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Abstract
Self-supervised learning aims to learn image feature rep-

resentations without the usage of manually annotated la-
bels. It is often used as a precursor step to obtain useful ini-
tial network weights which contribute to faster convergence
and superior performance of downstream tasks. While self-
supervision allows one to reduce the domain gap between
supervised and unsupervised learning without the usage of
labels, the self-supervised objective still requires a strong
inductive bias to downstream tasks for effective transfer
learning. In this work, we present our material and texture
based self-supervision method named MATTER (MATerial
and TExture Representation Learning), which is inspired
by classical material and texture methods. Material and
texture can effectively describe any surface, including its
tactile properties, color, and specularity. By extension, ef-
fective representation of material and texture can describe
other semantic classes strongly associated with said mate-
rial and texture. MATTER leverages multi-temporal, spa-
tially aligned remote sensing imagery over unchanged re-
gions to learn invariance to illumination and viewing angle
as a mechanism to achieve consistency of material and tex-
ture representation. We show that our self-supervision pre-
training method allows for up to 24.22% and 6.33% per-
formance increase in unsupervised and fine-tuned setups,
and up to 76% faster convergence on change detection, land
cover classification, and semantic segmentation tasks. Code
and dataset: https://github.com/periakiva/
MATTER.

1. Introduction

Automated understanding of remote sensing imagery has
been a long standing goal of the computer vision commu-
nity. Its broad applicability has driven research and de-
velopment in construction phase detection [23], infrastruc-
ture mapping [36, 55, 71, 100], land use monitoring [41],
post natural disaster damage assessment [42, 89, 97], urban
3D reconstruction [39, 57], population migration predic-
tion [19], and climate change tracking [79]. Most of those
methods require some degree of annotation effort, which is
often expensive and/or time consuming. Satellite imagery

is increasingly plentiful and accessible, with hundreds of
satellites collecting images on a daily basis [1, 35, 81, 94].
However, annotating land cover, change, or similar labels
often requires domain knowledge and/or extreme attention
to detail, as labels in remote sensing imagery cover more
numerous and smaller objects seen from unfamiliar view
points. As a result, annotators require more domain exper-
tise compared to standard benchmark datasets such as Pas-
cal VOC [38], COCO [61], or similar.

Recent work in self-supervised learning aims to allevi-
ate the requirement of labeled data by either detecting self-
applied transformations, such as color or rotation change,
or implicit metadata information, such as temporal order or
geographical location. Those objectives are often achieved
using contrastive learning methods [17, 45, 53], in which
the distance between feature representations of original and
transformed images is minimized. More advanced con-
trastive methods use triplet loss [10, 84] or quadruplet loss
[18] which also include negative examples with which the
distance between feature representations is maximized. De-
spite filling a significant need in the remote sensing do-
main, these approaches have been yet to be thoroughly
investigated. Even methods that utilize contrastive ap-
proaches, such as SeCo [68] and the work of Ayush et al.
[4], which learn seasonal change invariance or geographic-
location consistency, still show weaker transfer-ability to
downstream task learning, as demonstrated by inferior per-
formance and convergence speeds shown in Tab. 1, 3.

Instead, we hypothesize that material and texture have
a strong inductive bias to most downstream remote sensing
tasks, with pre-training of surface representation to improve
performance and convergence speeds (measured in epochs)
for those tasks. Consider the task of change detection in re-
mote sensing imagery: when semantic class changes (i.e.,
soil to building, or forest to soil), change can also be ex-
pected in materials and texture, demonstrating the high cor-
relation between material and texture and the change detec-
tion task. We show the effectiveness of our self-supervised
pre-trained features in both raw and fine-tuned forms, ob-
taining state-of-the-art (SOTA) performance in change de-
tection (unsupervised and fine-tuned), land cover segmenta-
tion (fine-tuned), and land cover classification (fine-tuned).
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Here, we propose a novel self-supervised material and
texture representation learning method which is inspired by
classical and modern texton filter banks [58, 87, 113]. Tex-
tons [52, 58, 66] refer to the description of micro-structures
in images often used to describe material and texture con-
sistency [25, 27, 58, 101, 108]. Note that literature has only
loosely defined what material, structures, texture, and sur-
face refer to. Here, we define material as any single or
combination of elements (soil, concrete, vegetation, etc.)
corresponding to some multi-spectral signature, structures
as gradients in intensity, texture as spatial distribution of
structures, and surface as the combination of material and
texture. Note that here we define the physical surface, rather
than the geometric or algebraic surface, as described by
its material and textural properties. By extension, we aim
to jointly describe combinations of materials and textures
in a single objective. For example, within a given image
patch, a mixture of grass and concrete should be repre-
sented differently than patches with grass or concrete sep-
arately. In this example, the grass-concrete mixture may
be associated to both grass and concrete material classes.
To that end, we learn surface representations that describe
the affinity, represented as residuals [48], to all pre-defined
surface classes, represented as clusters. We achieve this by
contrastively learning the similarity between the residuals
of multi-temporal, spatially aligned imagery of unchanged
regions to obtain consistent material and texture represen-
tations, regardless of illumination or viewing angle. This
framework acts as a pre-training stage for downstream re-
mote sensing tasks.

