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Figure 1. Overview of our method for predicting transferability of source model ensembles. We start from a large pool of pre-trained source
models, and form candidate ensembles by combining multiple source models. For each candidate ensemble we predict performance on the
target dataset with an efficient transferability metric. We show experimentally that this metric correlates well with actual performance after
fine-tuning the ensemble on the target dataset. Hence, it can be used to select the best ensemble without the expensive fine-tuning stage.

Abstract

We address the problem of ensemble selection in trans-
fer learning: Given a large pool of source models we want
to select an ensemble of models which, after fine-tuning on
the target training set, yields the best performance on the
target test set. Since fine-tuning all possible ensembles is
computationally prohibitive, we aim at predicting perfor-
mance on the target dataset using a computationally effi-
cient transferability metric. We propose several new trans-
ferability metrics designed for this task and evaluate them
in a challenging and realistic transfer learning setup for se-
mantic segmentation: we create a large and diverse pool of
source models by considering 17 source datasets covering
a wide variety of image domain, two different architectures,
and two pre-training schemes. Given this pool, we then au-
tomatically select a subset to form an ensemble performing
well on a given target dataset. We compare the ensemble se-
lected by our method to two baselines which select a single
source model, either (1) from the same pool as our method;
or (2) from a pool containing large source models, each
with similar capacity as an ensemble. Averaged over 17
target datasets, we outperform these baselines by 6.0% and
2.5% relative mean IoU, respectively.

1. Introduction

In transfer learning we want to re-use knowledge previ-
ously learned on a source task to help learning a target task.
The most common form of transfer learning in computer
vision is to pre-train a single source model on the generic
ILSVRC dataset [3, 14, 26, 31, 33, 38, 59, 80] and then fine-
tune it on the target dataset. However, often a more domain-
specific approach can lead to better results [49, 54, 75].
Hence, it is beneficial to have a large pool of diverse source
models such that it contains models suited for many differ-
ent target tasks. The problem then becomes: how can we
automatically and efficiently select good source models for
a given target task?

Recently, transferability metrics were introduced to ad-
dress this problem [4, 44, 55, 65, 66, 76]. The general goal
is to select a single source model which, after fine-tuning
on the target training set, yields the best performance on the
target test set. Transferability metrics enable to select this
model efficiently without carrying out expensive fine-tuning
on the target training set.

While previous transferability metrics consider select-
ing a single source model, in this paper we aim at select-
ing a subset containing multiple source models to form an
ensemble. Ensembles are a general technique used to im-
prove model accuracy, out-of-distribution robustness, and
to estimate uncertainty [7, 17, 23, 24, 39, 40, 56, 70]. Fur-
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thermore, by aggregating multiple source models, we can
combine knowledge coming from multiple source datasets
and image domains, which may be beneficial for a partic-
ular target task. Hence, in this paper we extend previous
work on transferability by proposing several transferability
metrics designed for ensemble selection.

To evaluate ensemble selection we introduce a challeng-
ing experimental setup. We consider semantic segmenta-
tion as a task, with a truly diverse pool of source mod-
els, as we train them on 17 complete datasets spanning a
wide variety of images domains, while also varying their
model architectures and pre-training schemes (Fig. 1). In
contrast, previous works typically focus on image classifi-
cation [4, 44, 55, 65, 66, 76], consider a narrower range of at
most 4 source datasets [44, 55, 65, 76], and often generate
multiple datasets artificially by sampling different subsets
of classes out of a single actual dataset [4, 55, 65, 66].

To summarize, we make the following contributions: (1)
We design transferability metrics for ensemble selection.
(2) We consider a challenging application scenario on se-
mantic segmentation featuring a large and truly diverse pool
of source models. (3) We compare the ensemble selected
by our method to two baselines which select a single source
model, either from the same pool as our method; or from a
pool containing large source models, each with similar ca-
pacity as an ensemble. Averaged over 17 target datasets, we
outperform these baselines by 6.0% and 2.5% relative mean
IoU, respectively (Sec. 5.2).

2. Related Work
Transfer Learning. The most common form of trans-
fer learning in computer vision is to pre-train a model on
ILSVRC’12 [18, 37], and fine-tune it on the target dataset.
Several works extend this to using a larger source dataset
such as ImageNet21k (9M images), JFT-300M (300M im-
ages) [18, 37, 52], or Open Images (1.7M images) [75].
Other works consider self-supervised pre-training, enabling
the use of unlabeled source datasets (e.g. [12,13,30,34,43]).

