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Abstract

Super-Fibonacci spirals are an extension of Fibonacci
spirals, enabling fast generation of an arbitrary but fixed
number of 3D orientations. The algorithm is simple and
fast. A comprehensive evaluation comparing to other meth-
ods shows that the generated sets of orientations have low
discrepancy, minimal spurious components in the power
spectrum, and almost identical Voronoi volumes. This
makes them useful for a variety of applications, in partic-
ular Monte Carlo sampling.

1. Introduction
Methods for the generation of orientation or rotation

samples are a fundamental building block in science and
engineering. They are used in such diverse fields as
protein docking [27], crystallography [31], electron cryo-
microscopy [8, 48] or additive manufacturing [39], to name
but a few. In vision, robotics, and learning they have been
used, among others, in path planning [24, 46]. This work
has been prompted in particular by the use of orientation
samples for estimating pose or establishing rotation equiv-
ariance in machine learning methods. For example, con-
volutional neural networks are linear and have been found
to work well with discretized rotations (CNN) [32, 53].
A recent trend in pose estimation is to learn pose distri-
butions, requiring a sample set of orientations [38, 41].
More broadly, Markov-chain Monte Carlo (MCMC) meth-
ods work well in a variety of estimation and optimization
tasks and are now used heavily in learning. They also ap-
ply to problems involving orientations [5] and would profit
from using low discrepancy sample sets for driving the
Monte Carlo sampler [43].

Computing with orientations requires a representation.
In this work, we use the unit 3-sphere S3 ⊂ R4, which
is a double cover of SO(3). Every unit quaternion q ∈
R4, ∥q∥ = 1 identifies an orientation, and−q represents the
same orientation. Sampling orientations in this representa-
tion means creating pairs of points in R4 with unit distance
to the origin.

Rather than focusing on a particular application, we try
to evaluate the quality of the set using geometric mea-
sures on S3. There are various ways to measure ’well-
distribution’ on spheres and sets that are near-optimal in one
sense may be far from optimal in another. Classical quality
criteria for generating ‘optimal’ packings on the sphere [9]
or spherical designs/codes [52] are based on local measures,
i.e. the closest distance between any two orientations or the
radius of empty disks – the so-called dispersion. Distri-
butions that are optimal in the sense of such local measures
often exhibit regularity that leads to aliasing in sampling ap-
plications. In Section 4 we discuss several measures that are
better suited to measure the quality of an orientation sample
and explain how to compute them. In particular, the discrep-
ancy of a set is directly related to the error in quasi-Monte
Carlo integration by the Koksma–Hlawka inequality [40].
Another classical tool for the analysis of sample sets is the
power spectrum, describing the spectral properties of the set
and revealing unwanted modes in the distribution. We also
introduce the idea to project S3 onto the Clifford torus for
visualizing aliasing artifacts.

Using these methods we compare existing approaches
for the task of quickly generating well-distributed orienta-
tion samples (reviewed in Section 2) to sampling based on
Super-Fibonacci Spirals – a new method based on the idea
of Fibonacci sampling. We provide background and de-
velop and describe the details of this method in Section 3.
The resulting implementation is extremely simple, it sup-
ports sample refinement, it is faster than all existing meth-
ods, and the resulting orientation sets are well suited for
sampling.

To summarize, we consider generating sample sets on
SO(3) a fundamental building block in vision, robotics,
learning, and more generally science and engineering, to
which we contribute in the following ways:

• We provide a suite of tools for analyzing the properties of
sets of orientations for their use in sampling applications.

• We introduce Super-Fibonacci sampling, a method for
generating an arbitrary number of samples on S3. It is
simple and very fast and generates high quality orienta-
tion samples represented as quaternions.
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2. Methods for fast sampling of orientations

For most uses, we believe the following properties are
useful: (1) fast sampling (2) an arbitrary number n of sam-
ples (3) that can be possibly refined to kn samples for arbi-
trary k. There are a variety of methods in the literature that
fit these desiderata to different degrees.

