the

95% confidence intervals on 600 episodes(‡taken from [53]).

.

Method Backbone 1-shot 5-shot

MatchingNet [58]

Ð
C

o
n
v

4
-6

4
Ð 61.16±0.89 72.86±0.70

ProtoNet [49] 64.42±0.48 81.82±0.35

MAML [17] 55.92±0.95 72.09±0.76

RelationNet [52] 62.45±0.98 76.11±0.69

FEAT [67] 68.87±0.22 82.90±0.15

MELR [16]

S
F

4
-6

4

70.26±0.50 85.01±0.32

±
O

u
rs

± Match-sum 67.35±0.93 83.82±0.61

Min-min 70.15±0.93 84.94±0.64

Sum-min 72.09±0.92 87.05±0.58

Robust-20 [15]

Ð
±

R
es

N
et

1
8

Ð
Ð 58.67±0.7 75.62±0.5

RelationNet‡ [52] 67.59±1.0 82.75±0.6

MAML‡ [17] 68.42±1.0 83.47±0.6

ProtoNet‡ [49] 71.88±0.9 86.64±0.5

Baseline++ [8] 67.02±0.9 83.58±0.5

MixtFSL [2] 73.94±1.1 86.01±0.5

Neg-Margin [35]

-
S

F
1

2
∗
-

72.66±0.9 89.40±0.4
±

O
u

rs
± Match-sum 77.95± 0.83 88.93± 0.49

Min-min 78.51±0.82 89.73±0.47

Sum-min 79.60±0.80 90.48± 0.44

Mappers dimension: SF4-64 ∈ R
64, and SF12∗ ∈ R

480

to better match the number of parameters (11.466M for

SetFeat12∗ vs 11.511M for ResNet18). Our approach again

defines a new state-of-the-art performance in this scenario.

6. Ablation

In this section, we further analyze SetFeat to explore

alternative design decisions and gain a better understanding

as to why our set-based model achieves better accuracy.

6.1. Mapper configurations

We now experiment with different ways of embedding

ten mappers throughout the backbone levels. We compare:

1) putting all mappers on the last layer (0-0-0-10); 2) a single

mapper per block (1-1-1-1); 3) distributing mappers more

equally (2-2-3-3); and 4) employing a progressive growth

strategy (1-2-3-4) (this last one being used in the main evalua-

tion in sec. 5). Table 4 compares these four strategies on both

SetFeat4-64 and SetFeat4-512 on the validation set of mini-

ImageNet. We observe that placing mappers throughout the

network yields better results than putting them all at the end.

The two other options perform similarly. We also observe

that (2-2-3-3) only beats (1-2-3-4) using shallower network

SetFeat4-64 in 5-shot. Otherwise, progressive growth either

reaches or surpasses the other combinations. Note, that going

from 0-0-0-10 to 1-2-3-4 or 2-2-3-3 improves performance

9019

Table 4. Ablation of different mapper-level combinations using

miniImageNet. The results are validation accuracy with min-sum.

SetFeat4-64 SetFeat4-512

Mappers 1-shot 5-shot 1-shot 5-shot

ProtoNet∗ 53.51 71.57 ± ±

0-0-0-1 53.55 71.51 ± ±

1-2-3-4 (concat) 53.56 71.82 ± ±

1-1-1-1 51.11 69.41 53.57 71.60

0-0-0-10 52.90 69.49 55.36 71.59

2-2-3-3 54.73 71.98 56.29 74.74

1-2-3-4 54.71 71.35 58.74 75.30
∗ with Conv4-512

Table 5. Ablation of our SetFeat with miniImageNet and CUB on

600 episodes with augmented Conv4-64 and SetFeat4-64 in 5-way.

miniImageNet CUB

Method 1-shot 5-shot 1-shot 5-shot

ProtoNet [49] 49.42 68.20 68.23 84.03

ProtoNet∗ [49] 49.98 69.53 69.11 85.27

Sum-min (ours) 57.18 73.67 73.50 87.61
∗ our implementation with augmented Conv4-64

while using the same number of mappers, which confirms

that multi-scale indeed helps. Additionally, removing our set-

based representation by concatenating all mappers outputs

and treating the result as a single (multi-scale) feature vec-

tor (ªconcatº in tab. 4) completely cancels any performance

gain. Therefore, we conclude that it is our sets of multi-scale

features that explains the performance improvement.