Overall, our contributions are: 1) We present a novel ma-
terial and texture based approach for self-supervised pre-
training to generate features with high inductive bias for
downstream remote sensing tasks. We propose a texture
refinement network to amplify low level features and adapt
residual cluster learning to characterize mixed materials and
texture patches in a self-supervised, contrastive learning
framework. 2) We achieve SOTA performance on unsuper-
vised and supervised change detection, semantic segmen-
tation, and land cover classification using our pre-trained
network. 3) We provide our curated multi-temporal, spa-
tially aligned, and atmospherically corrected remote sens-
ing imagery dataset, collected over unchanged regions used
for self-supervised learning.

2. Related Work
2.1. Downstream Remote Sensing Tasks

The main downstream tasks we investigate in this work
are change detection, land cover segmentation, and land
cover classification. The problem of change detection in
satellite imagery has been thoroughly investigated over time
[12, 13, 15, 24, 49, 77, 78, 83]. Notable examples include
Daudt et al. [29], which predicts change by minimizing

feature differences at every layer of the network from a
given image pair input, and Chen et al. [13], which utilizes
a spatial-temporal attention mechanism to detect anoma-
lies in sequences of images. Land cover segmentation and
classification have also seen a surge in interest, with grow-
ing repositories of annotated datasets [3, 32, 47, 91, 96] and
methods [2,5,44,82,93,96]. H20-Net [2] synthesizes multi-
spectral bands and uses self-sampled points to generate
pseudo-ground truth for flood and permanent water segmen-
tation. VecRoad [93] sets the problem of road segmentation
as iterative graph exploration. Multi3Net [82] learns fusion
of multi-temporal, multi-spectral features from high resolu-
tion imagery to jointly predict pixels of floods and building.

2.2. Self-Supervision
In order to effectively utilize large amounts of unla-

beled data, recent methods have focused on obtaining good
feature representations without explicit annotation efforts.
This is done by deriving information from the data itself
or learning sub-tasks within data instances without chang-
ing the overall objective. The first is often used when high
confidence labels can be obtained and trained on, similar
to [2, 4], where the method infers weak supervision about
input images through provided meta-data or classical meth-
ods. The second, and more common approach, leverages
metric learning objectives to learn generalizable features
for the same data instance or class. Recent methods in-
volve learning invariance to color and geometric transfor-
mations [9,50,70], temporal ordering [6,40], sub-patch rel-
ative location prediction [34], frame interpolation [73], col-
orization [33, 56, 110], patch and background filling [102],
and point cloud reconstruction [105].

More relevant to the remote sensing domain, SeCo [68]
has taken a step toward utilizing the potential in the abun-
dance of satellite imagery by contrastively learning seasonal
invariance as a pre-text self-supervision task. It then fine-
tunes the pre-trained network on downstream tasks such as
change detection and land cover classification. Ayush et
al. [4] also proposes a self-supervised approach enforcing
geographical-location consistency as a pre-training objec-
tive used for downstream tasks such as land-cover segmen-
tation and classification. While both methods show im-
proved results on benchmark datasets when compared to
random weights initialization, we show that their inductive
bias is still significantly weaker than that of our material and
texture consistency based pre-trained weights, which learn
an illumination and viewing angle invariance to achieve
consistency of material and texture representation.

