
Diverse Plausible 360-Degree Image Outpainting
for Efficient 3DCG Background Creation

Naofumi Akimoto Yuhi Matsuo Yoshimitsu Aoki
Keio University

{nakimoto,ymatsuo}@aoki-medialab.jp, aoki@elec.keio.ac.jp

Figure 1. We generate the plausible environment from a narrow field of view image, using a transformer-based outpainting method that
considers the nature of 360-degree images, to realize efficient 3DCG scene creation. See also demonstrations in the supplementary video.

Abstract

We address the problem of generating a 360-degree im-
age from a single image with a narrow field of view by es-
timating its surroundings. Previous methods suffered from
overfitting to the training resolution and deterministic gen-
eration. This paper proposes a completion method us-
ing a transformer for scene modeling and novel methods
to improve the properties of a 360-degree image on the
output image. Specifically, we use CompletionNets with
a transformer to perform diverse completions and Adjust-
mentNet to match color, stitching, and resolution with an
input image, enabling inference at any resolution. To im-
prove the properties of a 360-degree image on an output
image, we also propose WS-perceptual loss and circular in-
ference. Thorough experiments show that our method out-
performs state-of-the-art (SOTA) methods both qualitatively
and quantitatively. For example, compared to SOTA meth-
ods, our method completes images 16 times larger in reso-
lution and achieves 1.7 times lower Fréchet inception dis-
tance (FID). Furthermore, we propose a pipeline that uses
the completion results for lighting and background of 3DCG
scenes. Our plausible background completion enables per-
ceptually natural results in the application of inserting vir-
tual objects with specular surfaces.

1. Introduction

In recent three-dimensional computer graphics (3DCG)
production, 360-degree images are helpful for efficiently
creating lighting and backgrounds. For example, a designer
might spend much time creating 3D objects in the near field
and creating the background quickly by using 2D images
with a narrow field of view (NFoV) images or 360-degree
images. However, the production method of creating the
background by placing 2D images behind a 3D object can-
not fully represent the scenery reflected on the surface of
the 3D object. Of course, this problem does not occur
if the image surrounds the object in 360 degrees. How-
ever, 360-degree images, especially high dynamic range im-
ages (HDRI), are generally more expensive to prepare than
NFoV images.

This paper addresses the problem of converting an NFoV
image into a 360-degree image by complementing its sur-
roundings to obtain a 360-degree environment consistent
with the image given as a partial background (Fig. 1). By
solving this problem, users can use only a NFoV image to
reflect the surrounding environment to objects [1, 24], or in
the case of HDRI, to achieve natural shadows and global
illumination through Image-Based Lighting [6, 24].

For use by designers, it is desirable to infer NFoV im-
ages of any size and to have choices by generating diverse
360-degree images. However, existing methods are deter-
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Figure 2. Limitations of prior methods. (a) CNN-based method
[1] and (b) transformer-based translation method [4] suffer from
overfitting to resolution during training (512×256). Furthermore,
(b) has no connection between the ends.

ministic in their estimation and can only correctly infer
the trained resolution. For example, as shown in Fig. 2,
360IC [1], trained at 512×256, produces many artifacts
at 1024×512. We believe that this is due to distortions
caused by the equirectangular projection (ERP). Based on
the above, our goal is to realize the outpainting of 360-
degree images with the following two properties. (1) Sam-
ple diverse outputs for a single input and (2) infer arbitrary
resolutions.

The key idea of our approach is to introduce a trans-
former [29] into an outpainting method for diverse outputs.
In previous works, TT [4] is an image-to-image translation
method with a transformer that can generate various outputs
through sampling from the learned distribution. However,
as shown in Fig. 2(b), TT alone is not consistent enough
with the input image, and it can only generate images of
fixed size. Therefore, we cannot directly introduce TT into
our task, and the resolution problem remains. To solve this
technical problem of introducing a transformer, we propose
an additional network as a second stage. Specifically, we
present a framework comprising CompletionNets and Ad-
justmentNet. (1) CompletionNets is an image completion
module that uses the same networks as TT and two novel
techniques to be proposed later. (2) AdjustmentNet im-
proves the consistency of color, stitching, and resolution
between the output result of CompletionNets and the input
image. Because AdjustmentNet adjusts the fixed-size out-
put of CompletionNets to the size of the input image, we
can obtain completion results for any image resolution.

