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Abstract
The inversion of real images into StyleGAN’s latent

space is a well-studied problem. Nevertheless, applying ex-
isting approaches to real-world scenarios remains an open
challenge, due to an inherent trade-off between reconstruc-
tion and editability: latent space regions which can accu-
rately represent real images typically suffer from degraded
semantic control. Recent work proposes to mitigate this
trade-off by fine-tuning the generator to add the target im-
age to well-behaved, editable regions of the latent space.
While promising, this fine-tuning scheme is impractical for
prevalent use as it requires a lengthy training phase for each
new image. In this work, we introduce this approach into the
realm of encoder-based inversion. We propose HyperStyle,
a hypernetwork that learns to modulate StyleGAN’s weights
to faithfully express a given image in editable regions of
the latent space. A naive modulation approach would re-
quire training a hypernetwork with over three billion pa-
rameters. Through careful network design, we reduce this
to be in line with existing encoders. HyperStyle yields
reconstructions comparable to those of optimization tech-
niques with the near real-time inference capabilities of en-
coders. Lastly, we demonstrate HyperStyle’s effectiveness
on several applications beyond the inversion task, includ-
ing the editing of out-of-domain images which were never
seen during training. Code is available on our project page:
https://yuval-alaluf.github.io/hyperstyle/.

1. Introduction
Generative Adversarial Networks (GANs) [20], and in

particular StyleGAN [32–35] have become the gold stan-
dard for image synthesis. Thanks to their semantically rich
latent representations, many works have utilized these mod-
els to facilitate diverse and expressive editing through latent
space manipulations [4, 6, 9, 12, 24, 38, 44, 48, 56]. Yet, a
significant challenge in adopting these approaches for real-
world applications is the ability to edit real images. For
editing a real photo, one must first find its corresponding
latent representation via a process commonly referred to as
GAN inversion [74]. While the inversion process is a well-
studied problem, it remains an open challenge.

Recent works [2, 61, 73, 75] have demonstrated the ex-
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Figure 1. Given a desired input image, our hypernetworks learn
to modulate a pre-trained StyleGAN network to achieve accurate
image reconstructions in editable regions of the latent space. Do-
ing so enables one to effectively apply techniques such as Style-
CLIP [48] and InterFaceGAN [56] for editing real images.

istence of a distortion-editability trade-off: one may invert
an image into well-behaved [75] regions of StyleGAN’s la-
tent space and attain good editability. However, these re-
gions are typically less expressive, resulting in reconstruc-
tions that are less faithful to the original image. Recently,
Roich et al. [54] showed that one may side-step this trade-
off by considering a different approach to inversion. Rather
than searching for a latent code that most accurately recon-
structs the input image, they fine-tune the generator in order
to insert a target identity into well-behaved regions of the
latent space. In doing so, they demonstrate state-of-the-art
reconstructions while retaining a high level of editability.
Yet, this approach relies on a costly per-image optimization
of the generator, requiring up to a minute per image.

A similar time-accuracy trade-off can be observed in
classical inversion approaches. On one end of the spec-
trum, latent vector optimization approaches [1,2,14,35,40]
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achieve impressive reconstructions, but are impractical at
scale, requiring several minutes per image. On the other
end, encoder-based approaches leverage rich datasets to
learn a mapping from images to their latent representations.
These approaches operate in a fraction of a second but are
typically less faithful in their reconstructions.

In this work, we aim to bring the generator-tuning tech-
nique of Roich et al. [54] to the realm of interactive applica-
tions by adapting it to an encoder-based approach. We do so
by introducing a hypernetwork [23] that learns to refine the
generator weights with respect to a given input image. The
hypernetwork is composed of a lightweight feature extrac-
tor (e.g., ResNet [25]) and a set of refinement blocks, one
for each of StyleGAN’s convolutional layers. Each refine-
ment block is tasked with predicting offsets for the weights
of the convolutional filters of its corresponding layer. A ma-
jor challenge in designing such a network is the number of
parameters comprising each convolutional block that must
be refined. Naı̈vely predicting an offset for each param-
eter would require a hypernetwork with over three billion
parameters. We explore several avenues for reducing this
complexity: sharing offsets between parameters, sharing
network weights between different hypernetwork layers,
and an approach inspired by depthwise-convolutions [26].
Lastly, we observe that reconstructions can be further im-
proved through an iterative refinement scheme [5] which
gradually predicts the desired offsets over a small number
of forward passes through the hypernetwork. By doing so,
our approach, HyperStyle, essentially learns to “optimize”
the generator in an efficient manner.