Uniform. The most straightforward approach is using a
pseudo-random uniform distribution on S3. The points can
be generated by drawing from any radially symmetric distri-
bution in R4 and then normalizing the vector. It is common
to use a Gaussian distribution [34]. Generating a sample re-
quires constant time and space, with the constant dominated
by the Box-Muller transform [6] necessary for mapping a
uniform to a normal distribution. Uniform distributions can
be easily refined.

Subdividing 3-polytopes. A common approach in the con-
text of spherical designs is the subdivision of regular 3-
polytopes [25]. Karney has analyzed the properties of such
sets and provides a manual selection with near-optimal dis-
persion (available on github [26], under MIT license). Com-
puting subdivisions is fast, and provides natural refinement,
but severely limits the choice of the number of samples n.
We restrict the comparison in Section 4 to the sets selected
by Karney, as this is sufficient to illustrate that the regularity
introduced by subdivision is unsuitable for sampling.

SOI. Successive Orthogonal Images (SOI) [35] provide a
sampling method for SO(3) that boils down to sampling S1
regularly and S2 as uniformly as possible, with the two sam-
pling densities chosen so that the distance of points on S1
and S2 is approximately the same. The number of samples
n is limited as it has to be the product of two integers that
lead to similar spacing on the two sample spaces. This also
severely limits refinement. The properties of the approach
in terms of computational complexity as well as the result-
ing distribution depend on the method chosen for sampling
S2. We consider the two versions implemented in the code
made publicly available (individual license terms: “copy-
righted but free for commercial use”). The first variant
uses subdivisions of an icosahedron. This leads to fast sam-
pling, but introduces some of the unwanted regularity. The
second variant uses an optimization process. This makes
the method computationally expensive, with the complexity
growing super-linearly in the number of samples. The com-
putation time depends on the details of how convergence
of the optimization is detected. We use the code as it is
provided, which limits the maximal number of iterations,
meaning it may favor smaller computation time over qual-
ity of the distribution for large sample sets. The results in
Section 4 indicate that there is no significant effect on the
quality even for large sets.
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Figure 1. Wall-clock times for generating n orientation samples
in quaternion representation. Only SOI with optimization on S2

shows super-linear time complexity.

Hopf fibration. The SOI approach has been modified us-
ing coordinates based on the Hopf fibration to allow con-
structing good orientation samples incrementally [58]. This
means that sets of n and n + 1 samples only differ by a
single additional point. The method has constant compu-
tational complexity per sample and works with an arbitrary
number of samples. The incremental construction adversely
impacts the quality of the distribution. Code is available un-
der GNU public license.

Optimization in SO(3). Methods that optimize distribu-
tions in SO(3) or S3 are not included in the comparison be-
cause they are too time consuming: both Gräf and Potts [18]
as well as Larsen and Schmidt [29] report several days of
computation time. This is due to a combination of involved
optimization with slow convergence and starting from many
different configurations to avoid bad local minima.

Timing. Wall-clock timing for the methods that are pro-
vided with source code are shown in Figure 1. As values for
n ⪅ 106 we use: (1) powers of 2, 3, and 5 to sample a suf-
ficient number of values; (2) the superior highly composite
numbers n = {60, 120, 360, 2520, 5040, 55440, 720720},
which have a large number of different divisors; (3) the Fi-
bonacci primes n = {89, 233, 1597, 28657, 514229}. The
latter two sets of values have been included to see if the
properties of the different methods (discussed further be-
low) depend on the divisibility of n. For the SOI methods,
we use only the recommended values of n close to this set
– this explains the different spacing in the scatter-plot in
Figure 1. The analysis reveals that the SOI method using
optimization is limited to smaller sample sets because of its
super-linear time complexity.

8292



3. Fibonacci sampling on S3

Optimizing sets for low discrepancy is difficult. More-
over, optimization in SO(3) is cumbersome because of
the underlying geometry. We show how to generate low-
discrepancy sets of orientations based on extending the idea
of Fibonacci sampling.