Several studies explore in-depth under which circum-
stances transfer learning works. Mensink et al. [49] study
transfer learning across datasets with vastly different image
domains and multiple visual tasks. Mustafa et al. [51] stud-
ies transfer learning in medical imaging. Finally, Taskon-
omy [78] establishes relationships between visual tasks (e.g.
semantic segmentation, depth prediction, etc.). Follow-
ing the success of Taskonomy, several works investigate
whether visual task relatedness can be predicted [6, 19, 20,
61, 62] rather than calculated by brute force [78].

Only a few works conduct transfer learning from multi-
ple source datasets at the same time. Liu et al. [46] train
a student model using knowledge from multiple teachers
(i.e. source models), which is expensive in both memory
and computation. Zoo-Tuning [60] learns to aggregate the

parameters of multiple source models into a target model.
This requires storing all source models in memory during
training, limiting scalability. In contrast, we select an en-
semble from a large pool of source models in a computa-
tionally and memory efficient manner.
Transferability Metrics. Recently, several papers intro-
duced transferability metrics. H-score [4] measures the dis-
criminativeness of source model features on the target task
in terms of inter-class and intra-class variance. LEEP [55]
measures how well a classifier built on top of source model
predictions performs on the target task. NLEEP [44] trains
a Gaussian Mixture Model (GMM) on top of source model
features. Then it measures how well a classifier built on
top of these GMM predictions performs on the target task.
LogME [76] estimates accuracy on the target task based on
a formulation which integrates over all possible linear clas-
sifiers built on top of the source model features. OTCE [65]
applies a source model to extract image features from both
the source and target dataset. Then it uses optimal trans-
port between these features to calculate domain difference
and task difference. Finally, NCE [66] considers a more re-
strictive setting where the source and target datasets consist
of identical images. Their method uses conditional entropy
between ground truth source and target labels, which avoids
training models and is thus computationally efficient.

To put our work in context: (1) Instead of selecting a sin-
gle source model [4, 44, 55, 65, 76], we do ensemble selec-
tion. (2) Instead of image classification [4,44,55,65,66,76],
we address semantic segmentation. (3) We consider a larger
variety of source datasets than previous works (17 vs at
most 4 [65]). (4) We consider complete datasets, whereas
previous works often sample different subsets of classes out
of a single actual dataset [4, 55, 65, 66].
Ensemble of Models. Ensembling machine learning mod-
els is a classical method for increasing accuracy [7, 17, 24,
29,39,42], where having diverse models is typically impor-
tant. More recently, ensembles of deep neural network have
been studied in the context of uncertainty estimation and
out-of-distribution robustness [2, 23, 40, 56].

3. Methods
We consider the problem of source model ensemble se-

lection for semantic segmentation. Given N source models
and a target dataset, the goal is to select an ensemble of
source models which, after fine-tuning on the target train-
ing set, yields the best performance on the target test set.
Since fine-tuning all possible ensembles is too computation-
ally expensive, we predict performance on the target dataset
using a computationally efficient transferability metric.

Sec. 3.1 discusses what makes for a good pool of source
models and describes how we construct this pool. Sec. 3.2
describes our setup to work with transferability metrics in
semantic segmentation tasks. Sec. 3.3 describes LEEP [55],
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Ours Ours LEEP LogME OTCE NLEEP
Sec. 5 Sec. 4 [55] [76] [65] [44]

# source datasets 17 10-15 1 1 4 3
# pre-training schemes 2 1-2 1 1 1 4
# model architectures 2 1-2 9 10 1 13
# source models 68 15 9 10 4 41

# candidates 41K 455 9 10 4 41

Table 1. Comparing our experimental setup (see Sec. 4 and 5)
to previous works on cross-dataset source selection. We compare
the diversity of source models in terms of the number of source
datasets, pre-training schemes, and model architectures. The last
row denotes the number of candidate source models (or ensembles
in our case) that are in the pool for a given target dataset. For [44,
55, 65, 76] we consider their largest source selection experiment.

a transferability metric for single-source selection. We use
this as a starting point in Sec. 3.4 to define our four trans-
ferability metrics for ensemble selection.