Furthermore, because the above framework does not yet
sufficiently consider the unique properties of 360-degree
images, we propose two novel techniques for this purpose.
First, to achieve continuity at both ends of an image, which
is a property of 360-degree images, we propose circular in-

ference as a new auto-regressive order for a transformer. It
improves the connectivity at both ends of an image at the
pixel and semantic levels by performing inference while cir-
culating the image. Second, to further improve the percep-
tual quality, we propose a WS-perceptual loss function for
training of CompletionNets. This loss function reflects that
360-degree images have different information content along
the latitudinal direction and improves the performance of
360-degree image modeling by focusing on computing the
loss in the information-rich regions.

Our thorough experiments show not only that the pro-
posed method can perform diverse completions at arbi-
trary resolutions but also that the proposed method out-
performs several state-of-the-art methods both qualitatively
and quantitatively. For example, in terms of FID score, our
method shows 1.7% lower improvement than 360IC and
achieves plausible completion for images with 16 times as
many pixels (1024×512) as EnvMapNet [24] (256×128).

Moreover, we propose a pipeline to create an HDR envi-
ronment map from a single NFoV image and use it as light-
ing and background in 3DCG. Through demonstrations, we
show that our method reaches the quality of 360-degree im-
age completion, which can be used for 3DCG and is helpful
for efficient background creation.

The proposed method produces a plausible 360-degree
image and provides various completion results, allowing de-
signers to choose their preferred result among them. Con-
sidering these characteristics, we conclude with a discus-
sion of potential applications.

Our contributions can be summarized as follows:
• We propose AdjustmentNet to introduce a transformer

into 360-degree image outpainting, which enables di-
verse and arbitrary-resolution outputs.

• We propose two novel techniques for acquiring the
properties of 360-degree images: WS-perceptual loss
for the training of CompletionNets and circular infer-
ence for the transformer. These allow us to outperform
previous methods both quantitatively and qualitatively.

• We demonstrate that our high-resolution and plausible
completion renders natural-looking scenes even when
specular virtual objects are close to a camera or the
camera views all around on 3DCG scenes.

2. Related Work
Image completion. Image inpainting is the task of

filling in missing regions with appropriate pixels [2, 8].
Learning-based image inpainting [10, 13, 19], which is
CNN-trained on large datasets, has been extensively stud-
ied recently. In addition, attention-based image inpainting
has been proposed and shown promising results [16, 38].
However, most of the methods that train CNN with GAN
produce deterministic outputs. In other words, these meth-
ods output only one result for an input image. PIC [41], in
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Figure 3. Framework overview. Our method
comprises two modules: CompletionNets and
AdjustmentNet. CompletionNets can sample
various completion results from a fixed-size
image input. AdjustmentNet improves the con-
sistency of color, stitching, and resolution be-
tween the CompletionNets’ output and the in-
put image, resulting in completion for any im-
age size.

contrast, outputs multiple results by employing CVAE [23].
Image outpainting is an extrapolation problem that gen-

erates the surroundings of an input image. This task can
include image extension [27,32], novel view synthesis [34],
infinite landscape generation [15, 36], and panorama gener-
ation [14,22]. A similar task to our work is the generation of
panoramas that provide a 360-degree view. However, ERP
images have significant distortions at the top and bottom of
the images and, therefore, panoramic images cannot be used
as ERP images.

Using a transformer for image completion is another re-
cently studied topic [3, 4, 30] and has the following two
main advantages. (1) Non-local attention can help gener-
ate a global structure and contextual consistency. (2) Sam-
pling from the distribution learned by a transformer leads to
more diverse completions than CVAE, as verified by [30].
In contrast, the disadvantages of a transformer are that it re-
quires an enormous computational cost when dealing with
large images. Moreover, transformer-based image-to-image
translation (Im2Im) [4, 20] resamples the pixels in the con-
ditional input region, resulting in a loss of consistency with
the original pixels.