2.3. Material and Texture Identification
Early material and texture recognition methods relied

on hand crafted filter banks, whose combinatorial output
are also referred to as textons [58], to encode statistical
representations of image patches [7, 8, 26, 28, 58, 95, 114].
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Figure 1. (Left) MATTER: anchor, positive, and negative images xa, xp, and xn are densely windowed to P crops which are fed to
encoder E, and correspond to output features za, zp, and zn. Crops are also fed to the Texture Refinement Network (shown in blue) which
amplifies activation of low-level features to increase their impact in deeper layers. The encoder’s output is then fed to the Surface Residual
Encoder to generate patch-wise cumulative residuals, which represents affinity between input data and all learned clusters. A residual
vector between feature output za and cluster υ is denoted as ra,υ . Output learned residuals, cluster weights, and number of clusters are
noted as r, θ, and Υ respectively. (Right) Simplified example of the contrastive objective with Υ = 3. Residuals from learned clusters are
extracted and averaged for all crops as representations of correlation between inputs and all clusters. Best viewed in zoom and color.

Later works investigated the use of clustering and inter-
patch statistics as replacement for pre-defined filter banks
[98, 99], at the cost of defining the feature space it oper-
ates in. Most notable feature spaces include color inten-
sity [14], texture homogeneity [43, 58, 69], multi-resolution
features [74, 88], and feature curvature [63, 86]. More re-
cent, deep learning approaches have translated the problem
of texture representation to focus on explicit identification
of materials through texture encoding [20, 109, 112], dif-
ferential angular imaging [106], 3D surface variation esti-
mation [31], auxiliary tactile property [85], and radiometric
properties estimation such as the bidirectional reflectance
distribution function (BRDF) [11, 62, 103] and the bidirec-
tional texture function (BTF) [104]. Those methods seek
to learn low-level features that are key to material classi-
fication and segmentation. Some methods choose to add
skip connections [60, 107, 115] to supply low-level features
in deep layers, and others choose explicit concatenation of
texture related information [59, 85]. Many of these ele-
ments are meant to reduce the receptive field or increase
impact of low-level features of the network while keeping
it sufficiently deep. FV-CNN [22] aims to generate tex-
ture descriptions of densely sampled windows. Since the
features describe regions removed from global spatial in-
formation, it explicitly constrains the receptive field of the
network to the size of the window. DeepTEN [109] learns
residual representations of material images in an end-to-end
pipeline using material labels. Our approach combines el-
ements from FV-CNN and DeepTEN in two ways. First,
we densely sample windows and refine low level features
as receptive field constraints. Then, we contrastively learn
implicit surface residual representations without the usage
of material labels or auxiliary information. To our knowl-
edge, we are the first to employ self-supervised material and
texture based objectives for pre-training steps.

3. Methodology

The goal of MATerial and TExture Representation
Learning (MATTER) is to learn a feature extractor that gen-
erates illumination and viewing angle invariant material and
texture representations from given multi-temporal satellite
imagery sampled over unchanged regions. To this end, to
train our model, we utilize our self-collected dataset de-
scribed in Sec. 4.1, which samples multi-temporal imagery
of rural and remote regions, in which little to no change
is assumed between every consecutive pair of sampled im-
ages. See Fig. 2 for an overview of our approach.

Given an anchor reference image xa ∈ RB×H×W sam-
pled over an unchanged region, we obtain a positive, tem-
porally succeeding image xp ∈ RB×H×W over the same
region, and a negative image xn ∈ RB×H×W sampled over
a different region. B, H , and W correspond to number of
channel bands, height, and width of input images. We tile
all images into P equally sized, corresponding patches of
size h × w, with spatially aligned reference and positive
patches, ca and cp, and negative patches, cn, randomly sam-
pled from regions other than the reference region. The us-
age of densely sampled crops aims to restrict the receptive
field by removing features from the global spatial context,
and to prevent the model from learning higher level features
ineffective in describing surfaces. We study the effects of
receptive field variation in Sec. 5.1.