3.1. Preparing source models

We want to create a pool with a large variety of source
models for three reasons: (1) this increases the chance that
for any given target dataset there exists at least one good
source model. (2) we need bad source models to verify
that our transferability metrics correctly select good source
models while discarding bad ones. (3) an ensemble can only
outperform its individual members if they are diverse (and
therefore complementary) [5,17,24,29,39]. Hence, we con-
struct our source model pool by incorporating diversity in
three ways: we use 17 different source datasets, two model
architectures and two pre-training strategies. Tab. 1 sum-
marizes how this setup compares to related work.
Source datasets. The image domain is one of the most im-
portant factors to influence whether transfer learning will
succeed [49, 54, 57], and therefore we want to cover a wide
array of image domains. Furthermore, the most natural way
to perform transfer learning is to consider each dataset as a
whole (rather than subsampling a dataset to simulate dataset
variations [4, 55, 65, 66]). Therefore, we adopt the realistic
cross-dataset transfer learning setup for semantic segmen-
tation by [49]: 17 source datasets from 6 image domains
(consumer photos, driving, aerial, indoor, underwater, syn-
thetic; Tab. 2). While this setup was defined in [49], that
work did not explore any transferability metric.
Model architectures. We consider two semantic segmen-
tation architectures, each with a backbone and a linear clas-
sification layer. As the first backbone we choose HR-
NetV2 [69], a high-resolution alternative to ResNet. It
maintains parallel feature representations at different res-
olutions, which helps dense prediction tasks [41, 49, 69].
As ensembles contain multiple models, we choose a light-
weight version: HRNetV2-W28 (23M parameters).

As the second backbone, we adopt a high-resolution
variant of ResNet50 [32]. First, we remove the downsam-
pling operations in the last two ResNet blocks while in-

Dataset Domain # classes # train images

Pascal Context [50] Consumer 60 5K
Pascal VOC [22] Consumer 22 10K
ADE20K [79] Consumer 150 20K
COCO Panoptic [10, 36, 45] Consumer 134 118K
KITTI [1] Driving 30 150
CamVid [8] Driving 23 367
CityScapes [15] Driving 33 3K
India Driving Dataset (IDD) [67] Driving 35 7K
Berkeley Deep Drive (BDD) [77] Driving 20 7K
Mapillary Vista Dataset [53] Driving 66 18K
ISPRS [58] Aerial 6 4K
iSAID [71, 74] Aerial 16 27K
SUN RGB-D [63] Indoor 37 5K
ScanNet [16] Indoor 41 19K
SUIM [35] Underwater 8 1525
vKITTI2 [9, 25] Synthetic driving 9 43K
vGallery [72] Synthetic indoor 8 44K

Table 2. Semantic segmentation datasets used in our paper.

creasing the dilation rate [73]. Second, we add an upsam-
pling layer using 5 parallel atrous convolutions with differ-
ent dilation rates, which enlarges the field of view of the
filters without compromising on spatial resolution [11]. Fi-
nally, we remove the last four layers of the last ResNet block
to make this backbone have the same number of parame-
ters as HRNetV2-W28 (we call this model ResNet23M). As
all ensembles we build contain the same number of source
models, this ensures that they also have the same number of
parameters, enabling a fair comparison between them.
Pre-training schemes. Fully supervised pre-training on
ILSVRC’12 generally benefits semantic segmentation [49,
59]. Furthermore, self-supervised pre-training is making
rapid progress and can even outperform fully supervised
pre-training [34, 43]. To maximize model diversity, we cre-
ate two variants of each source model by using two types of
ILSVRC’12 pre-trained weights: fully supervised and using
the self-supervised SimCLR method [12].
Training source models. We have 17 source datasets,
two architectures, and two pre-training schemes. We train a
source model for each combination, i.e. 68 in total (details
in suppl. mat.). These models are trained only once and
reused in all experiments.

3.2. Setting up for semantic segmentation

In most previous works [4, 44, 55, 65, 66, 76], a transfer-
ability metric is primarily applied to image classification,
where an image is associated to one label. In semantic seg-
mentation instead we have predictions at the pixel level, and
therefore we consider for each pixel xi and its ground-truth
label yi as an individual example (xi, yi).