Fibonacci sampling in the plane. Let ti be n regularly
spaced values in [0, 1), then the samples are given by

xi = x(ti), x(t) =

(
nt

ϕ
−
⌊
nt

ϕ

⌋)
. (1)

The quality of the sampling, i.e. the discrepancy, depends
on the constant ϕ. It has been observed that setting ϕ =
(1 +

√
5)/2, the golden ratio, leads to the best results in

practice, hence the name. The appearance of the golden ra-
tio may be considered natural, as it is the irrational number
whose rational approximations converge slowest. While it
is possible to derive upper bounds on the discrepancy based
on the continued fraction representation of ϕ [40, Thm. 3.3],
tight connections or why the golden ratio is optimal for fi-
nite samples remain unclear.

The Fibonacci sampling has been used to generate low-
discrepancy sets for two-dimensional domains. Sampling
the curve (x(t), t) leads to an aperiodic sampling of the unit
square. The area preserving map from [0, 1]2 to the unit disk
parameterized in polar coordinates [0, 2π]× [0, 1] given by
(θ, r) = (2πx0,

√
x1) converts this to a sampling of the unit

disk, in cartesian coordinates:

y(t) =

(√
t sin

2πnt

ϕ
,
√
t cos

2πnt

ϕ

)
. (2)

Here, the periodicity of the sine and co-
sine function cause the floor function
to disappear. The inset shows the re-
sulting point distributions for 100 sam-
ples. The sampling of the unit disk
can be mapped to the 2-sphere, result-
ing in the omnipresent Fibonacci (or golden) spiral on the
sphere [17, 19, 45, 54].

Lifting to S3. The main tool for using Fibonacci sampling
on S3 is a volume preserving mapping from a solid cylin-
der in R3 to the 3-sphere. Consider the cylinder {(h,y =
(y0, y1)) | −π < h ≤ π,yTy ≤ 1}. Then

x(h,y) =


z cosh
z sinh
y0
y1

 , z =
√

1− yTy (3)

maps points in the cylinder to the unit sphere in R4. The
inverse mapping of x = (x0.x1, x2, x3) is given by:

(h, y0, y1) = (arctan 2(x1, x0), x3, x4). (4)

This shows that the mapping is a bijection between the rel-
ative interior of the cylinder and the sphere without the
’equator’ x0 = x1 = 0. The lines {−π < h ≤ π,yTy =
1} on the surface of the cylinder are mapped to the points
(0, 0, y0, y1) on the equator of the sphere. In the interior of
the cylinder yTy < 1, i.e. where the mapping is bijective,
we can compute the Jacobian as

Jh,y =


−z sinh −y0z cosh −y1z cosh
z cosh −y0z sinh −y1z sinh

0 1 0
0 0 1

 , (5)

where we have used

∂z

∂y0
= −y0

z
,

∂z

∂y1
= −y1

z
. (6)

Using the Jacobian, we can now analyze the change of of
volume and find the following:

Claim 1 The mapping

x(h,y) : {(h,y) | −π < h ≤ π,yTy < 1} 7→ S3 ⊂ R4

is volume preserving.

The volume element can be computed as the product of
the singular values of the Jacobian. Noting that all three
columns of Jh,y are tangents on the unit sphere in x(h,y),
we can compute this as det (x(h,y),Jh,y), because x(h,y
is orthogonal to the tangent plane and has unit length. De-
veloping by the first column we find

+ z cosh(z cosh)− z sinh(z sinh)
+ y0

(
y0 sin

2 h+ y0 cos
2 h

)
− y1

(
−y1 cos2 h− y1 sin2 h

)
=
(
1− yTy

) (
cos2 h+ sin2 h

)
+ yTy = 1,

(7)

as claimed. □
Given the mapping, the main idea is to use Fibonacci

sampling twice to generate points in the cylinder: (1) along
the main axis h of the cylinder and (2) on the unit disk
(y0, y1) orthogonal to the main axis. Using two different
constants ϕ and ψ for the two samplings we get:

z(t) =

(
nt

ψ
−
⌊
nt

ψ

⌋
,
√
t sin

2πnt

ϕ
,
√
t cos

2πnt

ϕ

)T

. (8)