To learn material and texture centric features, we present
the Texture Refinement Network (TeRN) (Sec. 3.1), and
patch-wise Surface Residual Encoder (Sec. 3.2). TeRN
aims to amplify the activation of lower level features es-
sential for texture representation (as seen in Fig. 3), and
Surface Residual Encoder is our patch-wise adaptation of
Deep-TEN [109] to learn surface-based residual represen-
tations. We train our network to minimize the feature dis-

8205



Cosine 
Similarity

…

Texture Refinement Network

TeRN Integration

Figure 2. Texture Refinement Network (TeRN) assigns convo-
lution weights based on the cosine similarity of the kernel’s center
pixel and its neighbors, divided by the standard deviation of that
kernel. We then convolve features z(1) to refine low-level features
essential for texture and material centric learning. The symbols ⊛
and ⊙ correspond to convolution and element-wise multiplication
operations. Best viewed in zoom.

tance of positive patch pairs, ca and cp, and maximize the
feature distance of negative patch pairs, ca and cn, where
the features are the learned residual representations. For our
learning objective, we use the Noise Contrastive Estimation
loss [75]:

LNCE = −EC

[
log

exp(f(ca) · f(cp))∑
cj∈C

exp(f(ca) · f(cj))

]
, (1)

where f(cj) is the output features of input patch cj , and C
is the set of positive and negative patches.

3.1. Texture Refinement Network

Capturing texture details is difficult in low resolution im-
ages, and is especially challenging when considering satel-
lite images that have low contrast. As a result, texture
will be less visible and have less impact on the final ex-
tracted features. We address this challenge by using our
Texture Refinement Network (TeRN) to refine lower level
texture features to increase their impact in deeper layers.
TeRN utilizes the recently introduced pixel adaptive convo-
lution layer [90], in which the convolution kernel weights
are a function of the features locally confined by the ker-
nel. Here, our kernel considers the corresponding local pix-
els in the original image as follows: given kernel ki,j cen-
tered at location (i, j), we calculate the cosine similarity
between pixel xi,j and all of its neighboring pixels N (i, j).
We note that while this can be achieved with any similarity
metric, we observe that orientation based functions (such
as cosine similarity) produce better results than magnitude
based functions (such as Euclidean distance). The output

Input Image Raw Features Refined Features

Figure 3. Qualitative results of our Texture Refinement Network
(TeRN). It can be seen that similar textured pixels obtain similar
feature activation intensity in the refined output. Notice how the
building in the second row obtains similar activation throughout
the concrete building pixel locations compared to the raw features
output. Best viewed in zoom and color.

matrix is then divided by the squared standard deviation of
all pixels within N (i, j), noted as σN (i,j).

ki,j = − 1

σ2
N (i,j)

xi,j · xp,q

||xi,j ||2 · ||xp,q||2
, ∀ p, q ∈ N (i, j). (2)

The output matrix of those operations describes both the
similarity of the center pixel to its surroundings, and the in-
tensity gradients within the kernel. As previously defined,
texture is the spatial distribution of structures, which are
represented as intensity gradients. Since we want to em-
phasize texture, we explicitly polarize the feature activation
in regions with high variance or low similarity, with ker-
nel weights decreasing with high variance and/or low co-
sine similarity. When convolved over our low level features,
it highlights edges, and encourages representation consis-
tency for pixels with similar material signatures, as seen in
figure 3. The described operation constitutes a single ker-
nel location of a single refinement layer. We define a single
refinement layer, K, when the operation is repeated for all
image locations. We construct an L-layer refinement net-
work, where each layer is able to utilize different kernel
sizes, dilations, and strides. Since the network has deter-
ministicly defined weights, it does not have learned param-
eters. A base TeRN kernel, and its integration in the overall
network, are visually depicted in Fig. 2, and sample refined
features in Fig. 3.

3.2. Learning Consistency of Surface Residuals

The task of residual encoding is tightly related to classi-
cal k-means clustering [64] and bag-of-words [51], in which
some hard cluster assignment is learned based on the data
instance proximity to cluster centers. Given the cluster cen-
ters, the residual is calculated as the distance of any data
instance from its corresponding cluster center. In practice,
we can use the residual to measure how similar a given data
instance is to its assigned cluster, and all other clusters. Our
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method adapts the work presented in Deep-TEN [109] to
learn patch-wise residual encodings without explicit hand-
crafted clustering through a differentiable pipeline. Tradi-
tionally, in Deep-TEN [109] and other classical and deep
clustering methods [9,17,21,45,65], the objective is to clus-
ter image-wise inputs to corresponding class-wise cluster
centers. In contrast, as we employ a patch-wise approach.
A given patch containing some material and texture may
be associated with multiple clusters (i.e. if a patch captures
multiple material elements), so it requires a soft representa-
tion depicting an affinity to all learned clusters, and not only
to its closest cluster.