The number of datapoints in semantic segmentation is
approximately 6 orders of magnitude higher than in image
classification. To reduce the computational cost, we sam-
ple 1000 pixels per image to calculate each transferability
metric. Furthermore, semantic segmentation datasets often
have large class imbalance, which can negatively affect re-
sults. Therefore, we sample pixels inversely proportionally
to the frequency of their class labels in the target dataset.
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3.3. LEEP as single-source transferability metric

We want a transferability metric suitable for selecting an
ensemble of models for semantic segmentation. We start
from LEEP [55], which is based on probability distribu-
tions, for several reasons. First, both per-pixel predictions
and ensemble selection increase computational and memory
complexity compared to the usual image classification and
single-source selection. LEEP is computationally cheap, re-
quiring just a single forward pass of the target training set
through the source model, without additional training. Sec-
ond, LEEP is memory-efficient as it stores predictions in-
stead of features as opposed to alternative metrics [4,65,76].
Finally, starting from LEEP we can derive clear mathemat-
ical formulations for the multi-source setting.

LEEP calculates a transferability score between a single
source model s and a target training set Dt, containing a set
of training samples (xi, yi) ∈ Dt. Applying s to a target
sample produces the probability ps(z|xi), for each source
class z in the source label space Z . The core idea of LEEP
is to associate predictions in the source label space Z to
predictions in the target label space Y . To do so, we apply
s to all samples in Dt, and then compute the empirical joint
distribution P̂ (y, z) measuring co-occurrences between all
pairs of labels (y, z) ∈ Y × Z .

Next, we can calculate the empirical conditional distri-
bution P̂ (y|z) as P̂ (y,z)

P̂ (z)
. Given the source model s, we

can now construct a classifier, called Expected Empirical
Predictor (EEP):

ps(yi|xi) =
∑
z∈Z

P̂ (yi|z)ps(z|xi) (1)

Here ps(yi|xi) is the probability that model s assigns to the
ground-truth label yi at pixel xi. LEEP is defined as the
log-average of the predictor over Dt:

LEEP =
1

n

n∑
i=1

log ps(yi|xi) (2)

We can see that LEEP measures how well the constructed
classifier EEP performs on Dt, where better transferability
is associated with higher LEEP scores.

3.4. Multi-source selection transferability metrics

We design four transferability metrics suitable for multi-
source selection. We base all our approaches on the EEP
predictor (1), which provides a mathematical foundation to
establish relationships between source models. In all cases
our ensembles contain a fixed number S of source models.
Multi-Source LEEP (MS-LEEP). A natural way of ex-
tending LEEP to the multi-source setting is to compute the
joint probability distribution over the S source model pre-
dictions, where each model makes predictions in its own la-
bel space. But this requires calculating the joint probability

distribution for every possible subset of S models, which is
infeasible for a large pool ofN models. Instead, we assume
the source models to be independent, yielding a simplified
joint conditional distribution:

P̂ (y|z1, z2, ..., zS) ≈
S∏

s=1

P̂ (y|zs) (3)

We extend (2) by applying (3) to define a new metric:

MS−LEEP =
1

n

n∑
i=1

log

(
S∏

s=1

( ∑
zs∈Zs

P̂ (yi|zs)ps(zs|xi)

))

=
1

n

n∑
i=1

(
S∑

s=1

log ps(yi|xi)

)
=

S∑
s=1

LEEPs

(4)

Hence MS-LEEP can be seen as taking the best source mod-
els according to the single-model metric LEEP. This sug-
gests that other existing transferability metrics [4,44,66,76]
can be similarly adapted to ensemble selection.
Ensemble LEEP (E-LEEP). We now approach the prob-
lem from a different prospective, stressing that we want to
predict the transfer performance of an ensemble of models.
For this we consider the ensemble prediction as the aver-
age of the S individual models predictions. Considering (1)
as a single-source predictor ps(yi|xi), we can construct the
prediction of the ensemble as

pens(yi|xi) =
1

S

S∑
s=1

ps(yi|xi) (5)

By reformulating (2) accordingly, we get a new metric:

E−LEEP =
1

n

n∑
i=1

log pens(yi|xi) (6)