However, the above image completion works designed
their approach for planar images. In other words, the gen-
erated results lacked the properties of 360-degree images,
such as the connection between the two ends of the images
and the latitudinal distortion caused by the projection. In
contrast, our method can plausibly complete a 360-degree
image by introducing a transformer into an image outpaint-
ing while considering the 360-degree properties.

360-Degree image outpainting. 360-Degree image out-
painting is the task of completing the surroundings of a par-
tial 360-degree image. Inverse rendering [21, 33] and light-
ing estimation [5, 6, 12, 25] perform the task of complet-
ing a 360-degree image as an intermediate task to represent
lighting through the 360-degree image (environment map).
However, these methods cannot predict high-frequency tex-
tures, and the image resolution is small. Similar to our work
is the task focused on pixel completion [1, 7, 24]. These are
image completion methods that consider the properties of
360-degree images. 360IC and SIG-SS [7] employ tech-
niques to improve the continuity of both ends of a 360-
degree image. EnvMapNet trains a network by weighting

the pixel loss to account for the difference in latitudinal in-
formation density due to the projection. However, except
for SIG-SS, which uses CVAE to sample the strength of
symmetry, these methods are deterministic outputs. Fur-
thermore, they suffer from overfitting for image resolution
during training.

3. Method
We generate a 360-degree image by completing the sur-

rounding area of an NFoV image. In this work, 360-degree
images are ERP images. Again, our goal is to obtain multi-
ple and diverse outputs for a single input image and enable
inference at arbitrary resolutions different from the training
resolution. Our approach is to perform diverse completions
of a scene using a transformer. TT has already shown that
diverse completion is possible with Im2Im using a trans-
former. However, as mentioned in Sec. 1 and Fig. 2, the
transformer-based Im2Im is not suitable for 360-degree im-
ages in the terms of overfitting a training resolution and con-
sistencies with the input pixels. Therefore, we propose a
framework extended with AdjustmentNet to solve the prob-
lems (Sec. 3.1). Moreover, we propose a new loss, WS-
perceptual loss (Sec. 3.2), and a new inference method for
the transformer, circular inference (Sec. 3.3), to reflect the
properties of 360-degree images to outputs.

Overview. Fig. 3 shows an overview of our proposed
framework. The input of the entire framework is an in-
complete image x′ ∈ RH×W×3. During training, we crop
some regions from the ERP images x ∈ RH×W×3 and
fill the remaining regions with gray values. The output
y ∈ RH×W×3 is a restored image of the complete 360-
degree scene.

Our method comprises two modules: CompletionNets
and AdjustmentNet. First, we downsize the incomplete in-
put image x′ to a fixed size and use it as input to Com-
pletionNets. CompletionNets completes the incomplete im-
age x′

d ∈ Rh×w×3 using a transformer. Because the com-
pleted image x̂d ∈ Rh×w×3 is of fixed size, we restore it by
upscaling to the original size of the input image. Next, to
enable inference at arbitrary resolutions different from the
training resolution, AdjustmentNet uses the completed im-
age x̂ ∈ RH×W×3 and the input image x′ to estimate the
high-frequency texture of the completed image y according
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to the input image x′. It also performs stitching and color
correction to obtain the final output.

3.1. Model Architecture

CompletionNets. The primary network structure of
CompletionNets is the same as TT: two VQGANs [4] and a
transformer. The approach of TT is vector-quantized image
modeling, which models a sequence of quantized image to-
kens. VQGAN is a network that uses a feature quantization
mechanism [28] at the bottleneck of the encoder-decoder
CNN to obtain the image tokens.