The relation between HyperStyle and existing generator-
tuning approaches can be viewed as similar to the relation
between encoders and optimization inversion schemes. Just
as encoders find a desired latent code via a learned network,
our hypernetwork efficiently finds a desired generator with
no image-specific optimization.

We demonstrate that HyperStyle achieves a significant
improvement over current encoders. Our reconstructions
even rival those of optimization schemes, while being sev-
eral orders of magnitude faster. We additionally show that
HyperStyle preserves the appealing structure and semantics
of the original latent space, allowing one to leverage off-
the-shelf editing techniques on the resulting inversions, see
Fig. 1. Finally, we show that HyperStyle generalizes well
to out-of-domain images, such as paintings and animations,
even when unobserved during the training of the hypernet-
work itself. This hints that the hypernetwork does not only
learn to correct specific flawed attributes, but rather learns
to refine the generator in a more general sense.

2. Background and Related Work
Hypernetworks Introduced by Ha et al. [23], hyper-
networks are neural networks tasked with predicting the

weights of a primary network. By training a hypernet-
work over a large data collection, the primary network’s
weights are adjusted with respect to specific inputs, yield-
ing a more expressive model. Hypernetworks have been
applied to a wide range of applications including semantic
segmentation [45], 3D modeling [41, 58], neural architec-
ture search [71], and continual learning [62], among others.

Latent Space Manipulation A widely explored applica-
tion for generative models is their use for the editing of
real images. Considerable effort has gone into leverag-
ing StyleGAN [34, 35] for such tasks, owing to its highly-
disentangled latent spaces. Many methods have been pro-
posed for finding semantic latent directions using varying
levels of supervision. These range from full-supervision in
the form of semantic labels [3, 16, 19, 56] and facial pri-
ors [59,60] to unsupervised approaches [24,57,63,64]. Oth-
ers have explored self-supervised approaches [?,?], the mix-
ing of latent codes to produce local edits [11, 13, 29], and
the use of contrastive language-image (CLIP) models [52]
to achieve new editing capabilities [18, 48, 69]. Applying
these methods to real images requires one to first perform
an accurate inversion of the given image.

GAN Inversion GAN inversion [74] is the process of ob-
taining a latent code that can be passed to the generator to
reconstruct a given image. Generally, inversion methods
either directly optimize the latent vector to minimize the er-
ror for a given image [1, 2, 7, 14, 21, 40, 70, 74, 75], train
an encoder over a large number of samples to learn a map-
ping from an image to its latent representation [5,22,22,30,
36, 43, 49, 50, 53, 61, 65], or use a hybrid approach combin-
ing both [73,74]. Among encoder-based methods, Alaluf et
al. [5] iteratively refine the predicted latent code through a
small number of forward passes through the network. Our
work adopts this idea and applies it to the generator weight
offsets predicted by the hypernetwork. Finally, in a concur-
rent work, Dinh et al. [17] also explore the use of hypernet-
works for achieving higher fidelity inversions.