6.2. Over-parameterization of SetFeat4-64

Sec. 5.1 mentioned that the number of kernels in back-

bone feature extractors was reduced in such a way that

adding our proposed attention-based mappers did not signifi-

cantly change the total number of parameters in the networkÐ

but unfortunately doing so for Conv4-64 resulted in poor

generalization as each of its four blocks is only composed

of a single layer with 64 kernels. Here, we instead augment

Conv4-64 and add parameters with three FC layers (of 512,

160, 64 dimensions) after the convolutional blocks. This

reaches 0.239M parameters, which matches the 0.238M pa-

rameters of SetFeat4-64. Results are presented in table 5.

Although the augmented Conv4-64 improves over the base-

line Conv4-64, the improvements are significantly below

those obtained by SetFeat4-64, showing that the additional

parameters alone do not explain the performance gap.

6.3. Probing the activation of mappers

Let us now investigate whether all mappers are actually

useful by analyzing the behavior under the sum-min metric

go
ose

i.h
ou

nd
w.wolf

mee
rka

t

r.b
ee

tle

can
no

n
car

ton

cat
am

ara
n

c.lo
ck

g.t
ruc

k
h.b

ar iPo
d

minis
kir

t

miss
ile

po
nch

o
c.r

ee
f

Validation Categories (miniImageNet)

m1-block1

m2-block2

m3-block2

m4-block3

m5-block3

m6-block3

m7-block4

m8-block4

m9-block4

m10-block4

To
p-

1
pe

rc
en

ta
ge

 o
f F

ea
tu

re
 M

ap
pe

rs

10 10 9.7 11 12 11 11 9.8 10 11 9.9 12 11 11 10 11

10 9.9 9.4 10 10 10 10 9.8 10 10 9.6 10 10 10 10 9.7

10 9.9 9.4 10 10 10 10 9.9 10 10 9.7 10 10 10 10 9.7

9.9 9.9 9.6 10 9.9 9.8 9.9 9.9 9.8 9.8 9.7 9.6 10 9.8 10 9.8

9.9 9.8 9.6 10 9.9 9.9 9.8 9.9 9.8 10 9.7 9.6 10 9.8 10 9.8

9.9 9.9 9.7 10 9.8 10 9.8 9.9 9.9 10 9.7 9.6 10 9.9 10 9.7

10 10 11 9.7 9.6 9.8 9.7 10 9.9 9.9 10 9.7 9.5 9.8 9.8 10

9.9 10 11 9.7 9.4 9.7 9.8 10 9.9 9.8 10 9.7 9.6 9.8 9.8 10

9.9 10 11 9.7 9.5 9.7 9.8 10 9.9 9.7 10 9.7 9.6 9.8 9.7 10

9.8 10 11 9.7 9.5 9.7 9.7 10 9.9 9.8 10 9.7 9.6 9.7 9.7 10

6

8

10

12

14

16

Figure 3. The percentage time each of the mappers (y-axis) is

selected for each of the 16 validation categories (x-axis) of the

miniImageNet dataset. The result is obtained by SetFeat12 and

averaged over 600 episodes of 5-way 1-shot. While the earlier

mappers are more often active, all mappers are consistently useful.

75 50 25 0 25 50 75
100

75

50

25

0

25

50

75

100 75 50 25 0 25 50 75 100

100

75

50

25

0

25

50

75

80 60 40 20 0 20 40 60
80

60

40

20

0

20

40

60

(a) miniImageNet (b) CUB (c) tieredImageNet

Figure 4. Visualizing mappers with t-SNE [56] on 640 randomly-

sampled from validation set for (a) miniImageNet with SetFeat12,

(b) CUB with SetFeat12∗ (sec. 5.3) and (c) tieredImageNet with

SetFeat12. Points are color-coded according to the mapper.