Consequently, we learn residuals of small patches and
enforce multi-temporal consistency between correspond-
ing patch residuals, imposing similarity of cluster affinity.
Given an output feature vector z1×D

i for some crop ci, and
a set of Υ learned cluster centers Q = {q0, q2, ..., qΥ−1},
each of shape 1×D, we can find the residual corresponding
to the feature vector zi and learned cluster center qυ using
r1×D
i,υ = zi − qυ . We repeat this for all cluster centers and

take the weighted average of residuals from each cluster to
obtain the cumulative residual vector,

ri =
1

Υ

Υ−1∑
υ=0

θi,υri,υ, (3)

with learned cluster weight θυ . By combining the residu-
als of a given crop, we represent its affinity with all learned
clusters. When maximizing or minimizing similarity be-
tween residuals, we effectively enforce a consistent cluster
affinity between input crops.

4. Experiments
4.1. Self-Supervised Pre-Training
Pre-Training Dataset. To train our self-supervised task,
we collect a large amount of freely available, orthorecti-
fied, atmospherically corrected Sentinel-2 imagery of re-
gions with limited human development. Regions of interest
were manually selected to cover a variety of climates. Given
spatial and temporal ranges, we use the PyStac library [37]
to fetch imagery from the AWS Sentinel-2 catalog closest to
our points of interest. Imagery within the spatial-temporal
constraints containing over 20% cloud cover and less than
80% data coverage were removed. A maximum of 100 im-
ages meeting these constraints were collected per region.
The collected images were divided into 14,857, 1096×1096
px2 sized tiles for training. The resultant dataset contains 27
regions of interest spanning 1217 km2 over three years. We
provide all points of interest (Lat., Long.) in the supplemen-
tary material, and will release the dataset upon publication.

Implementation Details. We adopt a standard ResNet-
34 backbone, with TeRN inserted after the first layer, and
the Surface Residual Encoder as the output layer. TeRN is
constructed with 10 blocks, each containing three layers of

Dataset OSCD [30]

Method Sup. Precision (%) Recall (%) F-1 (%)

Full Supervision

U-Net [80] (random) F 70.53 19.17 29.44
U-Net [80] (ImageNet) F 70.42 25.12 36.20
MoCo-v2 [45] S + F 64.49 30.94 40.71
SeCo [68] S + F 65.47 38.06 46.94
DeepLab-v3 [16] (ImageNet) F 51.63 51.06 53.04
Ours (fine-tuned) S + F 61.80 57.13 59.37

Self-Supervision only

VCA [67] S 9.92 20.77 13.43
MoCo-v2 [45] S 29.21 11.92 16.93
SeCo [68] S 74.70 15.20 25.26
Ours S 37.52 72.65 49.48

Table 1. Precision, recall, and F-1 (%) accuracies (higher is bet-
ter) of the ”change” class on Onera Satellite Change Detection
(OSCD) dataset validation set [30]. F , and S represent full and
self-supervision respectively. S + F refer to self-supervised pre-
training followed by fully supervised fine-tuning. Random and
ImageNet denote the type of backbone weight initialization that
method uses.

kernel size 3 × 3 and dilations of 1-1-2. For the Surface
Residual Encoder, we use Υ = 64. We use training patch
size of 7 × 7, batch size of 32, learning rate of 0.01, mo-
mentum of 0.6, and weight decay of 0.001 for training. For
the Noise Contrastive Estimation loss, we use a temperature
scaling of 0.05. We pre-train the network for 110,000 iter-
ations or until convergence. Note that the self-supervised
baselines SeCo [68] and Ayush et al. [4] use 1 million and
543,435 images respectively for pre-training, while we use
only 14,857 images.
4.2. Change Detection
Implementation Details. This task is evaluated on the
Onera Satellite Change Detection (OSCD) dataset [30], and
performed in two ways: self-supervised, and supervised
fine-tuning. The self-supervised approach utilizes only the
pre-trained backbone to extract patch-wise residual features
from both images, with each 9×9 patch representing its cen-
ter pixel. We calculate the euclidean distance as a change
metric between corresponding residual features, which are
thresholded using Otsu thresholding [76] to predict change
pixels when residual distance is large. For the fine-tuned
approach, we use image-wise inputs to a DeepLab-v3 [16]
with skip-connections network with our pre-trained back-
bone, fine-tuning the decoder for 30 epochs while freezing
the backbone’s weights. We use channel-wise concatena-
tions of image pairs as input to the network, with the output
features optimized using the cross entropy loss and ground
truth change masks. For evaluation, we report precision, re-
call, and F-1 score of the “change” class in Tab. 1. We use
batch-size of 32, learning rate of 0.001, momentum of 0.6,
and weight decay of 0.001. For the self-supervised base-
line methods, we use the publicly available model weights
and follow the same previously described self-supervised
change prediction pipeline. The fully-supervised baselines
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Dataset BigEarthNet [91]