The difference with MS-LEEP (4) is the order of the log
and the sum: E-LEEP uses the log of the mean predictions,
while MS-LEEP uses the mean of the log predictions.
IoU-EEP. While MS-LEEP and E-LEEP estimate pixel
classification accuracy, semantic segmentation performance
is usually measured as Intersection-over-Union (IoU).
In practice, for IoU we count True Positives (TP),
False Positives (FP), False Negatives (FN), and calculate

TP
TP+FP+FN . IoU is calculated separately per class, and
then averaged into a single metric (mean IoU). In order to
design a transferability metric that more directly approxi-
mates mean IoU, we first use the ensemble predictor (5) to
compute the predicted semantic segmentation over the tar-
get training set

y∗i = argmax
y∈Y

pens(y|xi) (7)
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where y now iterates over the entire target label space (as
opposed to being the one ground-truth label yi). Finally,
we use these predictions y∗i to calculate the mean IoU, ar-
riving at the IoU-EEP transferability metric. This metric is
also less dependent on the probabilistic output of the source
classifiers, which are often poorly calibrated [27] and there-
fore could negatively affect the metric.
SoftIoU-EEP. Applying the argmax in Eq. (7) alleviates
calibration errors. But it also loses the fine-grained informa-
tion in the probability distribution pens(·|xi), which could be
helpful in ranking similar models. Hence, we propose to in-
troduce a ”Soft-IoU” relaxation. For every pixel xi, instead
of counting True Positives, we aggregate their confidences
pens(yi|xi) (where yi is the ground-truth label of that pixel).
Therefore the higher the confidences of correct predictions,
the higher the predicted transferability. We do the analogue
for errors (FP and FN) by aggregating 1−pens(yi|xi). Since
errors are in the denominator, the higher their confidences
the lower the predicted transferability.

4. Evaluating transferability metrics

4.1. Experimental setup

The standard procedure to evaluate transferability met-
rics is to consider several candidate source models for a
given target dataset, and measure the correlation between
(A) the transferability score and (B) the actual performance
on the target test set after the source model has been fine-
tuned on the target training set [44, 55, 65, 76].

In this paper we consider multiple candidate source
model ensembles for a given target dataset. To measure
the desired correlation, we calculate transferability as in
Sec. 3.4 and we also need to calculate the actual perfor-
mance of each ensemble on the target dataset.

Considering ensembles leads to additional computa-
tional challenges. The number of possible ensembles of S
source models out of a pool of N is very large (the bino-
mial

(
N
S

)
). Hence computational efficiency is an important

requirement in our experimental design.
Measuring actual performance of ensembles efficiently.
Given a candidate ensemble, we fine-tune each member
model individually and apply it individually on the target
test set. Then we take the average of their predictions as the
ensemble prediction. Finally, we measure actual ensemble
performance as mean IoU. By considering the predictions
of each ensemble member individually, we can reuse them
across ensembles. Hence, we only need to run inference for
each model on a target test sample once, regardless of the
number of ensembles the model participates in.

While it would also be possible to fine-tune each ensem-
ble as a whole, this is too computationally expensive for this
experiment. We do it in a different setting in Sec. 5.
Ensemble size. We fix the number of models in an ensem-

ble to S = 3. We found S = 3 to be a good compromise
to benefit from a diverse ensemble, while limiting overall
computation (more details in suppl. mat.).

Subsampling candidate source models. For a given target
dataset, the total number of candidate source models is 64
(68 minus the 4 trained on that target). We reduce the num-
ber of candidates to gain two types of speed-ups. Firstly,
this requires fine-tuning fewer source models on the target
training set. But more importantly, the number of candi-
date ensembles grows factorially with N : for N = 64 and
S = 3 there are 41k possible ensembles. While this is not a
problem for calculating our transferability metrics, evaluat-
ing the performance of 41k ensembles on the target test set
is computationally prohibitive. Hence we limit N = 15 as
described below, yielding 455 candidate ensembles.

For each target dataset we sample 15 source models as
follows. As the final goal is to select a high-performing en-
semble, we pick 5 good source models for that target. We
first compute all our transferability metrics for all ensem-
bles of 3 source models from the complete pool (N = 64).
We then select the 5 most frequent models in the top-ranked
ensembles across all metrics. Since we want to evaluate the
ability to distinguish between good and bad sources, we in-
clude an additional 10 source models at random.