Plugging this sampling pattern into the mapping to the 3-
sphere we find the following simple curve, exhibiting the
expected symmetry:

w(t) =


√
t sin 2πnt

ϕ√
t cos 2πnt

ϕ√
1− t sin 2πnt

ψ√
1− t cos 2πnt

ψ

 . (9)
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Sampling this curve at regular values ti is a natural method
for generating orientation samples. For easy reproduction,
Algorithm 1 provides the details for implementing this ap-
proach.

Algorithm 1: Generating n samples on SO(3) as
unit quaternions

Function Super-Fibonacci(n, ϕ, ψ)
for i ∈ {0, . . . , n− 1} do

s← i+ 1
2

t← s
n , d← 2πs

r ←
√
t, R←

√
1− t

α← d
ϕ , β ←

d
ψ

qi ← (r sinα, r cosα,R sinβ,R cosβ, )

This algorithm clearly has constant complexity per sam-
ple. In addition, it is faster in practice than all alternatives
we have tested (c.f. Figure 1). The algorithm also directly
shows that the a set of kn samples contains the set gener-
ated for n samples or, more generally, sets with m and n
samples share every k-th sample, where k is the gcd of m
and n, i.e. it is easy refine sets that have already been used
for computation.

Parameters. An important factor for the quality of the sam-
ple set are the constants ϕ and ψ. Not only do we need ψ
and ϕ to be irrational, also their relation is important: if
they are rational multiples of each other the resulting sets
are sub-optimal. Since mathematical theory connecting the
properties of these numbers and the resulting sample sets is
lacking, heuristic search and experimental exploration are
the only remaining options. For this we have used the qual-
ity criteria that can be computed deterministically from the
Voronoi diagram (see Section 4.3 and the supplementary
material).

It may seem natural to set one of the constants to the
golden ratio. In this scenario, a choice for the other con-
stant that provides good results is the super-golden ratio,
the only real solution to ψ3 = ψ2 + 1. This observation led
to the name ’Super-Fibonacci’. A more exhaustive explo-
ration of the roots of small degree polynomials, however,
reveals slightly better options. The suggested choice are the
positive real roots of:

ϕ2 = 2, ψ4 = ψ + 4, ϕ, ψ ∈ R+. (10)

Unlike ϕ =
√
2, the solution for ψ has no simple expres-

sion, although as a depressed quartic it could be represented
in terms of (nested) square and cube roots. For reference
and easy reproduction, its decimal expansion sufficient for
double precision is:

ψ = 1.533751168755204288118041 . . . (11)

Interestingly, ψ is not a Pisot number [4], because all roots
of ψ4 − ψ − 4 have modulus larger 1. Pisot numbers are
connected to aperiodic tilings [36] and specific instances
such as the golden ratio, the silver ratio, the super golden
ratio and, specifically for two-dimensional grids, the plastic
number [21, 50], have been suggested in the context of (Fi-
bonacci) sampling. The values of ψ and ϕ as defined above
are used for all evaluations.

4. Analysis and Comparison
Measuring the distance of two orientations by the natural

metric induced on the sphere

d(p,q) = arccos |⟨p,q⟩| . (12)

is equivalent to the geodesic distance in the natural Rieman-
nian metric of SO(3) [22] or, intuitively, the smallest pos-
sible angle of rotation turning one orientation into the other
(taking the absolute value accounts for the fact that q and
−q represent the same orientation). We will more gener-
ally use S3 to measure geometric quantities. In particular,
we need the volume of a spherical cap with radius θ (in ra-
dians)

V◦(θ) = π(2θ − sin 2θ). (13)

and the area of the sphere bounding this cap:

A◦(θ) = 4π sin2 θ. (14)

Derivations and other geometric tools for computing on S3
as well as data and code for the methods described below
are provided in the supplementary material.