In our CompletionNets, VQGAN1 encodes the incom-
plete image, and VQGAN2 decodes the features comple-
mented by the transformer. Unlike TT, CompletionNets
treats images of fixed size as input and output, consider-
ing that VQGAN also overfits the training resolution prob-
ably due to the inherent distortion of ERP representation,
and uses WS-perceptual loss for training and circular infer-
ence for inference. Our transformer models the scene of a
360-degree image as a sequence of quantized features and
performs diverse image completions by sampling from the
learned distribution.

AdjustmentNet. To achieve completion at arbitrary im-
age sizes, we propose AdjustmentNet, a network that im-
proves the consistency between the output of Completion-
Nets and the input region. In high-resolution image com-
pletion methods employing two stages [30,37], the primary
role of the second stage is to refine outputs by adding high-
frequency components. However, as shown in Fig. 4, apply-
ing only super-resolution is not sufficient for our method.
Fig. 4(a) shows a composite image of the upscaled comple-
tion image and the input region. Fig. 4(b) shows that even
with the SOTA method of super-resolution [31], refinement
alone is not sufficient. One of the causes for this is that
the transformer resamples not only the completion region
but also the input region. As a result, the completed region
is predicted to fit the resampled input region and does not
match the original input image. In contrast, we adjust the
output of CompletionNets to match the input image in terms
of color, stitching, and resolution, as shown in (c). The net-
work is a U-net structure implemented in the same CNN
structure as VQGAN without the VQ mechanism [28].

3.2. Training

WS-perceptual loss. VQGAN is a network for obtain-
ing quantized vectors of image features, which models lo-
cal regions of an image using CNN. TT proposes a self-
supervised manner using adversarial loss LGAN, L1 loss L1,
perceptual loss LPerc, and VQ loss LVQ. In contrast, we pro-
pose a novel loss function, WS-perceptual loss, to suitably
model local regions for ERP representation. This loss func-
tion reflects the nature of ERP representation that there is a
difference in the amount of information in each region along

the latitudinal direction. Previous methods [6, 24] weighed
pixel-level differential losses, such as L1 loss, to account
for their projection onto a sphere. However, high-level fea-
tures, such as semantics, should also be modeled around the
central region. Therefore, WS-perceptual loss is an exten-
sion of perceptual loss (LPIPS) [40] to the loss on the unit
sphere as follows: Similar to WS-PSNR [26], we prepare
the following weights to account for the projection onto a
sphere.

w′
l(u, v) = cos((v −Hl/2 + 1/2) · π/Hl), (1)

where u and v are the positions on the feature (size Hl×Wl)
in the lth layer of the feature extractor. We use Eq. 1 to
weigh the perceptual loss LPerc =

∑
l

1
HlWl

∑
u,v ∥wl ⊙

(yluv − xl
uv)∥22 at each resolution.

LWS-Perc =
∑
l

1∑
u,v w

′
l

∑
u,v

w′
l ⊙ ∥wl ⊙ (yl

uv − xl
uv)∥22. (2)

VQGAN. We train both VQGAN1 and VQGAN2, which
have both encoder and decoder, with
LVQGAN = λGANLGAN +λ1L1 +λVQLVQ +λWS-PercLWS-Perc.

(3)
VQGAN1 learns to reconstruct 360-degree images with
missing regions to obtain quantized features zq ∈
Rhq×wq×nz of the incomplete input image. VQGAN2, in
contrast, learns to reconstruct a complete 360-degree image
to obtain a decoder that obtains a complete 360-degree im-
age from quantized features ẑq ∈ Rhq×wq×nz .

Transformer. We train the transformer to model a 360-
degree scene and to perform completion. Using the trans-
formation from zq to ẑq as supervision, the model learns to
predict the distribution of the next index after indices s<i,
conditional on indices c, by using the following equation:

LTransformer = Ex∼p(x) [− log p(s|c)] , (4)

where p(s|c) =
∏

i p(si|s<i, c), and the transformer does
not directly deal with the quantized features (zq and ẑq) but
treats the sequence of indices (c and s) assigned to them.