Target datasets. We consider five target datasets: Cam-
vid [8], ISPRS [58], vKITTI2 [9], KITTI [1] and Pascal
VOC [21]. Since transfer learning is particularly interesting
in scenarios with limited training images [37, 49, 52], we
follow [49] and limit each target training set to 150 images.

Correlation measure: weighted Kendall Tau. A trans-
ferability metric is useful when it can order the candidate
source models (or ensembles) according to their actual per-
formance. The exact predicted performance value is less
important. Therefore we use a rank correlation measure as
in [44, 49]. Moreover, as in practice we mainly care about
selecting a high performing ensemble, we follow [76] and
use a weighted version of Kendall τ considering top-ranked
items more important than low-ranked ones [68].

Baseline transferability metric. As there is no previously
proposed transferability metric for source model ensem-
bles, we introduce a simple baseline. It is based on three
factors: (1) source model performance Ps evaluated on a
source test set, (2) source dataset size Ns in terms of num-
ber of images, and (3) source dataset richness measured by
the number of source classes Cc. For a candidate ensemble
containing S source models, we calculate this baseline as:
BASE =

∑S
s=1(Ps × Ns × Cs). This baseline is target-

agnostic, favours broad source datasets (COCO, ADE20k,
Mapillary), and the best model architecture (HRNetV2-
W28, pre-trained fully supervised; as it typically leads to
higher Ps).
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Figure 2. Relation between the predicted transferability (y-axis)
and the actual mean IoU performance (x-axis) on the target test
set (for 2 of the 5 target datasets). Each plot shows 455 candidate
ensembles as a separate dot, and also reports the corresponding
weighted Kendall’s τ correlation score. These scores are generally
high, demonstrating the success of our transferability metrics.

4.2. Results

Fig. 2 shows qualitatively the relation between predicted
transferability and actual mean IoU for all our transferabil-
ity metrics on two target datasets. In all experiments we see
good positive correlations, demonstrating that our metrics
work well. We also see that ensemble performance varies
greatly depending on the sources used, justifying the impor-
tance of having a good ensemble selection mechanism.

Quantitatively, Fig. 3 reports the weighted Kendall’s
τ for our transferability metrics and the baseline (for all
5 target datasets). All our transferability metrics gener-
ally achieve high scores, significantly outperforming the
baseline on each target dataset. Among our metrics, the
direct LEEP variants, MS-LEEP and E-LEEP, perform
equally well. Next, IoU-EEP performs the worst, suggest-
ing that it is important to consider the probability distribu-
tion Pens(·|xi). Finally, SoftIoU-EEP performs best, con-
firming the benefits of directly approximating the perfor-
mance measure of the target test set (mean IoU). On aver-
age, SoftIoU-EEP achieves τ of 69.3%, outperforming the
baseline by 20.3%, MS-LEEP by 3.1%, E-LEEP by 3.6%,
IoU-EEP by 8.4%.

As related works on single-source transferability metrics
sometimes report the standard Kendall τ [44] or the (lin-
ear) Pearson coefficient [44, 55, 65], we also report them in

Camvid ISPRS vKITTI2 KITTI PVOC
Target Dataset

0.3

0.4

0.5

0.6

0.7

0.8

0.9

W
ei

gh
te

d 
Ke

nd
al

ls 

BASE
MS-LEEP
E-LEEP

IoU EEP
Soft-IoU EEP

Figure 3. Comparison of our transferability metrics, over 5 target
datasets. We show the weighted Kendall’s τ between a metric and
actual mean IoU on the target test set, where each ranks all 455
candidate ensembles. SoftIoU-EEP performs best overall.

Tab. 3. Despite each correlation measure is based on dif-
ferent mathematical assumptions, the general trend among
target datasets and transferability metrics remains the same.