Distortion-Editability Typically, latent traversal and in-
version methods concern themselves with one of two
spaces: W , obtained via StyleGAN’s mapping network and
W+, where each layer of the generator is assigned a dif-
ferent latent code wi ∈ W . Images inverted into W show
a high degree of editability: they can be modified through
latent space traversal with minimal corruption. However,
W offers poor expressiveness, limiting the range of images
that can be faithfully reconstructed. Therefore, many prior
works invert into the extended W+ space, achieving re-
duced distortion at the cost of inferior editability. Tov et
al. [61] suggest balancing the two by designing an encoder
that predicts codes inW+ residing close toW . Others have
explored similar ideas for optimization [75].
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Figure 2. The HyperStyle scheme. Given an image x, we begin with an initial, approximate latent code ŵinit ∈ W with a corresponding
reconstruction ŷinit = G(ŵinit; θ) obtained using a pre-trained generator G with weights θ. Given inputs x and ŷinit, our hypernetwork
H predicts a set of offsets ∆` used to modulate G’s weights at various input layers `. This results in a modified generator G parameterized
by new weights θ̂, shown in blue. To predict the desired offsets for the given image, we incorporate multiple Refinement Blocks, one for
each generator layer we wish to modify. The final reconstruction ŷ = G(ŵinit; θ̂) is then synthesized using the modified generator.

Generator Tuning To leverage the visual quality of a pre-
trained generator, most works avoid altering the generator
weights when performing the inversion. Nonetheless, some
works have explored performing a per-image tuning of the
generator to obtain more accurate inversions. Pan et al. [47]
invert BigGAN [8] by randomly sampling noise vectors, se-
lecting the one that best matches the real image, and op-
timizing it simultaneously with the generator weights in a
progressive manner. Roich et al. [54] and Hussien et al. [28]
invert images into a pre-trained GAN by first recovering a
latent code which approximately reconstructs the target im-
age and then fine-tuning the generator weights for improve
image-specific details. Bau et al. [7] explored the use of
a neural network to predict feature modulations to improve
GAN inversion. However, the aforementioned works re-
quire a lengthy optimization for every input, typically re-
quiring minutes per image. As such, these methods are of-
ten inapplicable to real-world scenarios at scale. In contrast,
we train a hypernetwork over a large set of images, result-
ing in a single network used to refine the generator for any
given image. Importantly, this is achieved in near real-time
and is more suitable for interactive settings.

3. Method
3.1. Preliminaries

When solving the GAN inversion task, our goal is to
identify a latent code that minimizes the reconstruction dis-
tortion with respect to a given target image x:

ŵ = arg min
w

L (x,G (w; θ)) , (1)

where G(w; θ) is the image produced by a pre-trained gen-
erator G parameterized by weights θ, over the latent w. L
is the loss objective, usually L2 or LPIPS [72]. Solving
Eq. (1) via optimization typically requires several minutes
per image. To reduce inference times, an encoder E can be

trained over a large set of images {xi}Ni=1 to minimize:
N∑
i=1

L
(
xi, G

(
E
(
xi
)

; θ
))
. (2)

This results in a fast inference procedure ŵ = E(x). A
latent manipulation f can then be applied over the inverted
code ŵ to obtain an edited image G(f(ŵ); θ).

Recently, Roich et al. [54] propose injecting new iden-
tities into the well-behaved regions of StyleGAN’s latent
space. Given a target image, they use an optimization pro-
cess to find an initial latent ŵinit ∈ W leading to an ap-
proximate reconstruction. This is followed by a fine-tuning
session where the generator weights are adjusted so that the
same latent better reconstructs the specific image:

θ̂ = arg min
θ

L(x,G(ŵinit; θ)), (3)

where θ̂ represents the new generator weights. The final
reconstruction is obtained by utilizing the initial inversion
and altered weights: ŷ = G(ŵinit; θ̂).

3.2. Overview

Our method HyperStyle aims to perform the identity-
injection operation by efficiently providing modified
weights for the generator, as illustrated in Fig. 2. We begin
with an image x, a generatorG parameterized by weights θ,
and an initial inverted latent code ŵinit ∈ W . Using these
weights and ŵinit, we generate the initial reconstructed im-
age ŷinit = G(ŵinit; θ). To obtain such a latent code we
employ an off-the-shelf encoder [61].