4.1. Discrepancy

Discrepancy measures the error being made when es-
timating the volume of a (convex) region by considering
only the number of samples in the region [28]. Each sam-
ple represents the expected measure, i.e. the total measure
of the domain divided by the number of samples. For the
quaternion representation, this means assigning the volume
2π2

2n = π2

n to each sample of SO(3), as S3 has total volume
2π2 and each sample is represented by the pair ±q.

For Euclidean domains it is common to consider star dis-
crepancy, which is based on the measure of a box [59]. The
appropriate analogy are hyper-spherical caps on S3, ensur-
ing that the strong connection to Monte-Carlo techniques
remains [12, 9.1.5]. Consequently, the quaternionic spheri-
cal cap discrepancy for a set Q = {qi ∈ R4, ∥qi∥ = 1} of
size n = |Q| is

D(Q) = sup
p∈S3,r∈[0,π[

∣∣∣∣V◦(r)− π2

n
#{d(p,qi) ≤ r}

∣∣∣∣ .
(15)

Only caps smaller than the semi-sphere are considered be-
cause the unit quaternions are a double cover.
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Figure 2. Approximation of spherical cap discrepancy.

For computing this value, note that changing the volume
of the cap without changing the number of samples in the
cap also changes the discrepancy. This implies that critical
points of D(Q) are achieved if the boundary sphere of the
cap contains one or more of the samples. If this is the case,
an infinitesimal change of the cap includes or excludes the
points on the boundary. Alas, exploring all

(
n
4

)
∈ O(n4)

configurations with points on the boundary of the cap is pro-
hibitive even for moderate n. For Euclidean spaces, sweep-
ing techniques and specific rectangular decompositions re-
duce the complexity to O(n3) [13, 42]. It is not clear how
to lift these techniques to the sphere and the cubic com-
plexity is still unmanageable. We have therefore opted for
a sampling technique that still exploits the observation that
critical caps have samples on their boundary.

The idea is to fix m centers cj ∈ S3 uniformly random.
For each center cj , we consider the caps defined by the
n radii d(cj ,qi). Notice that these caps have qi on their
boundary. The caps are sorted by radii, meaning the qi
are sorted based on distances d(c,qi). For reasonably dis-
tributed samples this can be done in linear time [11]. Walk-
ing through the sorted list provides the number of points
inside the cap without any overhead. The overall complex-
ity of this procedure is linear in m and n and can be easily
performed in parallel for different centers cj . The supple-
mental material shows convergence behavior for small n.
When comparing different distributions we use the same set
of centers.

Figure 2 show the result of this comparison as a scat-
ter plot of discrepancy against sample size. We find that
SOI using optimization on S2 and Super-Fibonacci sam-
pling have at least an order of magnitude lower discrepancy
than all other methods across all sample sizes. The very reg-
ular subdivisions of polyhedra (Karney’s data or SOI based
on subdivision) perform worse than uniform sampling.

4.2. Radial distribution function

Stationary processes are commonly analyzed based on
on first order statistics. The radial distribution or pair cor-
relation function describes the density of the samples de-
pendent on the relative position of pairs of samples [23].
The relative position may be simplified to the distance be-
tween the samples, if the process generating the samples is
assumed to be isotropic, or if there are no preferred direc-
tions. A density function of pairwise distance is computed
by convolving with a kernel κ, typically a Gaussian.

For each sample at distance r (measured in radians), we
need to normalize by the expected number of samples at that
distance, which is proportional to the surface area of the
sphere at the boundary of a cap with radius r. This leads to
the following density function, up to constant factors

gQ(r) =
1

nA◦(r)

∑
qi,qj∈Q,i ̸=j

κ (r − d(qi,qj)) . (16)

For κ being the Dirac δ-function, g(r) is closely related
to the power spectrum [20], describing the distribution of
power over spatial frequencies, in this case spherical har-
monics. Both functions contain the exact same informa-
tion. While the radial distribution function is often used in
statistical mechanics, the power spectrum is more common
in engineering [56]. Distributions with good properties for
sampling are commonly associated with blue noise [30].