(sec. 4.2). For this, fig. fig. 3 illustrates the percentage of

time where a specific mapper (y-axis) provides the minimum

prototype-query distance for each validation class (x-axis)

in the miniImageNet dataset. This illustrates that low-level

mappers are often active like the high-level ones, but all map-

pers are consistently being used across all validation classes,

thereby validating that our proposed set-based representation

is effective and working as expected.

In addition, fig. 4 shows t-SNE [56] visualizations of

640 embedded examples from miniImageNet, CUB, and

tieredImageNet datasets using our set-feature extractor. Note

how the distributions of mapper embeddings are generally

disjoint and do not collapse to overlapping points, which

shows intuitively that mappers extract different features.

6.4. Top-m analysis

The min-min and sum-min metrics (eqs. (4) and (5) re-

spectively) are two ends of the spectrum: min-min takes

the minimum distance across all mappers, while sum-min

computes the sum over all the mappers. Here, we sort the

mappers according to distance and sum the top-m as an

9020

Table 6. Ablation of top-m mapper in the min-sum metric using

SetFeat4 and SetFeat12∗ on CUB. The results are validation set.

SetFeat4 SetFeat12∗

Method 1-shot 5-shot 1-shot 5-shot

top-1 (min-min) 70.15 84.94 78.51 89.73

top-2 70.84 85.30 77.92 89.87

top-4 70.34 85.95 78.37 89.78

top-8 71.47 86.88 79.56 90.03

top-10 (sum-min) 72.09 87.05 79.60 90.48

ablation shown in table 6. In general, we observe that the

classification results progressively improve as we move to-

wards sum-min, which uses all of the mappers.

6.5. Visualizing mappers saliency

We now visualize in fig. fig. 5 the impact of learning a

set of features by visualizing the saliency map of each map-

per, and by comparing them with the saliency maps of the

single-feature approach of Chen et al. [8]. We compute the

smoothed saliency maps [48] by single back-propagation

through a classification layer. It can be seen that our ap-

proach devotes attention to many more parts of the images

than when a single feature vector is learned. For example,

note how a single dog is highlighted (fourth row of fig. fig. 5),

whereas our mappers jointly fire on all three. Please consult

the supplementary materials for more examples.

7. Discussion

This paper proposes to extract and match sets of feature

vectors for few-shot image classification. This contrasts with

the use of a monolithic single-vector representation, which is

a popular strategy in that context. To produce these sets, we

embed shallow attention-based mappers at different stages

of conventional convolutional backbones. These mappers

aim at extracting distinct sets of features with random ini-

tialization, capturing different properties of the images seen.

Here, the non-linearity in the sum-min and min-min creates

diversity: the inner minimum distance causes a non-linearity

that forces the selection of a given mapper. Match-sum, our

worst metric, only benefits from random initialization. We

then rely on set-to-set matching metrics for inferring the

class of a given query from the support set examples, fol-

lowing the usual approach for inference with prototypical

networks. Experiments with four different adaptations of

two main backbones demonstrate the effectiveness of our ap-

proach by achieving state-of-the-art results in miniImageNet,

tieredImageNet, and CUB datasets. For fair comparison, the

parameters of all the adapted backbones are reduced accord-

ing to the number of parameters added by the mappers.

(a) input (b) baseline (c) ours

Figure 5. Comparision of gradient saliency maps. From left, we

look at the (a) input original image, (b) baseline [8], and (c) subset

of five feature vectors extracted by SetFeat12. The figure presents

three examples of the training data in the first rows and four exam-

ples from the valid. set of miniImageNet in the last four rows.