Our goal is to predict a new set of weights θ̂ that min-
imizes the objective defined in Eq. (3). To this end, we
present our hypernetwork H , tasked with predicting these
weights. To assist the hypernetwork in inferring the de-
sired modifications, we pass as input both the target image
x and the initial, approximate image reconstruction ŷinit.
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The predicted weights are thus given by: θ̂ = H (ŷinit, x).
We train H over a large collection of images with the goal
of minimizing the distortion of the reconstructions:

N∑
i=1

L
(
xi, G

(
ŵiinit;H

(
ŷiinit, x

i
)))

. (4)

Given the hypernetwork predictions, the final reconstruc-
tion can be obtained as ŷ = G(ŵinit; θ̂).

Owing to the reconstruction-editability trade-off out-
lined in Sec. 2, the initial latent code should reside within
the well-behaved (i.e., editable) regions of StyleGAN’s la-
tent space. To this end, we employ a pre-trained e4e en-
coder [61] intoW that is kept fixed throughout the training
of the hypernetwork. As shall be shown, by tuning around
such a code, one can apply the same editing techniques as
used with the original generator.

In practice, rather than directly predicting the new gen-
erator weights, our hypernetwork predicts a set of offsets
with respect to the original weights. In addition, we follow
ReStyle [5] and perform a small number of passes (e.g., 5)
through the hypernetwork to gradually refine the predicted
weight offsets, resulting in higher-fidelity inversions.

In a sense, one may view HyperStyle as learning to op-
timize the generator, but doing so in an efficient manner.
Moreover, by learning to modify the generator, HyperStyle
is given more freedom to determine how to best project an
image into the generator, even when out of domain. This
is in contrast to standard encoders which are restricted to
encoding into existing latent spaces.

3.3. Designing the HyperNetwork

The StyleGAN generator contains approximately 30M
parameters. On one hand, we wish our hypernetworks to be
expressive, allowing us to control these parameters for en-
hancing the reconstruction. On the other hand, control over
too many parameters would result in an inapplicable net-
work requiring significant resources for training. Therefore,
the design of the hypernetwork is challenging, requiring a
delicate balance between expressive power and the number
of trainable parameters involved.

We denote the weights of the `-th convolutional layer of
StyleGAN by θ` = {θi,j` }

Cout
` ,Cin

`
i,j=0 where θi,j` denotes the

weights of the j-th channel in the i-th filter. Here, Cout` rep-
resents the total number of filters, each with Cin` channels.
Let M be the total number of layers. The generator weights
are then denoted as {θ`}M`=1. Our hypernetwork produces
offsets ∆` for each modified layer `. These offsets are then
multiplied by the corresponding layer weights θ` and added
to the original weights in a channel-wise fashion:

θ̂i,j` := θi,j` · (1 + ∆i,j
` ), (5)

where ∆i,j
` is the scalar applied to the j-th channel of the i-

th filter. Learning an offset per channel reduces the number

HyperStyle Trainable Parameters
Delta-Per Channel Shared Refinement Number of Parameters

3.07B
3 1.40B

3 367M
3 3 332M

pSp [53] / e4e [61]: 267M ReStyle [4]: 205M

Table 1. Our final hypernetwork configuration, consisting of an
offset predicted per channel and Shared Refinement blocks re-
duces the number of parameters by 89% compared to a naı̈ve net-
work design. We compare this to the size of existing encoders.

of hypernetwork parameters by 88% compared to predicting
an offset for each generator parameter (see Tab. 1). Later
experiments verify that this does not harm expressiveness.

To process the input images, we incorporate a ResNet34
[25] backbone that receives a 6-channel input

(
xi, yiinit

)
and outputs a 16×16×512 feature map. This shared back-
bone is then followed by a set of Refinement Blocks, each
producing the modulation of a single generator layer. Con-
sider layer `with parameters θ` of size k`×k`×Cin` ×Cout`

where k` is the kernel size. The corresponding Refinement
Block receives the feature map extracted by the backbone
and outputs an offset of size 1×1×Cin` ×Cout` . The offset
is then replicated to match the k` × k` kernel dimension of
θ`. Finally, the new weights of layer ` are updated using
Eq. (5). The Refinement Block is illustrated in Fig. 3.