Computing the radial distribution function amounts to
adding the kernel κ(r−d(qi,qj)) for each pair of different
samples i ̸= j to the function gQ(r). Since the quadratic
complexity leads to unmanageable run-times we take a ran-
dom subset ofm samples and then compute the distances to
all other n samples, resulting in a complexity of O(mn).

The density function g(r) can be represented discretely
using equally spaced ri in [0, π/2] so that g(ri) forms a
vector. For the kernel we use a Gaussian. We adapt the
variance to the radius of the sphere, whose volume is 1/n-
th of the total volume of S3:

2π2

n
=

4πr3

3
⇐⇒ r =

(
3π

2n

)1/3

(17)

Then we set the variance of the Gaussian to half of the ra-
dius, i.e. σ2 = r2/4 (other factors would be possible as
well). In order to avoid iterating over all ri for each pair we
compute the width of this Gaussian for which its contribu-
tion is larger than the machine epsilon in single precision.

Figure 3 shows the the result of this computation for
sample sets with n ≈ 2 · 104 points – curves for other val-
ues of n are qualitatively similar. The uniform distribution
results in a nearly flat radial distribution, as expected, be-
cause all pair-wise distance appear with equal probability.
The methods using subdivided polyhedra, such as Karney’s
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Figure 3. Radial distribution functions for n ≈ 2 · 104.

data and the SOI method based on subdividing an icosahe-
dron exhibit unwanted peaks for small and large pairwise
distances. The SOI method using optimization on S2 has
no pairs with small distance but the typical ringing result-
ing from the avoidance of such pairs. The Hopf fibration
and the Super-Fibonacci sampling show the desired behav-
ior, with no pairs at small distances and quickly decaying
variation for pairs at higher distances – see Singh et al. [51]
for a examples and discussion on the relation between the
properties of a sample set and its radial distribution func-
tion.

4.3. Spherical Voronoi diagram and areas

The Voronoi cell Ωi associated to a site is the set of points
in a given domain closest to the site, i.e. for quaternion sites
{qi} on S3

Ωi = {x ∈ S3 : d(x,qi) ≤ d(x,qj), i ̸= j}. (18)

Voronoi cells consists of two congruent antipodal regions.
The boundaries of Voronoi cells are composed of bisectors,
which are planes through the origin (the locus of points with
equal distance to two sites in R4) intersected with the unit
sphere S3. In other words, Voronoi cells are (pairs of) spher-
ical polyhedra. One may consider the quality of a sample
set reflected by the properties of the Voronoi cells – com-
monly considered is the volume [3], which one wants to be
identical across samples.

The Voronoi diagram is dual to the Delaunay triangula-
tion [2]. The combinatorics of the Delaunay triangulation
on a sphere are identical to the convex hull of the points un-
der mild conditions, namely that no hemisphere is empty. In
order to use standard software for computation of the con-
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Figure 4. Histograms of Voronoi areas relative to the equal area
division 2π2/n for n ≈ 2 · 104..

vex hull, we add for each sample qi its antipodal point−qi,
which also guarantees that no hemisphere is empty. For
computation of the convex hull we use CGAL’s dD triangu-
lation code [10] (while it is possible to compute the spheri-
cal Voronoi diagram directly [7], there is no publicly avail-
able stable implementation). An important trick is to add
one point in the interior of the sphere. This has no effect on
the convex hull, but avoids the computationally costly han-
dling of the degenerate situation that all simplices share the
same circumsphere. If the samples are well-distributed, the
Delaunay triangulation can be computed in O(n) [1].

We find the Voronoi vertices as the circumcenters of the
(spherical) Delaunay tetrahedra (see supplementary mate-
rial). For a given sample qi, the Voronoi vertices arising
from the Delaunay tetrahedra incident on qi form a spher-
ical polyhedron, which is the Voronoi cell Ωi. The faces
of Ωi are spherical polygons orthogonal to Delaunay edges
emanating from qi. For computation of the volume of the
Voronoi cell, we decompose it into spherical tetrahedra,
whose volume can be computed using hypergeometric se-
ries [37, 47].