Limitations Even though a comparison with different

mapper configurations has been provided in sec. 6.1, we

have evaluated our method using a fixed set of M = 10
mappers. Using more mappers (M > 10) has been con-

sidered, but was eventually dismissed since increasing the

number of mappers would require reducing the number of

filters, which in turn could cause underfitting due to under-

parameterization. As future work, we see great potential on

analyzing the effect of increasing the number of mappers,

possibly with larger backbones. Another topic requiring

further investigations would be to vary the weighting of

each mapper through more flexible set-to-set matching met-

rics. Although the min-sum and min-min metric non-linearly

match the feature sets (through the min operation), investi-

gating the weighted sum-min would be an interesting future

work. Here, adapting Deep Set [71] before computing the

min-sum metric would be a potential direction to investigate

the weighted set-to-set mapping. Finally, we are particularly

enthusiastic regarding the adaptation of our approach to self-

supervised, since the set of features provide more choices

for the comparison of different variations of single images.

Acknowledgements This project was supported by

NSERC grant RGPIN-2020-04799, Mitacs, Prompt-Quebec,

and Compute Canada. We thank A. Schwerdtfeger, A. Tup-

per, C. Shui, I. Hedhli, for proofreading the manuscript.

9021

References

[1] Arman Afrasiyabi, Jean-FrancËois Lalonde, and Christian

GagnÂe. Associative alignment for few-shot image classi-

fication. In European Conference on Computer Vision, 2020.

2

[2] Arman Afrasiyabi, Jean-FrancËois Lalonde, and Christian

GagnÂe. Mixture-based feature space learning for few-shot

image classification. International Conference on Computer

Vision, 2021. 5, 6

[3] Kelsey R Allen, Evan Shelhamer, Hanul Shin, and Joshua B

Tenenbaum. Infinite mixture prototypes for few-shot learning.

International Conference on Machine Learning, PMLR, 2019.

5

[4] Antreas Antoniou, Harrison Edwards, and Amos Storkey.

How to train your maml. International Conference on Learn-

ing Representations, 2019. 2

[5] Luca Bertinetto, Joao F. Henriques, Philip Torr, and An-

drea Vedaldi. Meta-learning with differentiable closed-form

solvers. In International Conference on Learning Representa-

tions, 2019. 2

[6] Malik Boudiaf, Ziko Imtiaz Masud, JÂerôme Rony, JosÂe Dolz,

Pablo Piantanida, and Ismail Ben Ayed. Transductive informa-

tion maximization for few-shot learning. Neural Information

Processing Systems, 2020. 2

[7] Qi Cai, Yingwei Pan, Ting Yao, Chenggang Yan, and Tao Mei.

Memory matching networks for one-shot image recognition.

In Conference on Computer Vision and Pattern Recognition,

2018. 5

[8] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank

Wang, and Jia-Bin Huang. A closer look at few-shot classifica-

tion. International Conference on Learning Representations,

2019. 2, 5, 6, 8

[9] Yinbo Chen, Zhuang Liu, Huijuan Xu, Trevor Darrell, and Xi-

aolong Wang. Meta-baseline: Exploring simple meta-learning

for few-shot learning. In International Conference on Com-

puter Vision, 2021. 5

[10] Zitian Chen, Yanwei Fu, Yu-Xiong Wang, Lin Ma, Wei Liu,

and Martial Hebert. Image deformation meta-networks for

one-shot learning. In Conference on Computer Vision and

Pattern Recognition, 2019. 2

[11] Wen-Hsuan Chu, Yu-Jhe Li, Jing-Cheng Chang, and Yu-

Chiang Frank Wang. Spot and learn: A maximum-entropy

patch sampler for few-shot image classification. In Confer-

ence on Computer Vision and Pattern Recognition, 2019. 2

[12] Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran,

and Stefano Soatto. A baseline for few-shot image classifica-

tion. International Conference on Learning Representations,

2020. 2

[13] Carl Doersch, Ankush Gupta, and Andrew Zisserman.