To further reduce the number of trainable parameters,
we introduce a Shared Refinement Block, inspired by the
original hypernetwork [23]. These output heads consist of
independent convolutional layers used to down-sample the
input feature map. They are then followed by two fully-
connected layers shared across multiple generator layers,
as illustrated in Fig. 3. Here, the fully-connected weights
are shared across the non-toRGB layers with dimension
3× 3× 512× 512, i.e., the largest generator convolutional
blocks. As demonstrated in Ha et al. [23] this allows for
information sharing between the output heads, yielding im-
proved reconstruction quality. Detailed layouts of the Re-
finement Blocks are given in the supplementary materials.

Combining the Shared Refinement Blocks and per-
channel predictions, our final configuration contains 2.7B
fewer parameters (~89%) than a naı̈ve hypernetwork. We
summarize the total number of parameters of different hy-
pernetwork variants in Tab. 1. We refer the reader to
Sec. 4.3 where we validate our design choices and explore
additional avenues for reducing the number of parameters.

Which layers are refined? The choice of which layers
to refine is of great importance. It allows us to reduce the
output dimension while focusing the hypernetwork on the
more meaningful generator weights. Since we invert one
identity at a time, any changes to the affine transformation
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Figure 3. The Refinement Block (shown on bottom) consists of a
series of down-sampling convolutions and a fully-connected layer
resulting in an output of size 1 × 1 × Cin

` × Cout
` . The Shared

Refinement Block (top) is introduced to further reduce the network
parameters and encourage information sharing between layers.

layers can be reproduced by a respective re-scaling of the
convolution weights. Moreover, we find that altering the
toRGB layers harms the editing capabilities of the GAN.
We hypothesize that modifying these layers mainly alters
the pixel-wise texture and color [67], changes that do not
translate well under global edits such as pose (see the sup-
plementary materials for examples). Therefore, we restrict
ourselves to modifying only the non-toRGB convolutions.

Lastly, we follow Karras et al. [35] and split the genera-
tor layers into three levels of detail — coarse, medium, fine
— each controlling different aspects of the generated im-
age. As the initial inversions tend to capture coarse details,
we further restrict our hypernetwork to output offsets for the
medium and fine generator layers.

3.4. Iterative Refinement

To further improve the inversion quality, we adopt the
iterative refinement scheme suggested by Alaluf et al. [4].
This enables us to perform several passes through our hy-
pernetwork for a single image inversion. Each added step
allows the hypernetwork to gradually refine its predicted
weight offsets, resulting in stronger expressive power and
a more accurate inversion.

We perform T passes. For the first pass, we use the initial
reconstruction ŷ0 = G(ŵinit; θ). For each refinement step
t ≥ 1, we predict a set of offsets ∆t = H(ŷt−1, x) used to
obtain the modified weights θ̂t and updated reconstruction
ŷt = G(ŵinit; θ̂t). The weights at step t are defined as the
accumulated modulation across all previous steps:

θ̂`,t := θ · (1 +

t∑
i=1

∆`,i). (6)

The number of refinement steps is set to T = 5 during train-
ing. Following Alaluf et al. [5] we compute the losses at
each refinement step. Note, ŵinit remains fixed during the
iterative process. The final inversion ŷ is the reconstruction
obtained at the last step.

3.5. Training Losses

Similar to encoder-based methods, our training is guided
by an image-space reconstruction objective. We apply a

Method ↑ ID ↑MS-SSIM ↓ LPIPS ↓ L2 ↓ Time (s)

StyleGAN2 [35] 0.78 0.90 0.09 0.020 227.55
PTI [54] 0.85 0.92 0.09 0.015 55.715

IDInvert [73] 0.18 0.68 0.22 0.061 0.04
pSp [53] 0.56 0.76 0.17 0.034 0.106
e4e [61] 0.50 0.72 0.20 0.052 0.106
ReStylepSp [5] 0.66 0.79 0.13 0.030 0.366