AdjustmentNet. AdjustmentNet has a simple network
architecture but explicitly learns to match the output image
of CompletionNets with its input. Therefore, we train Ad-
justmentNet by restoring the preprocessed input images to
the original images (GT images) in a self-supervised man-
ner. In addition, to avoid over-fitting to the top and bottom
distortions of the ERP image, we randomly crop only a part
from the ERP image and use it as the GT image. The follow-
ing steps describe the preprocessing: (1) To learn the adjust-
ment of the boundary connection, reconstruct the GT image
using the learned VQGAN2, obtaining a reconstructed im-
age with the difference from the GT image. (2) To learn
color adjustment, add color jitter to the input image before
reconstructing it with VQGAN2, which results in a recon-
structed image with slightly different colors from the GT
image. (3) To learn to adjust the resolution, scale down the
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Figure 4. Effect of AdjustmentNet. (a) and (b) show that the output of CompletionNets
needs to be adjusted not only in resolution but also in color and stitching with the input
region.

𝑤" 𝑤"𝑤𝐪

(a)

(b)

(c)

(d)

Figure 5. Circular inference.

GT image to be reconstructed by VQGAN2 in advance. Af-
ter reconstruction, the image is returned to the original scale
using the bicubic method. By composing this reconstructed
image with a smaller region of the GT image than this im-
age and using it as the input image for AdjustmentNet, we
can learn to adjust color, stitching, and resolution while us-
ing the GT region as a hint. Therefore, we use the vanilla
perceptual loss instead of the WS-perceptual loss. We use

LAdjust = λGANLGAN + λ1L1 + λPercLPerc (5)

for the learning.

3.3. Inference

Circular inference. To obtain completion results that
reflect the continuity of 360-degree images, we propose cir-
cular inference as an inference order for the transformer.
TT proposes a raster ordering, called sliding attention win-
dow, as the autoregressive order of the transformer estima-
tion. However, as shown in Fig. 2(b), this method discon-
tinues at both ends of the 360-degree image. SIG-SS pro-
poses circular padding to connect the two ends. However,
this padding is for convolution and cannot be applied to es-
timate the global semantics of 360-degree images using a
transformer. Therefore, we propose circular inference so
that the continuity of both ends can be accounted for in the
estimation stage of the transformer, as shown in Fig. 5(a)
and Fig. 5(d). The main idea is to circularly estimate some
regions twice by the transformer to generate overlaps. For
implementation, we duplicate both ends (with length wp) of
the quantized feature map zq ∈ Rhq×wq×nz on the oppo-
site side in advance (from hq × wq to hq × (wq + 2wp)),
and the transformer performs an estimation in raster order
(Fig. 5(b)). After estimating a row, the estimation results of
both ends of the quantized feature map ẑq ∈ Rhq×wq×nz

are copied from the opposite side and replaced (Fig. 5(c)).
That is, the length wp from the left is replaced by the esti-
mated result of wp from the right of the original length wq.
The same applies to the other side.

As described above, circularly estimating with a trans-
former allows connecting the two ends in higher-order fea-
tures. When decoded into an image, the connection at the
semantics level is improved, allowing for a more plausible
completion as a 360-degree image.

Thus, the overall inference is

y = GAdjust(GVQGAN2(T (EVQGAN1(x
′))), x′), (6)

where GAdjust, GVQGAN2
, T , and EVQGAN1

indicate Adjust-
mentNet, the decoder of VQGAN2, the transformer, and the
encoder of VQGAN1, respectively.

4. Experiments
We compare our method qualitatively and quantitatively

with previous methods to verify the effectiveness of the pro-
posed components. In our supplementary video, we also
compare the results in all-around viewing and object inser-
tion applications.

4.1. Experiment Settings

Implementation details. We use Adam [11] as an opti-
mizer whose learning rate = 4.5e-06. λ1 = 1.0, λPerc = 1.0,
λVQ = 1.0, λWS-Perc = 1.0, and λGAN is an adaptive weight
[4]. We train the transformer with 20 epochs and, for the
remaining networks, with 30 epochs. Our method produces
1024×512 images.