Figure 4 shows a histogram of volumes relative to the
equal area volume tessellation 2π2/n for n ≈ 2 · 104. The
uniform distribution has the expected smooth and large vari-
ation in volumes. Distributions based on subdivided poly-
hedra such as Karney’s data or the SOI method based on an
icosahedron exhibit a discrete set of volumes, with a large
variation. Hopf fibration, interestingly, shows two modes,
both with moderate variation in volume. The SOI method
for points optimized on S2 and the Super-Fibonacci sam-
pling both have a remarkably narrow peak.
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Figure 5. Zone plates on the Clifford torus reconstructed with Gaussian kernels centered in n ≈ 5 · 105 samples. Upper row is based on
canonical orientation of torus and samples, lower row based on (the same) random orientation of the samples relative to the torus.

The Delaunay triangulation directly yields the covering
radius or dispersion (the radius of the largest empty sphere
among the points) and the packing distance (the largest
radius of non-overlapping spheres placed at the samples).
These measures are less relevant in the context of sampling
applications and discussed in the supplementary material.

4.4. Clifford torus visualization

The quality of sample distributions is often demonstrated
using visualization, exploiting that the human visual system
is sensitive for (ir)regularities [57]. Apart from showing
the samples, another method is by reconstructing a function
with varying frequency content from the values in the point
samples, exhibiting aliasing artifacts [44]. To accommodate
these approaches for samples on S3 we consider the Clifford
torus, which is a slice of S3 given in canonical orientation
as

x20 + x21 = x22 + x23 =
1

2
. (19)

The Clifford torus is intrinsically flat, meaning it can be
mapped to the (standard Euclidean) plane isometrically.
The common parameterization is

x(θ, ϕ) =
1√
2
(cos θ, sin θ, cosϕ, sinϕ) . (20)

The orthogonal projection of a point x ∈ S3 \ {x0 = x1 =
0, x2 = x3 = 0} is given by

x′ =
1√
2

(
x0√
x2
0+x

2
1

,
x1√
x2
0+x

2
1

,
x2√
x2
2+x

2
3

,
x3√
x2
2+x

2
3

)
(21)

showing that the image of orthogonal projections in the
plane is

(arctan2(x0, x1), arctan2(x2, x3)) . (22)

For visualizing aliasing artifacts we use the reconstruction
of a zone plate function, where the distance to a fixed point
q on the Clifford is measured only along the torus to avoid
aliasing introduced by slicing:

z(x) =
1 + cos

(
kd(x′,q)2

)
2

. (23)

This function is sampled on S3 and reconstructed using a
Gaussian kernel, restricted to the Clifford torus. The image
in [−π, π]2 is represented discretely on a m ×m grid. The
variance of the Gaussian kernel is set to the diagonal of the
grid cells, i.e. σ = m−1

√
2π. The isometry between the

flat image and the embedding in R4 allows using the same
variance on S3.

Figure 5 shows reconstructions of the zone plate. The
number of samples n ≈ 5·105 has been chosen to make sure
that each grid point in the torus may be sufficiently close to
a sample (for an ideal distribution of samples over S3). The
upper row images are based on the canonical orientation of
the sample set. As there are potential directional prefer-
ences in the samples sets, the lower row reconstructions are
based on rotating the sample sets against the torus, using
the same (random) rotation for all methods. The reconstruc-
tions based on the SOI methods and Super-Fibonacci sam-
pling clearly outperform Hopf fibration and uniform sam-
pling. Aliasing artifacts are less severe for the canonical
orientation and least conspicuous for Super-Fibonacci sam-
pling.
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5. Discussion
Super-Fibonacci sampling provides a simple and fast ap-

proach to computing an arbitrary number of well-distributed
orientations. The samples have significantly lower dis-
crepancy than similarly fast methods and are on par with
optimization-based techniques. For illustrating the quality
of the distribution relative to the time necessary to gener-
ate the samples, we compare the reconstruction of the zone
plate based on the number of samples generated in 25ms.
The result is shown in Figure 6). In this comparison, Super-
Fibonacci samplings clearly outperforms all other methods.