5. Evaluating ensemble selection
5.1. Experimental Setup

We now turn to ensemble selection: we use our best
transferability metric, SoftIoU-EEP, to select the ensemble
with the highest predicted transferability. We fine-tune this
ensemble on the target training set and evaluate on the target
test set. Selecting only a single ensemble per target dataset
on which to perform expensive fine-tuning and evaluation
enables us to expand our experimental setup beyond what
we did in Sec. 4. Instead of using N = 15, we now use all
N = 64 source models as candidates. Moreover, instead of
only fine-tuning individual ensemble members, we add an
additional step of ensemble-specific fine-tuning. We com-
pare to two baselines which select a single source model.
Improved actual performance of ensembles. Given an
ensemble, we start by fine-tuning each member individu-
ally on the target training set as in Sec. 4.1. Afterwards,
we perform additional ensemble-specific fine-tuning to im-
prove it by re-weighting the class predictions of its mem-
bers. Specifically, we freeze the backbone of each member
and attach to it a light head that assigns per-class weights
and biases, before averaging their predictions into a single
ensemble prediction. We then fine-tune the light head of this
ensemble on the target training set. While the total number
of additional parameters introduced by this head depends on
the number of target classes, in practice it is between 144
and 2700, which is negligible compared to the total number
of parameters in the models composing the ensemble.
Ensemble size. We set S = 3 as in Sec. 4.
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Measure Weighted Kendall’s τ Kendall’s τ Pearson
Method BASE MS E IoU sIoU BASE MS E IoU sIoU BASE MS E IoU sIoU

Camvid 0.51 0.69 0.70 0.50 0.68 0.30 0.56 0.55 0.37 0.51 0.46 0.74 0.73 0.56 0.70
ISPRS 0.45 0.61 0.54 0.59 0.68 0.22 0.41 0.37 0.41 0.44 0.29 0.60 0.55 0.59 0.63

vKITTI2 0.56 0.57 0.58 0.60 0.60 0.38 0.49 0.51 0.51 0.53 0.54 0.66 0.67 0.62 0.70
KITTI 0.22 0.62 0.65 0.54 0.66 0.17 0.50 0.54 0.42 0.53 0.25 0.69 0.73 0.62 0.74
PVOC 0.71 0.81 0.82 0.81 0.83 0.42 0.59 0.61 0.58 0.61 0.66 0.84 0.83 0.73 0.81

Average 0.49 0.66 0.66 0.61 0.69 0.30 0.51 0.52 0.46 0.52 0.44 0.71 0.70 0.62 0.72

Table 3. Correlation measures for 5 different target datasets, obtained by comparing the transferability predicted by a metric to the actual
Mean IoU on the target test set. The methods shortcuts refer to: (BASE=Baseline), (MS=MS-LEEP), (E=E-LEEP), (IoU=IoU-EEP),
(sIoU=SoftIoU-EEP). SoftIoU-EEP performs best overall. See Sec. 4.1 for more details about the setup.

Target datasets. We now consider each of the 17 datasets
in Tab. 2 as a target dataset in turn (instead of 5 in Sec.
4). As in Sec. 4, we study transfer learning in the low data
regime defined by [49] (i.e. 150 target training images for
each dataset, except 1000 for COCO and ADE20k as they
contain many classes).
Baseline B1: select a single source model. We test
whether aggregating multiple source models is beneficial
to transfer learning, compared to the standard of selecting a
single source model [44,55,65,76]. To do so, for a given tar-
get dataset we use the same pool of 64 source models as for
ensemble selection. Then we select the single model with
the highest predicted transferabiliy according to LEEP [55].
Finally, we fine-tune it on the target training set, and evalu-
ate on the target test set.
Baseline B1L: select a single large source model. We
also propose a stronger baseline which selects a single large
model with the same number of parameters as one of our
ensembles. An ensemble of S = 3 has 69M parameters,
as both HRNetV2-W28 and ResNet23M have 23M param-
eters. We use the best such model according to preliminary
experiments: HRNetV2-W48 pre-trained fully supervised
on ILSVRC’12. It offers excellent performance for seman-
tic segmentation [69] and was also used in [41, 49].

For this baseline we need to construct a new pool of large
source models. To do so, we train 17 large models, one for
each source dataset (Tab. 2). Then, given a target dataset,
we use LEEP [55] to select a single model (out of 16, ex-
cluding that target dataset).

5.2. Results

Comparison to baselines B1 and B1L. We first consider
the improvement made by the ensemble selected by our
transferability metric SoftIoU-EEP over the baseline B1.
On average across all 17 dataset, selecting an ensemble in-
stead of a single model out of the same pool (B1) improves
results by a relative +6.0% mean IoU. This demonstrates
that the source models in our pool are complementary and
composing several into an ensemble brings clear benefits.