Method Sup. Fine-Tune Epochs mAP (%)

Inception-v2 [92] F - 48.23
InDomain [72] S + F 90 69.70
S-CNN [91] F - 69.93
ResNet-50 [46] (random) F - 78.98
ResNet-50 [46] (ImageNet) F - 86.74
MoCo-v2 [45] S + F 100 86.05
SeCo [68] S + F 100 87.81
Ours (fine-tuned) S + F 24 87.98

Table 2. Mean average precision accuracy (higher is better) on
BigEarthNet land cover multi-label classification dataset valida-
tion set [91]. F , and S represent full and self-supervision respec-
tively. S + F refer to self-supervised pre-training followed by
fully supervised fine-tuning.

follow the same steps as our fine-tuned approach, without
the pre-trained weight initialization.

Results Discussion. In Tab. 1 and Fig. 6 we compare
our method to SOTA baselines for both self-supervised and
fine-tuned approaches. We present common semantic seg-
mentation networks initialized with weights that are ran-
dom, or pre-trained with ImageNet [54], MoCo-v2 [45], and
SeCo [68]. We hypothesized that change in material and
texture corresponds to actual change in the scene. Hence by
learning good material and texture representation and com-
paring representations of image pairs, we can reliably locate
regions of change. As evident by Tab. 1, our self-supervised
approach learns sufficiently good material and texture rep-
resentation to outperform other fine-tuned methods, sur-
passing self-supervised SeCo by 24.22%, and fine-tuned
SeCo by 2.08%. When considering our fine-tuned method,
we outperform our baselines even further, with 12.43% per-
formance increase compared to our self-supervision based
baseline, and 6.33% performance increase compared to the
fully supervised baseline. Additionally, we show that the
inductive bias of material and texture representation to the
task of change detection is significant as evidenced by the
quicker convergence speed (measured in epochs), with our
method converging within only 30 epochs, compared to 100
epochs reported by SeCo.

4.3. Land Cover Classification
Implementation Details. We evaluate our pre-trained
backbone on the BigEarthNet [91] dataset for the task of
multi-label land cover classification. The dataset provides
590,326 multi-spectral images of size 120× 120 annotated
with multiple land-cover labels, split into train and valida-
tion sets (95%/5%). We fine-tune a classifier head added
to our frozen pre-trained backbone network for 24 epochs
using given ground truth labels. We use SGD optimizer,
batch-size of 128, learning rate of 0.0005, momentum of
0.6, and weight decay of 0.001. For performance, we report
the mean average precision of all classes (19).

Dataset SpaceNet [96]

Method Sup. Fine-Tune Epochs mIoU (%)

DeepLab-v3 [16] (random) F - 69.44
DeepLab-v3 [16] (ImageNet) F - 72.22
MoCo-v2 [45] S + F 100 78.05
Ayush et al. [4] S + F 100 78.51
Ours (fine-tuned) S + F 24 81.12

Table 3. Mean intersection over union (higher is better) on
SpaceNet building segmentation dataset validation set [96]. F ,
and S represent full and self-supervision respectively. S + F
refer to self-supervised pre-training followed by fully supervised
fine-tuning. Random and ImageNet denote the type of backbone
weight initialization that method uses.

Image Ground Truth DeepLab [16] Ours (S + F)
Figure 4. Qualitative results of our method on SpaceNet dataset
[96]. Cyan, magenta, gray, and red colors represent true positive,
false positive, true negative, and false negative respectively. Best
viewed in zoom and color.