Datasets. We use SUN360 [35] and Laval Indoor
Dataset [6] as the datasets. We divide SUN360 into 47938
training images and 5000 test images of the “Outdoor”
class. In contrast, we divide the Laval Indoor Dataset into
1837 training images and 289 test images, following the
provided training and test split. The number of images in
the Laval Indoor Dataset is too tiny to train our model, so we
fine-tune the model trained by SUN360 on this dataset, just
as EnvMapNet uses an additional dataset. For data augmen-
tation, we randomly change the view direction horizontally,
as in [1, 7].

Evaluation. As a quantitative metric, we use Fréchet
inception distance (FID) [9] to evaluate the quality and di-
versity of the generated images. We explain the details of
the calculation method in Sec. 4.4. When comparing the
proposed method with other methods, we set the sequence
length of the transformer to 512. When validating each
component of the proposed method, we set the sequence
length of the transformer to 256 to make network training
more efficient.

Baselines. To compare our model with 360IC, we train
360IC on our dataset. The original 360IC introduces a two-
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Figure 6. Diverse outputs of the proposed method. Our method performs diverse and plausible completions on a given input (the first
column).

stage approach to avoid overtraining on a small training
dataset of 600 images. We implement 360IC with a single-
stage as in [7], and then we train the model with a suffi-
cient amount of training data. To compare the differences in
scene modeling between a transformer and CNN, we use a
CNN structure (Fig. 2(a)) similar to that of VQGAN and the
same training procedure as ours. Furthermore, we imple-
ment the bottleneck by adding their proposed four parallel
dilated conv blocks instead of the quantization mechanism.

To compare with SIG-SS, we infer the authors’ trained
models with our test images. The authors trained their
model on SUN360. Note, however, that their train/test split-
ting is unknown, and they may have trained their model on
the test images we prepared.

EnvMapNet does not publish their code, only their eval-
uation protocol and scripts. We follow their instructions and
run their evaluation script on the same train/test split of the
Laval Indoor Dataset. For comparison, we quote the re-
sulting images and scores from their paper. Note that the
location of the input region and the tone mapping method
do not match their experiment and ours.

4.2. Diverse Outputs

Fig. 6 shows that our approach can output multiple and
diverse completions. The left column is an input image,
and all results are 1024×512 images. The top two rows
show the results generated with the same model trained with
SUN360 and different input regions. In the top row, the in-
put regions are 180 degrees in the longitudinal direction and
90 degrees in the latitudinal direction. The middle row in-
put regions correspond to the 90-degree angle of view when
converted to a perspective image. We can find that the larger
the input region, the better the quality of the generated tex-
ture. The last row shows the results of an experiment con-
ducted using the Laval Indoor Dataset and that our method
can estimate indoor scenes with various structures.

4.3. Qualitative Comparisons

Fig. 7 compares 360IC and the proposed method. 360IC
captures the distortions of ERP representation, but there are
artifacts in the textures. In contrast, the proposed method
can generate the textures and shapes of each object more
accurately. Comparing “360IC” and “CompNets Only,” we
can see the difference in scene modeling between convo-
lution and transformer. Dilated convolution increases the
receptive field of the CNN, but this causes the transferred
information to be sparse, which may be the cause of arti-
facts in the texture generation. In contrast, the transformer
can generate globally consistent textures and represent dis-
tortions in the upper and lower regions of the image, where
distortions specific to ERP images occur significantly.

Fig. 8 compares SIG-SS and ours. The input region is the
same as in Fig. 6(b); SIG-SS has the results of reconstruc-
tion (rec) and sampling (gen). The resolution is 512×256.
The reconstruction results show overfitting, where similar
objects appear, and the sampling results lack global consis-
tency. In contrast, the proposed method provides results that
match the context of the input region.

Fig. 9 shows a comparison between ours and EnvMap-
Net, where EnvMapNet is a 256×128 completion image,
while ours is a 1024×512 completion image. In other
words, our method can complete 16 times as many pixels
as EnvMapNet, and our results are also better looking. The
preprocessing of EnvMapNet, which requires clustering of
datasets to stabilize adversarial learning, is not necessary for
our method. The results trained on the Laval Indoor Dataset
do not generate detailed textures compared to those trained
on SUN360. This is because we train the model on a small
dataset, which is one of our limitations.