Crosstransformers: spatially-aware few-shot transfer. In Neu-

ral Information Processing Systems, 2021. 2

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Transform-

ers for image recognition at scale. International Conference

on Learning Representations, 2020. 2, 3

[15] Nikita Dvornik, Cordelia Schmid, and Julien Mairal. Di-

versity with cooperation: Ensemble methods for few-shot

classification. In International Conference on Computer Vi-

sion, 2019. 6

[16] Nanyi Fei, Zhiwu Lu, Tao Xiang, and Songfang Huang. Melr:

Meta-learning via modeling episode-level relationships for

few-shot learning. In International Conference on Learning

Representations, 2021. 5, 6

[17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In International Conference on Machine Learning, 2017. 2,

5, 6

[18] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic

model-agnostic meta-learning. In Neural Information Pro-

cessing Systems, 2018. 5

[19] Hang Gao, Zheng Shou, Alireza Zareian, Hanwang Zhang,

and Shih-Fu Chang. Low-shot learning via covariance-

preserving adversarial augmentation networks. In Neural

Information Processing Systems, 2018. 2

[20] Victor Garcia and Joan Bruna. Few-shot learning with graph

neural networks. International Conference on Learning Rep-

resentations, 2018. 2

[21] Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick

PÂerez, and Matthieu Cord. Boosting few-shot visual learn-

ing with self-supervision. In International Conference on

Computer Vision, 2019. 2, 5

[22] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot vi-

sual learning without forgetting. In Conference on Computer

Vision and Pattern Recognition, 2018. 2, 5

[23] Spyros Gidaris and Nikos Komodakis. Generating classifica-

tion weights with gnn denoising autoencoders for few-shot

learning. Conference on Computer Vision and Pattern Recog-

nition, 2019. 2

[24] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron,

Pierre Stock, Armand Joulin, HervÂe JÂegou, and Matthijs

Douze. Levit: A vision transformer in convnet’s clothing

for faster inference. In International Conference on Com-

puter Vision (ICCV), 2021. 2

[25] Bharath Hariharan and Ross Girshick. Low-shot visual recog-

nition by shrinking and hallucinating features. In Interna-

tional Conference on Computer Vision, 2017. 2

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Conference

on Computer Vision and Pattern Recognition, 2016. 3, 5

[27] Xiaopeng Hong, Hong Chang, Shiguang Shan, Xilin Chen,

and Wen Gao. Sigma set: A small second order statistical

region descriptor. In Conference on Computer Vision and

Pattern Recognition, 2009. 2

[28] Ruibing Hou, Hong Chang, Bingpeng MA, Shiguang Shan,

and Xilin Chen. Cross attention network for few-shot clas-

sification. In Neural Information Processing Systems, 2019.

2

[29] Junsik Kim, Tae-Hyun Oh, Seokju Lee, Fei Pan, and In So

Kweon. Variational prototyping-encoder: One-shot learning

with prototypical images. In Conference on Computer Vision

and Pattern Recognition, 2019. 2

9022

[30] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Be-

yond bags of features: Spatial pyramid matching for recog-

nizing natural scene categories. In 2006 IEEE computer so-

ciety conference on computer vision and pattern recognition

(CVPR’06), 2006. 2

[31] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and

Stefano Soatto. Meta-learning with differentiable convex

optimization. In Conference on Computer Vision and Pattern

Recognition, 2019. 5, 6

[32] Wenbin Li, Lei Wang, Jinglin Xu, Jing Huo, Yang Gao, and

Jiebo Luo. Revisiting local descriptor based image-to-class

measure for few-shot learning. In Conference on Computer

Vision and Pattern Recognition, 2019. 2

[33] Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, and Andrei

Bursuc. Dense classification and implanting for few-shot

learning. In Conference on Computer Vision and Pattern

Recognition, 2019. 2

[34] Tsung-Yi Lin, Piotr DollÂar, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In Conference on Computer

Vision and Pattern Recognition, 2017. 1, 2

[35] Bin Liu, Yue Cao, Yutong Lin, Qi Li, Zheng Zhang, Ming-

sheng Long, and Han Hu. Negative margin matters: Un-

derstanding margin in few-shot classification. In European

Conference on Computer Vision, 2020. 5, 6

[36] Bin Liu, Zhirong Wu, Han Hu, and Stephen Lin. Deep metric

transfer for label propagation with limited annotated data.