ReStylee4e [5] 0.52 0.74 0.19 0.041 0.366

HyperStyle 0.76 0.84 0.09 0.019 1.234

Table 2. Quantitative reconstruction results on the human facial
domain measured over the CelebA-HQ [31, 42] test set.

weighted combination of the pixel-wise L2 loss and LPIPS
perceptual loss [72]. For the facial domain, we further ap-
ply an identity-based similarity loss [53] by employing a
pre-trained facial recognition network [15] to preserve the
facial identity. As suggested by Tov et al. [61], we apply
a MoCo-based similarity loss for non-facial domains. The
final loss objective is given by:

L2(x, ŷ) + λLPIPSLLPIPS(x, ŷ) + λsimLsim(x, ŷ). (7)

4. Experiments
Datasets and Baselines For the human facial domain
we use FFHQ [34] for training and the CelebA-HQ test
set [31, 42] for quantitative evaluations. On the cars do-
main, we use the Stanford Cars dataset [37]. Additional
results on AFHQ Wild [10] are provided in the supplemen-
tary. We compare our results to the state-of-the-art encoders
pSp [53], e4e [61], and ReStyle [5] applied over both pSp
and e4e. A visual comparison with IDInvert [73] is provided
in the supplementary materials. For a comparison with opti-
mization techniques, we compare to PTI [54] and the latent
vector optimization intoW+ from Karras et al. [35].

4.1. Reconstruction Quality

Qualitative Evaluation We begin with a qualitative com-
parison, provided in Fig. 4. While optimization techniques
are typically able to achieve accurate reconstructions, they
come with a high computational cost. HyperStyle offers
visually comparable results with an inference time several
orders of magnitude faster. Furthermore, PTI may struggle
when inverting a low-resolution input (2nd row), yielding
a blurred reconstruction due to its inherent design of over-
fitting to the target image. Our hypernetwork, meanwhile,
is trained on a large image collection and is therefore less
likely to re-create such resolution-based artifacts. In addi-
tion, compared to single-shot encoders (pSp and e4e), Hy-
perStyle better captures the input identity (3rd row). When
compared to the more recent ReStyle [5] encoders, Hyper-
Style is still able to better reconstruct finer details such as
complex hairstyles (1st row) and clothing (2nd row).
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Input Optimization PTI ReStylepSp ReStylee4e pSp e4e HyperStyle

Figure 4. Reconstruction quality comparison. HyperStyle achieves comparable results to optimization techniques while requiring a fraction
of the inference time. Compared to encoders, our method attains superior results in terms of the preservation of identity and finer details
such as hairstyles and clothing. Additional results are presented in the supplementary materials. Best viewed zoomed-in.

Quantitative Evaluation In Tab. 2, we present a quan-
titative evaluation focusing on the time-accuracy trade-off.
Along with the inference time of each method, we report
the pixel-wise L2 distance, the LPIPS [72] distance, and
the MS-SSIM [66] score between each reconstruction and
source. We additionally measure identity similarity using a
pre-trained facial recognition network [27]. For HyperStyle
and ReStyle [5], we performed multiple iterative steps un-
til the metric scores stopped improving or until 10 iterations
were reached. For optimization, we use at most 1, 500 steps,
while for PTI we perform at most 350 pivotal tuning steps.

As presented in Tab. 2, HyperStyle’s performance con-
sistently surpasses that of the encoder-based methods. Sur-
prisingly, it even achieves results on par with the Style-
GAN2 optimization [35], while being nearly 200 times
faster. Overall, HyperStyle demonstrates optimization-level
reconstructions achieved with encoder-like inference times.

4.2. Editability via Latent Space Manipulations

Good inversion methods should provide not only metic-
ulous reconstructions but also highly-editable latent codes.
We thus evaluate the editability of our produced inversions.
We do so by analyzing two key aspects. One aspect of in-
terest is the range of modifications that an inverted latent
can support (e.g., how much the pose can be changed). The
other is how well the identity is preserved along this range.