4.4. Quantitative Comparisons
We use FID to evaluate the quality and diversity of the

completions of the proposed method. Table 1 uses SUN360
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Figure 7. Qualitative comparison with 360IC. The input region is
the same as that in the first row of Fig. 6.

Figure 8. Qualitative comparison with SIG-SS. The input region
is the same as that in the second row of Fig. 6.

Figure 9. Qualitative comparison with EnvMapNet. The input area
is the same as that in the third row of Fig. 6. Note that the inputs
of EnvMapNet(a) and ours(c) are not exactly the same.

and Clean-FID [18] as the script to compute the FID. The
results show that our method outperforms 360IC. Using
the same evaluation method, in Table 2, we compare our
method with SIG-SS, showing that our method, which uses
a transformer, outperforms their method, which uses CVAE.
Table 3 compares our method with EnvMapNet and that of
Gardner et al. [6] on the Laval Indoor Dataset. To compute
the FID, we follow their evaluation protocol: we convert
an image into a Cubemap and remove the top and bottom
planes containing little information. In summary, the FID
comparisons show that our method is superior in terms of
the generated results’ quality and diversity.

Figure 10. Circular inference connects both ends of a 360◦ image,
both at the pixel and semantic levels. See Sec. 4.5 for details.

4.5. Analysis

Verification of circular inference. Fig. 10 and Table 4
show that our circular inference can perform consistent es-
timation as ERP images. In Fig. 10, we show a partially
cropped region (256×128) of the output of Completion-
Net (512×256), with the image ends aligned such that the
completion region is in the image center. We use the same
trained model for each method and change only some of
the inferences. As shown in Fig. 10(a), the left and right
edges are not connected in the raster order, which is the
auto-regression of a transformer used in TT. One way to
connect the two edges is to use circular padding [7]. Circu-
lar padding is a technique that pads the pixels on opposite
edges of the ERP image during convolution. We use it to de-
code the features estimated by our transformer into images.
This technique helps to improve the continuity at the pixel
level, but at the semantic level, the contents at both ends
are different. For example, in Fig. 10(b), the grass and dirt
ground are separated in the center. In contrast, circular in-
ference helps to improve the continuity at the semantic level
during transformer estimation. As Table 4 shows, the FID
scores of circular padding and circular inference are similar,
but qualitatively, circular inference contributes to the gener-
ation of images that better reflect ERP image properties.

Verification of WS-perceptual loss. The loss consid-
ers the difference in pixel level and the difference in high-
level features in the information amount along the latitudi-
nal direction of the ERP image. In Table 5 and Table 6, to
evaluate the effect more directly, we do not use Adjustment-
Net but the output of CompletionNets. To compute the FID
only in the completed region and not in the input region, we
use only the generated region (256×128) in the image cen-
ter corresponding to 90 degrees of latitude and 180 degrees
of longitude out of the output image (512×256). Table 5
compares the results of WS-perceptual loss with perceptual
loss or with WS-L1 loss, which considers only low-level
differences, on the proposed network. Table 6 shows that
the use of WS-perceptual loss contributes to improving the
FID score in training the 360IC network. In summary, WS-
perceptual loss contributes to generating images with more
ERP image properties by considering the sphere and weigh-
ing high-level features.
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360IC [1] CompletionNets Only Ours

FID↓ 16.44 14.96 9.52

Table 1. FID on SUN360 w/ 180◦×90◦ input.

SIG-SS(rec) [7] SIG-SS(gen) [7] Ours

FID↓ 31.91 26.81 23.13

Table 2. FID on SUN360 w/ 90◦ input.

Gardner et al. [6] EnvMapNet [24] Ours

FID↓ 197.4 52.7 46.15

Table 3. FID on Laval Indoor dataset.