In International Conference on Computer Vision Workshops,

2019. 2

[37] Akshay Mehrotra and Ambedkar Dukkipati. Generative ad-

versarial residual pairwise networks for one shot learning.

arXiv preprint arXiv:1703.08033, 2017. 2

[38] Tsendsuren Munkhdalai, Xingdi Yuan, Soroush Mehri, and

Adam Trischler. Rapid adaptation with conditionally shifted

neurons. In International Conference on Machine Learning,

2018. 5

[39] Jaehoon Oh, Hyungjun Yoo, ChangHwan Kim, and Se-Young

Yun. Boil: Towards representation change for few-shot learn-

ing. In International Conference on Learning Representations,

2021. 5

[40] Boris Oreshkin, Pau RodrÂıguez LÂopez, and Alexandre La-

coste. Tadam: Task dependent adaptive metric for improved

few-shot learning. In Neural Information Processing Systems,

2018. 2, 5

[41] Hang Qi, Matthew Brown, and David G. Lowe. Low-shot

learning with imprinted weights. In Conference on Computer

Vision and Pattern Recognition, 2018. 2

[42] Pedro Quelhas, Florent Monay, J-M Odobez, Daniel Gatica-

Perez, Tinne Tuytelaars, and Luc Van Gool. Modeling scenes

with local descriptors and latent aspects. In International

Conference on Computer Vision, 2005. 2

[43] Sachin Ravi and Hugo Larochelle. Optimization as a model

for few-shot learning. In International Conference on Learn-

ing Representations, 2016. 2

[44] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,

Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and

Richard S Zemel. Meta-learning for semi-supervised few-

shot classification. International Conference on Learning

Representations, 2018. 2, 5

[45] Mamshad Nayeem Rizve, Salman Khan, Fahad Shahbaz

Khan, and Mubarak Shah. Exploring complementary

strengths of invariant and equivariant representations for few-

shot learning. In Conference on Computer Vision and Pattern

Recognition, 2021. 2, 6

[46] Eli Schwartz, Leonid Karlinsky, Joseph Shtok, Sivan Harary,

Mattias Marder, Abhishek Kumar, Rogerio Feris, Raja Giryes,

and Alex Bronstein. Delta-encoder: an effective sample

synthesis method for few-shot object recognition. In Neural

Information Processing Systems, 2018. 2

[47] Christian Simon, Piotr Koniusz, Richard Nock, and Mehrtash

Harandi. Adaptive subspaces for few-shot learning. In Con-

ference on Computer Vision and Pattern Recognition, 2020.

6

[48] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.

Deep inside convolutional networks: Visualising image clas-

sification models and saliency maps. In In Workshop at Inter-

national Conference on Learning Representations. Citeseer,

2014. 8

[49] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypi-

cal networks for few-shot learning. In Neural Information

Processing Systems, 2017. 1, 2, 4, 5, 6, 7

[50] Jong-Chyi Su, Subhransu Maji, and Bharath Hariharan. When

does self-supervision improve few-shot learning? In Euro-

pean Conference on Computer Vision, 2020. 2

[51] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele.

Meta-transfer learning for few-shot learning. In Conference

on Computer Vision and Pattern Recognition, 2019. 6

[52] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S.

Torr, and Timothy M. Hospedales. Learning to compare:

Relation network for few-shot learning. In Conference on

Computer Vision and Pattern Recognition, 2018. 2, 5, 6

[53] Kaihua Tang, Jianqiang Huang, and Hanwang Zhang. Long-

tailed classification by keeping the good and removing the

bad momentum causal effect. Neural Information Processing

Systems, 2020. 6

[54] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenen-

baum, and Phillip Isola. Few-shot image classification: a

good embedding is all you need. In European Conference on

Computer Vision, 2020. 2, 5, 6

[55] Hung-Yu Tseng, Hsin-Ying Lee, Jia-Bin Huang, and Ming-

Hsuan Yang. Cross-domain few-shot classification via learned

feature-wise transformation. International Conference on

Learning Representations, 2020. 2

[56] Laurens Van der Maaten and Geoffrey Hinton. Visualizing

data using t-sne. Journal of machine learning research, 2008.