The analysis of Voronoi cells reveals that the volume of
the cells is almost identical - the equal volume property has
been observed to avoid unwanted regularity in optimization
algorithms [3, 16]. The reason for the good volume dis-
tribution is possibly the volume preserving mapping from
the full cylinder, carrying the good properties of Fibonacci
sampling in the interval and unit disk over to S3.

The fact that Super-Fibonacci sampling is faster then
the simple uniform random sampling of the unit sphere is
due to fewer and more implementation-friendly use of non-
elementary functions. Overall there are only two square
roots, and the two pairs of sine and cosine functions with
the same arguments are optimized by modern compilers to
exploit parallel sincos hardware implementations. The
fact that for two sets of size n and m, every k-th point will
be the same, where k is the gcd of n and m makes it easy to
refine a sequence of n points, simply by generating a multi-
ple of the n points (and then skipping the original points).

Limitations. The dispersion of sets generated with Super-
Fibonacci is worse than those generated with the SOI
method based on optimization – see the supplementary ma-
terial for details. This may be relevant in some applica-
tions [15]. For standard spherical Fibonacci sampling, it
has been observed that the smallest empty spheres appear at
the beginning and end of the sequence. This problem can be
alleviated quite easily [49]. We have not tried such modifi-
cations for Supper-Fibonacci sampling in order to improve
dispersion. It should also be noted that we consider the SOI
methods only for those values of n that admit a factorization
into a sampling on S1 and S2 with similar spacing. Enforc-
ing any composite value n would be possible, but result in
very uneven sampling on S3.

The constants ϕ and ψ do affect the properties of the dis-
tributions. They have been determined experimentally for
sample sizes up to n ≈ 105 considering different quality
measures. Theoretical analysis connecting these constants
to the resulting distribution is lacking and would be wel-
come. Moreover, for larger sample sizes and/or specific use
cases different constants may be more suitable.

Uniform Hopf fibr. SOI Icosa SOI Opt S2 Super Fib

Figure 6. Right half of the zone plates on the Clifford torus re-
constructed based on the number of samples that had been gener-
ated by the sampling methods in approximately 25ms total run-
ning time.

Relation to other work and use in other context. The
high speed generation of samples may be useful for quasi
Monte Carlo techniques, as the sample set can be generated
on the fly. Optimization techniques may profit from a de-
terministic starting point, much closer to the optimum than
random uniform samples.

Analytic techniques typically aim at optimizing local
measures, such as packing distance or dispersion. Op-
timizing discrepancy directly is difficult, but optimizing
sample sets towards specified radial distribution functions
may be possible [55]. A general strategy is to minimize
the sum of squared distance to the samples, known as
Lloyd’s method [33], which for continuous domains leads
to centroidal Voronoi diagrams [14]. In this context, it has
been observed that forcing the sample set to have equal
Voronoi volumes avoids the tendency of such optimization
approaches to introduce unwanted regularity [16]. Recall
that Super-Fibonacci sampling generates Voronoi cells with
almost identical volume, which is exactly what these opti-
mization methods are aiming for.

Balzer et al. [3] suggest the optimization of the distribu-
tion under a discrete capacity constraint, which makes the
optimization oblivious to the underlying geometry. This re-
quires a ’background’ sample set to enforce the equal ca-
pacities, which needs to be a large multiple of the number
of desired samples. Super-Fibonacci sampling is ideal for
generating this background set.

Because of its natural refinement property, a set of kn
samples generated with Super-Fibonacci sampling contains
m different but individually well-distributed sets of k orien-
tations. This can be used for rejection-sampling of density
functions: the density function is quantized into k levels and
then compared against the index of a sample modulo k.

The samples in Super-Fibonaccis sampling can be com-
puted independently based on the index i and the total num-
ber n. This enables use in distributed computing without
the necessity of message passing.
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