Raster order Circular padding Circular inference

FID↓ 30.03 26.33 26.96

Table 4. Evaluation of circular inference on
SUN360 w/ 180◦ × 90◦ input.

Perceptual loss WS-L1 loss WS-perceptual loss

FID↓ 29.00 35.00 26.96

Table 5. Evaluation of WS-perceptual loss on the
proposed network on SUN360 w/ 180◦×90◦ input.

Perceptual loss WS-perceptual loss

FID↓ 67.47 50.87

Table 6. Evaluation of WS-perceptual loss on the
360IC network on SUN360 w/ 180◦ × 90◦ input.

Figure 11. Pipeline for using the completion results for lighting
and background of 3DCG scenes.

5. Application
We implement an application that uses a completed 360-

degree image as a background and for lighting. We propose
a pipeline to realize image-based lighting on the 3DCG soft-
ware Unreal Engine 4 (UE4), as shown in Fig. 11. To use an
HDRI Backdrop plugin, we need to convert images to HDR
images beforehand; we convert low dynamic range (LDR)
to high dynamic range (HDR) by inverse tone mapping us-
ing existing methods [17]. By introducing this process, our
method can generate HDR environment maps from an LDR
NFoV image.

Using this pipeline, we demonstrate the background cre-
ation and lighting for specular objects placed in a 3DCG
scene in the bottom row of Fig. 1 and the supplementary
video. Because of our proposed method’s high resolution
and plausible 360-degree image completion, we can demon-
strate moving a camera to look all around. To the best of our
knowledge, no other work has achieved such demonstra-
tion. When an NFoV image is composited behind 3DCG
objects, the specular surfaces cannot be represented. Previ-
ous works [24,33], which have often been limited to indoor
environments, have generated environment maps to repre-
sent specular reflections; however, they have much lower
resolution than our method. Therefore, there is no other
method to insert specular objects as close to the camera as
our results.

6. Discussion
This paper addresses the problem of completing 360-

degree images from a narrow field of view. We first re-
veal that the previous methods had the limitations of over-
fitting the training resolution and having deterministic out-
puts. Next, to propose a framework to solve these problems,
we introduce a transformer-based diverse Im2Im; however,
the resolution problem remains. Thus, we propose Adjust-
mentNet. Moreover, we propose two novel techniques for

obtaining completion results with improved properties of
360-degree images. Finally, our demonstrations show that,
unlike others, the proposed method can provide designers
with a new workflow for 3DCG creation by efficiently de-
livering an all-surrounding background.

6.1. Limitation

Inference time and computational memory. Our
method takes approximately 30 s for one completion on a
single 2080Ti, mainly because of a transformer. However,
since 3DCG designers, the subject of our work, are likely to
use PCs and servers with high-end GPUs, the performance
of our method may be sufficient for practical use.

Controllability. The proposed method does not control
what is generated in the completion region. One possible
solution is to paste an object that appears directly in the
completion region and complete it so that it is smoothly
connected.

6.2. Potential Impact

This method is helpful for photo-based background rep-
resentations in virtual production. For example, to project
a background on an LED wall, designers occasionally create
a background by compositing images obtained from stock
photo sites instead of using a 3D environment composed
of 3D models. However, it is possible to estimate the sit-
uations in areas the images do not photograph and express
reflections on an inserted object.

Due to the limited number of photos available on
HDRI’s stock photo site, designers often lack originality
as they use the same images. Even a popular website [39]
provides only approximately 490 images, which is very few
compared to our 5000 test results. Our method solves this
problem by generating various new 360-degree HDRIs.

By streaming only the area the user is looking at out of
the 360 degrees, we can reduce the communication capac-
ity of video streaming in virtual reality spaces, such as the
Metaverse. However, when the end-user’s avatar holds a
mirror in its hand, it may not reflect anything. In this case,
our method can render the estimated scene.

Negative impact. Our completion results have room for
improvement compared to real 360-degree images. How-
ever, if the generation results are improved, it could be
a kind of Deepfake. Realistic generation of non-existent
scenes or compositing of fake objects can mislead people.
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