Next, we show in Fig. 4 that selecting an ensemble out
of our pool even outperforms baseline B1L, which selects
a single model out of a pool of larger models, each with

Figure 4. Relative mean IoU gain on each target test set made by
the ensemble selected by our SoftIoU-EEP metric over baseline
B1L. For clarity, we set the 0 vertical line to corresponds to the
performance of B1L. On average over all target datasets, the im-
provement is 2.5%. We do not explicitly display baseline B1, as it
performs worse than B1L (see main text for discussion).

capacity similar to one of our ensembles (+2.5% relative
mean IoU). When looking at individual target datasets, the
selected ensemble improves over B1L by more than 2% in
10 of them. In contrast, B1L outperforms the ensemble only
once (on Pascal Context). We conclude that selecting an en-
semble brings solid accuracy benefits over selecting a single
model, even when controlling for total capacity.
What factors of diversity matter more? Generally, en-
sembles benefit from the predictive diversity of its member
models [5,17,28,47]. To understand which factors of diver-
sity are important in our transfer learning setting (Sec. 3.1),
Fig. 5 shows which source models are selected by SoftIoU-
EEP as part of the winning ensemble for each target dataset.

We observe the following patterns: (1) Some target
datasets are well covered by multiple source datasets. For
these cases, our metric generates diversity by selecting
source models trained on these different datasets. For ex-
ample, for ScanNet (indoor) as a target, our metric se-
lects source models trained on Sun (indoor), COCO, and
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Figure 5. For each target dataset (x-axis), we show the 3 source models in the ensemble selected by SoftIoU-EEP. When multiple source
datasets cover the image domain of the target, our metric generates diversity by selecting models trained on these different source datasets
(see target ScanNet and Sun). When there exists a single strong source dataset for a target, our metric selects only this source dataset,
and instead generates diversity by varying architectures and pre-training schemes (see targets from the driving domain). Note: we do not
consider source models trained on the same dataset as the target (gray cells).

ADE20K, as COCO and ADE20K contain many indoor im-
ages. In these cases the backbone of choice is HRNetV2-
W28 using fully supervised pre-training, which is gener-
ally the best perfoming backbone (76% of all source mod-
els selected). (2) For other target datasets there exists a
strong source dataset which alone already covers most vari-
ations in the target domain. For example, Mapillary is the
largest dataset in the driving domain and covers all con-
tinents. Our method nicely picks Mapillary almost ex-
clusively as the sole source dataset for all target driving
datasets (Cityscapes, IDD, BDD, Camvid, vKITTI2, and
KITTI as the only case with a second source - Cityscapes).
In these cases, our metric generates diversity by varying
model architectures and pre-training schemes within the se-
lected ensemble. (3) The most frequently selected source
datasets have a greater number of training samples, greater
number of labels, and larger diversity of images (Mapillary,
COCO, ADE20K). These observations are in line with ear-
lier work which show the benefits of in-domain source im-
ages [49,54,75] and large, broad source sets [37,48,49,64].
Ensemble vs. its members. In Fig. 6 we compare the mean
IoU of the selected ensemble to that of its member models.
On average the ensemble improves over its best member
by 4.6%, and over its worst member by 18.6%. These im-
provements demonstrate that the sources selected to be part
of the winning ensemble are indeed diverse (otherwise the
ensemble could not outperform its best member). Hence we
conclude that our transferability metric is good in selecting
a diverse set of source models.

Finally, to evaluate how important it is to learn to com-
bine model predictions, we re-evaluate the results but now
using a simple unweighted average of the model predictions
instead of the learned head. This still outperforms the best
single ensemble member by +2.9%. Hence, our improve-
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Figure 6. Comparison of the mean IoU of the winning ensemble
vs its component source models.

ments are truly due to ensembling models (be it with a fixed
combiner head, or with a learned one).

6. Conclusion
We design for the first time transferability metrics for

ensemble selection. We evaluate them in a challenging and
realistic transfer learning setup for semantic segmentation,
featuring 17 source datasets covering a wide variety of im-
age domain, two model architectures, and two pre-training
schemes. We show experimentally that our transferability
metrics rank correlate well with actual transfer learning per-
formance. Moreover, our best metric selects an ensemble
performing better than two baselines which select a single
source model (even after equalizing capacity).
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sano Pinto, Daniel Keysers, and Neil Houlsby. Deep ensem-
bles for low-data transfer learning. arXiv, 2020. 2, 5

[53] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulò, and
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