Qualitative Evaluation As shown in Fig. 5, our method
successfully achieves realistic and meaningful edits, while
being faithful to the input identity. The inversions of op-
timization, pSp, and ReStylepSp reside in poorly-behaved
latent regions ofW+. Therefore, their editing is less mean-
ingful and introduces significant artifacts. For instance, in
the cars domain, they struggle in making notable changes to

the car color and shape. In the 4th row, these methods fail to
either preserve the original identity or perform a full frontal-
ization. On the other end of the reconstruction-editability
trade-off, e4e and ReStylee4e are more editable but cannot
faithfully preserve the original identity, as demonstrated in
the 3rd and 4th rows. In contrast, HyperStyle and PTI,
which invert into the well-behaved W space, are more ro-
bust in their editing capabilities while successfully retain-
ing the original identity. Yet, HyperStyle requires a signifi-
cantly lower inference overhead to achieve these results.
Quantitative Evaluation Comparing the editability of in-
version methods is challenging since applying the same
editing step size to latent codes obtained with different
methods results in different editing strengths. This would
introduce unwanted bias to the identity similarity measure,
as the less-edited images may tend to be more similar to
the source. To address this, we edit using a range of var-
ious step sizes and plot the measured identity similarity
along this range, resulting in a continuous similarity curve
for each inversion method. This allows us to validate the
identity preservation with respect to a fixed editing mag-
nitude, as well as examine the range of edits supported.
Ideally, an inversion method should achieve high identity
similarity across a wide range of editing strengths. We
measure the editing magnitude using trait-specific classi-
fiers (HopeNet [55] for pose and the classifier from Lin et
al. [39] for smile extent). As before, identity similarity is
measured using the CurricularFace method [27].

As can be seen in Fig. 6, HyperStyle consistently out-
performs other encoder-based methods in terms of identity
preservation while supporting an equal or greater editing
range. Compared to optimization-based techniques, Hy-
perStyle achieves similar identity preservation and editing
range yet does so substantially faster.
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Figure 5. Editing quality comparison. We perform various edits [24, 48, 56] over latent codes obtained by each inversion method. Hyper-
Style achieves both realistic, faithful edits and a high level of identity preservation across the different edits. Best viewed zoomed-in.
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Figure 6. Quantitative editing metrics. For each method, we com-
pute the identity similarity between the original and edited images
as a function of editing magnitude.

These results highlight the appealing nature of Hyper-
Style. With respect to other encoders, HyperStyle achieves
superior reconstruction quality while providing strong ed-
itability and fast inference. Additionally, compared to op-
timization techniques, HyperStyle achieves comparable re-
construction and editability at a fraction of the time, mak-
ing it more suitable for real-world use at scale. This places
HyperStyle favorably on both the reconstruction-editability
and the time-accuracy trade-off curves.

4.3. Ablation Study

We now validate the design choices described in Sec. 3.
Results are summarized in Tab. 3. First, we investigate the

choice of layers refined by the hypernetwork. We observe
that training only the medium and fine non-toRGB layers
achieves comparable performance, a slimmer network, and
faster inference. Notably, we also find that altering toRGB
layers may harm editability. Second, we find the iterative
scheme to be more accurate with fewer artifacts. Finally, we
validate the effectiveness of the Shared Refinement Block
and the information sharing it provides. Visual comparisons
of all ablations can be found in the supplementary materials.

Separable Convolutions Our final configuration uses
shared offsets for each convolutional kernel. An important
question is whether this constrains the network too strongly.
To answer this, we design an alternative refinement head,
inspired by separable convolutions [26]. Rather than pre-
dicting offsets for an entire k × k × Cin × Cout filter in
one step, we decompose it into two slimmer predictions:
k × k × Cin × 1 and k × k × 1 × Cout. The final off-
set block is then given by their product. This allows us to
predict an offset for every parameter of the kernel, poten-
tially increasing the network’s expressiveness. We observe
(Tab. 3) that the increased flexibility of predicting an offset
per parameter does not improve reconstruction, indicating
that simpler, per-channel predictions are sufficient.
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Method Layers Iters ↑ ID ↓ LPIPS ↓ L2 ↓ Time