7

[57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, èukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Advances in neural

information processing systems, 2017. 2, 3

[58] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan

Wierstra, et al. Matching networks for one shot learning. In

Neural Information Processing Systems, 2016. 2, 3, 4, 5, 6

9023

[59] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona,

and Serge Belongie. The Caltech-UCSD birds-200-2011

dataset, 2011. 5

[60] Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath

Hariharan. Low-shot learning from imaginary data. In Con-

ference on Computer Vision and Pattern Recognition, 2018.

2

[61] Yu-Xiong Wang and Martial Hebert. Learning from small

sample sets by combining unsupervised meta-training with

cnns. In Neural Information Processing Systems, 2016. 2

[62] Davis Wertheimer and Bharath Hariharan. Few-shot learn-

ing with localization in realistic settings. In Conference on

Computer Vision and Pattern Recognition, 2019. 2

[63] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang

Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing convolutions

to vision transformers. arXiv preprint arXiv:2103.15808,

2021. 2, 5

[64] Ziyang Wu, Yuwei Li, Lihua Guo, and Kui Jia. Parn: Position-

aware relation networks for few-shot learning. In Interna-

tional Conference on Computer Vision, 2019. 5

[65] Chengming Xu, Yanwei Fu, Chen Liu, Chengjie Wang, Jilin

Li, Feiyue Huang, Li Zhang, and Xiangyang Xue. Learning

dynamic alignment via meta-filter for few-shot learning. In

Conference on Computer Vision and Pattern Recognition,

2021. 2, 4, 5, 6

[66] Weijian Xu, Huaijin Wang, Zhuowen Tu, et al. Attentional

constellation nets for few-shot learning. In International

Conference on Learning Representations, 2020. 2

[67] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-

shot learning via embedding adaptation with set-to-set func-

tions. In Conference on Computer Vision and Pattern Recog-

nition, 2020. 2, 4, 5, 6

[68] Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim,

Yoshua Bengio, and Sungjin Ahn. Bayesian model-agnostic

meta-learning. In Conference on Neural Information Process-

ing Systems, 2018. 2

[69] Sung Whan Yoon, Jun Seo, and Jaekyun Moon. Tapnet:

Neural network augmented with task-adaptive projection for

few-shot learning. International Conference on Machine

Learning, 2019. 2, 6

[70] Zhongjie Yu, Lin Chen, Zhongwei Cheng, and Jiebo Luo.

Transmatch: A transfer-learning scheme for semi-supervised

few-shot learning. In Conference on Computer Vision and

Pattern Recognition, 2020. 2

[71] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-

abas Poczos, Ruslan Salakhutdinov, and Alexander Smola.

Deep sets. In Advances in neural information processing

systems, 2017. 2, 8

[72] Baoquan Zhang, Xutao Li, Yunming Ye, Zhichao Huang, and

Lisai Zhang. Prototype completion with primitive knowledge

for few-shot learning. In Conference on Computer Vision and

Pattern Recognition, 2021. 2

[73] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.

Deepemd: Few-shot image classification with differentiable

earth mover’s distance and structured classifiers. In Confer-

ence on Computer Vision and Pattern Recognition, 2020. 2,

4, 5, 6

[74] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David

Lopez-Paz. mixup: Beyond empirical risk minimization.

International Conference on Learning Representations, 2018.

2

[75] Hongguang Zhang, Jing Zhang, and Piotr Koniusz. Few-

shot learning via saliency-guided hallucination of samples.

In Conference on Computer Vision and Pattern Recognition,

2019. 2

[76] Jian Zhang, Chenglong Zhao, Bingbing Ni, Minghao Xu, and

Xiaokang Yang. Variational few-shot learning. In Interna-

tional Conference on Computer Vision, 2019. 2

[77] Manli Zhang, Jianhong Zhang, Zhiwu Lu, Tao Xiang, Mingyu

Ding, and Songfang Huang. Iept: Instance-level and episode-

level pretext tasks for few-shot learning. In International

Conference on Learning Representations, 2020. 2

9024