Results Discussion. Tab. 2 reports the mean average
precision performance of baseline and our methods af-
ter fine-tuning. While our method only outperforms our
baseline by 0.18%, we note that our method converges
within 24 epochs, which is significantly faster than our best-
performing baseline which reports convergence within 100
epochs.

4.4. Semantic Segmentation
Implementation Details. We use the SpaceNet building
segmentation dataset for this task. The dataset provides
10,593 multi-spectral images of size 163 × 163 labeled
with pixel-wise building/no-building masks, split into train
and validation sets (90%/10%). We use a DeepLab-v3 [16]
with skip-connections network with our frozen pre-trained
backbone and fine-tune it for 24 epochs with batch-size of
32, learning rate of 0.0085, momentum of 0.6, and weight
decay of 0.001. We report mean intersection over union
(mIoU) of the best performing epoch in Tab. 3. The fully-
supervised baselines follow the same steps as our fine-tuned
approach, without the pre-trained weight initialization.
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Results Discussion. Tab. 3 and Fig 4 compare the quan-
titative and qualitative results of baselines and our method.
For our baselines, we report Ayush et al. [4] and MoCo-v2
[45], which use PSANet [111] with backbones pre-trained
on geography consistency objective. We also report the per-
formance of DeepLab-v3 initialized with random and Ima-
geNet [54] pre-trained weights. As shown in Tab. 3, our
method requires significantly less epochs to obtain supe-
rior performance on the SpaceNet building segmentation
dataset. We outperform our self-supervised based baseline
by 2.61%, and fully supervised based baseline by 8.90%,
with 76% convergence speed reduction.

5. Results
Evident by our qualitative and quantitative results, our

method provides both superior performance and conver-
gence time (measured in epochs) for the evaluated down-
stream tasks. It is shown that material and texture are
strongly associated with common remote sensing down-
stream tasks, and the ability to represent material and
texture effectively improves performances on those tasks.
Since quantitatively measuring the ability to represent ma-
terial without material labels is difficult, we analyze and
showcase qualitative texture and material results in the form
of visual word maps (pixel-wise cluster assignments). We
also discuss limitations, running time, pseudo-code, and ad-
ditional qualitative results in the supplementary material.

Visual Word Maps Generation. In order to measure the
effectiveness of our approach to describe materials and tex-
tures, we qualitatively evaluate the visual word maps (pixel-
wise cluster assignments) generated by our method. Ideally,
we expect similar material and textures to be mapped to the
same clusters, without over or under grouping of pixels. We
visually compare classical textons, a patch-wise backbone,
and our method in Fig. 5. The patch-wise backbone has
the same base architecture as MATTER, but without TeRN
and surface residual encoding modules. Both methods were
trained on the same dataset, with the same hyperparameters,
and number of iterations, as described in Sec. 4.1. It can be
seen that the textons and patch-wise backbone approaches
generate two extreme cases of over-sensitivity and under-
sensitivity to changes in material and texture. Since textons
operate on raw intensity values, the inter-material variance
is small, making it highly sensitive to small texture changes.
This can be seen in the textons-generated visual word map,
in which small irregularities on the road results in mapping
to different visual words. On the other hand, the patch-wise
backbone, even with the receptive field constraints through
patched inputs, still loses crucial low-level details essential
for texture representation. This is indicated by the group-
ing of obviously different textures to a single visual word.
In contrast, as demonstrated in Fig. 5, our Texture Refine-
ment Network and Surface Residual Encoder boost the im-

Image Textons Patch-wise
Backbone

Ours

Figure 5. Qualitative evaluation of our generated material
and texture based visual word maps. It can be seen that our
method provides more descriptive surface-based features that are
not highly sensitive to small texture irregularities like textons, or
under-sensitive to structure changes like the patch-wise backbone.
Best viewed in zoom and color. Colors are random.