No Iterative
Refinement

C,M,F,R 1 0.68 0.10 0.02 0.17
C,M,F 1 0.67 0.10 0.02 0.16
M,F 1 0.66 0.11 0.021 0.15

HyperStyle M,F 10 0.76 0.09 0.019 1.23

HyperStyle + Coarse C,M,F 10 0.74 0.10 0.02 1.54

HyperStyle w/o
Shared Refinement

M,F 10 0.68 0.12 0.022 1.36

Separable Convs. M,F 10 0.71 0.10 0.019 1.28

Table 3. Ablation study. We validate the hypernetwork compo-
nents and design choices: the importance of different layers —
coarse (C), medium (M), fine (F), and toRGB (R) — as well as
the iterative refinement scheme and Shared Refinement. We also
explore separable convolutions as an alternative refinement head.

4.4. Additional Applications
Domain Adaptation Many works [18,46,51,68] have ex-
plored fine-tuning a pre-trained StyleGAN towards semanti-
cally similar domains. This process maintains a correspon-
dence between semantic attributes in the two latent spaces,
allowing translation between domains [68]. Yet, some fea-
tures, such as facial hair or hair color, may be lost during
this translation. To address this, we use HyperStyle trained
on the source generator to modify the fine-tuned target gen-
erator. Namely, given an input image, we can take the
weight offsets predicted with respect to the source genera-
tor and apply them to the target generator. The image in the
new domain is then obtained by passing the image’s original
latent code to the modified target generator.

Fig. 7 shows examples of applying weight offsets over
various fine-tuned generators. As shown, when no offsets
are applied, important details are lost. However, HyperStyle
leads to more faithful translations preserving identity with-
out harming the target style. Importantly, the translations
are attained with no domain-specific hypernetwork training.

Editing Out-of-Domain Images To this point, we have
discussed handling images from the same domain as used
for training. If our hypernetwork has indeed learned to gen-
eralize, it should not be sensitive to the domain of the input.
As may be expected, standard encoders cannot handle out-
of-domain images well (see Fig. 8 for e4e and the supple-
mentary materials for others). By adjusting the pre-trained
generator towards a given out-of-domain input, HyperStyle
enables editing diverse images, without explicitly training a
new generator on their domain. This points to improved ex-
pressiveness and generalization. It seems the hypernetwork
does not just fix poorly reconstructed attributes but learns to
adapt the generator in a more general sense. We find these
results to be a promising direction for manipulating out-of-
domain images without having to train new generators or
perform lengthy per-image tuning.
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Figure 7. Weight offsets predicted by HyperStyle trained on
FFHQ are also applicable for modifying fine-tuned generators
(e.g., Toonify [51] and StyleGAN-NADA [18]). Our refinement
leads to improved identity preservation while retaining target style.

Input e4e HyperStyle —— HyperStyle Edits ——
Figure 8. Trained only on real images, our method successfully
generalizes to challenging styles not observed during training,
even without generator fine-tuning.

5. Conclusions
We introduced HyperStyle, a novel approach for Style-

GAN inversion. We leverage recent advancements in hyper-
networks to achieve optimization-level reconstructions at
encoder-like inference times. In a sense, HyperStyle learns
to efficiently optimize the generator for a given target im-
age. Doing so mitigates the reconstruction-editability trade-
off and enables the effective use of existing editing tech-
niques on a wide range of inputs. In addition, HyperStyle
generalizes surprisingly well, even to out-of-domain images
neither the hypernetwork nor the generator have seen dur-
ing training. Looking forward, further broadening general-
ization away from the training domain is highly desirable.
This includes robustness to unaligned images and unstruc-
tured domains. The former may potentially be addressed
through StyleGAN3 [33] while the latter would probably
warrant training on a richer set of images. In summary, we
believe this approach to be an essential step towards interac-
tive and semantic in-the-wild image editing and may open
the door for many intriguing real-world scenarios.
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