Inference Crop Size

Tr
ai

n
C

ro
p

Si
ze

- 7 9 11 13 15 17 19 21
5 46.68 47.38 46.94 46.94 45.74 44.51 43.74 42.95
7 48.52 49.48 49.01 49.02 47.76 46.64 45.92 44.69
9 48.58 47.60 48.02 47.83 46.51 45.57 45.45 43.27

11 48.98 47.83 47.32 46.65 45.64 44.51 44.16 42.45
13 47.46 47.14 46.35 46.99 44.65 43.79 43.09 41.61
15 47.63 47.15 47.30 46.10 45.55 44.68 44.10 41.85
17 46.74 46.81 46.49 45.92 44.69 43.60 43.19 41.09

Table 4. Receptive Field Constraint Analysis. F-1 score (%) per-
formance for the unsupervised change detection task. Reported
values are of the “change” class with respect to training and in-
ference crop sizes (without fine-tuning). It can be seen that the
method benefits from smaller receptive field, achieving superior
performance when using smaller train and inference crop sizes.

pact of low-level features, generating surface-based visual
word maps. Our method is able to retain texture-essential
features, and generalize surface representation which trans-
lates to superior surface-based visual word maps.

5.1. Ablation Study
Constraining Receptive Field. In Tab. 4 we study the ef-
fects of varying receptive field constraints on our method.
As mentioned before, as the receptive field increases, the
impact of low-level features diminishes, along with the
quality of material and texture representation. Unlike tra-
ditional methods, which resort to the usage of smaller net-
works to reduce receptive field, we explicitly constrain the
method by feeding crops to the network, removing them
from any global context. Recall that the objective of our
method is to learn representation of material and spatial dis-
tribution of micro-structures, which are largely affected by
low level features which are diminished in larger receptive
field methods. In practice, the largest possible receptive
field of our network during training is 7 × 7 = 49 pix-
els, which is significantly smaller than the receptive fields
of ResNet-50, and ResNet-101, and ResNet-152 with sizes
of 483, 1027, and 1507 pixels respectively. It can be seen in
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Image 1 Image 2 Ground Truth DeepLab [16] Difference of
Residuals

Ours (S) Ours (S + F)

Figure 6. Qualitative results of our method on Onera Satellite Change Detection (OSCD) dataset [30]. It can be seen that our self-
supervised alone is capable of detecting change only by inferring on the change of material and texture. The fine-tuned model is able
to utilize the pre-trained material and texture based weights and achieve significantly better results than models with ImageNet weight
initialization. Cyan, magenta, gray, and red colors represent true positive, false positive, true negative, and false negative respectively. Best
viewed in zoom and color.

Tab. 4 that in fact, the method benefits from removal from
global spatial context and smaller receptive fields, helping
it learn better representation for material and texture and
achieve better performance on the unsupervised change de-
tection task. Our best results are achieved with train crop
size of 7× 7, and inference crop size of 9× 9, while worst
performance is achieved with largest training and inference
receptive fields.
Impact of Modules. In Tab. 5 we study the impact of
each module in our proposed method. We evaluate per-
formance of the self-supervised change detection task (F-1
score of “change” class) as an ablation metric since it has
strong transferability to material and texture representation
learning. We consider all possible network combinations
with patch-wise backbone, TeRN, and Surface Residual en-
coder. The patch-wise backbone corresponds to the network
fed by patch-wise inputs, without TeRN or Surface Residual
encoder. We then selectively add TeRN and Surface Resid-
ual Encoder to the network and record its performance. Ev-
ery network combination was trained and evaluated with the
same hyperparameters and procedure described in Sec. 4.1
and 4.2. It can be seen that each module provides incre-
mental performance boost, with best performance achieved
when both modules are implemented in the network.

6. Conclusion
In this work, we present MATTER, a novel self-

supervised method that learns material and texture based
representation for multi-temporal, spatially aligned satel-
lite imagery. By utilizing patch-wise inputs and our refine-

Patch-wise Backbone Texture Refinement Surface Residual F-1 Score (%)

✓ 37.42
✓ ✓ 41.84
✓ ✓ 43.23
✓ ✓ ✓ 49.48

Table 5. Ablation study. F-1 score of the “change” class of the
Onera Satellite Change Detection dataset using the self-supervised
approach with respect to modules used.

ment network, we constrain the receptive field and enhance
texture-essential features. Those are then mapped to resid-
uals of learned clusters as an affinity measurement, which
represents the material and texture composition of the sam-
pled patch. Through our self-supervision pipeline, MAT-
TER learns discriminative features for various material and
texture surfaces, which are shown to have strong correla-
tion to change (change of surface infers actual change), or
can be used as pre-trained weights for other remote sensing
tasks.
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