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Abstract

With the assumption that a video dataset is multimodal-
ity annotated in which auditory and visual modalities both
are labeled or class-relevant, current multimodal methods
apply modality fusion or cross-modality attention. How-
ever, effectively leveraging the audio modality in vision-
specific annotated videos for action recognition is of par-
ticular challenge.

To tackle this challenge, we propose a novel audio-visual
framework that effectively leverages the audio modality in
any solely vision-specific annotated dataset. We adopt the
language models (e.g., BERT) to build a semantic audio-
video label dictionary (SAVLD) that maps each video la-
bel to its most K-relevant audio labels in which SAVLD
serves as a bridge between audio and video datasets. Then,
SAVLD along with a pretrained audio multi-label model are
used to estimate the audio-visual modality relevance dur-
ing the training phase. Accordingly, a novel learnable ir-
relevant modality dropout (IMD) is proposed to completely
drop out the irrelevant audio modality and fuse only the rel-
evant modalities. Moreover, we present a new two-stream
video Transformer for efficiently modeling the visual modal-
ities. Results on several vision-specific annotated datasets
including Kinetics400 and UCF-101 validated our frame-
work as it outperforms most relevant action recognition
methods.

1. Introduction
One of the deep neural network (DNN) learning schemes

to improve video understanding is to leverage as many input
modalities as available, such as audio, RGB frames, motion,
textual data, the visible text on videos, and human skeleton
joints. Therefore, multimodal learning has shown a remark-
able improvement in video-based action recognition. These
methods process either each modality with an independent
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Figure 1. Conceptual Overview: Vision-Audio Label Mapping.
In an overlapped manner, our method performs a cross-dataset
textual labels mapping in which audio labels are mapped to their
most closely relevant video-based human activity labels by using
language models, e.g., BERT. The resulting clusters compose a
SAVLD dictionary that serves as a bridge between video and audio
datasets. Since our framework trains human activity multimodal
models on vision-specific datasets, we use SAVLD to leverage the
auditory modality in videos.

DNN or all with a single shared DNN. The modalities or
their feature representations are fused either in an early fu-
sion, middle fusion, or late fusion manner [1–3]. Another
fusion scheme is proposed by adopting cross-modality at-
tention or gated units [4–7].
Motivation. Most of the attention and fusion methods
[2] boost the audio-visual models’ performance on audio-
vision correspondence-based videos in which auditory and
visual modalities are corresponding or at least relevant as in
Kinetics-Sounds [8] and EPIC-Kitchen dataset [9]. How-
ever, these fusion methods do not provide similar perfor-
mance boost on the vision-specific annotated datasets, such
as Kinetics400 [10] and UCF-101 [11]. This condition
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is due to the high irrelevance and non-correspondence be-
tween visual and auditory modalities as concluded in [1]. In
this case, multimodal methods do not effectively gain max-
imum benefit from unlabeld audio modality with noisy rel-
evance on vision-specific datasets. For example, music can
largely indicate that the human activity is dancing. How-
ever, music audio can be associated with several other hu-
man activities, such as car driving, or simply can be found
as background audio in any edited video. This interprets
the findings in an interesting study [7], which showed that
unimodal models consistently outperform multimodal DNN
in modality-specific datasets because multimodal networks
are more prone to overfitting with their increase in capacity.
This finding motivated us to look for a method that lever-
ages the relevant audio modality while completely dropping
out the irrelevant modality in training and inference phases.

Contributions. To tackle the aforementioned challenge,
we present a novel multimodal training framework that
trains action recognition networks with the best audio-
visual modality combination on visual modality-specific
datasets. In our method, we automatically estimate the
audio-visual modalities relevance by leveraging the pre-
trained audio classification models on large audio-specific
datasets such as AudioSet [12] and VGGSound [13]. This
task is effectively achieved in two phases. In the first
phase, we map audio labels of an audio-specific dataset to
their most semantically relevant labels in the vision-specific
dataset. This process is achieved using the language pre-
trained models, e.g., BERT [14] or GloVe [15]. After ob-
taining the semantic sentence-based embedding of each la-
bel, we perform cross-dataset label matching and generate
overlapped label clusters each of which contains a single
label from the video dataset along with a set of its most
semantically similar labels in the audio dataset as shown
in Fig. 1. For example, Dancing label in Kinetics400
and Music, Singing, and Clapping labels in AudioSet
are in the same cluster. Overall, the resulting overlapped
clusters compose a semantic audio-video label dictionary
(SAVLD) that serves as a bridge between video and audio
datasets for the training supervision in our next phase. In
the second phase, as a transfer learning task, our framework
adopts a pretrained audio Transformer to generate highly
semantic audio features and multi-label audio predictions.
The audio dataset used for building the SAVLD should be
the same dataset on which the audio Transformer has been
trained. Overall, the outputs of the audio Transformer and
the SAVLD are then used by our proposed framework to
annotate audio, as depicted in Fig.2.

After obtaining the audio modality predictions using any
audio pretrained model (e.g., AST), our framework guided
by the SAVLD drops the irrelevant audio modality. This
is performed by using a novel trainable irrelevant modality
dropout (IMD) that consists of two main modules: The first

module is a neural network termed relevance network (RN)
that receives auditory and visual modalities and decides
whether they are relevant. The output of this network is sig-
moidal predictions representing the relevance level that is
used by the second module to decide whether to fuse the two
modalities for the final video classification or to drop the au-
dio modality. We further improve our framework learning
by proposing a new intra-class cross-modality augmenta-
tion in which it randomly pairs auditory and visual modali-
ties of the same class from different videos. This augmen-
tation method may show a negative effect on some applica-
tions of audio-visual networks when the audio and video are
required to be corresponding as the case of speech recogni-
tion. However, in our case, the audio modality is required to
be relevant but is not necessarily to be aligned or accurately
correspond to the visual modality because we tackle the
problem of human activity recognition in this work. This
motivates us to propose this augmentation method that em-
pirically provides a reasonable performance boost.

Generally, our framework is an entirely convolution-free
Transformer-based network. It leverages three video modal-
ities: RGB frames, optical flow, and audio. The RGB and
optical flow modalities are processed by using our efficient
two-stream video Transformer, whereas the audio modality
is processed by any audio pretrained Transformer.

The key contributions of this work are as follows:
• A novel multimodal human activity recognition frame-

work that leverages the power of the NLP BERT model
and the pretrained audio classification models is pro-
posed to automatically annotate audio modality. It ef-
fectively trains audio-visual action recognition models
on any vision-specific annotated dataset.

• A novel learnable IMD network is proposed to com-
pletely drop out the irrelevant audio modality, whereas
the relevant modalities are fused on the basis of their
relevance level.

• An efficient two-stream video Transformer is designed
to learn the visual modality with few parameters as
compared to the relevant video Transformers.

• An intra-class cross-modality augmentation method is
proposed for generating more training samples by al-
lowing each audio modality sample to be paired with
any visual modality sample among the same class.

2. Related Work
Multimodal Action Recognition. Multimodal action
recognition aims to exploit multimodality input for better
human activity recognition. DNNs have empowered this
learning scheme, which enriches the global feature learn-
ing [1,3,5–7,16]. On the basis of the modality combination,
some methods use RGB frames along with motion modal-
ity as in the two-stream networks [4,17,18], with the skele-
ton modality [19], with detected objects [2], with textual
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modality [20], or with the audio modality [1, 8, 19, 21–23]
which is the most common multimodality approach to learn
global representation for video understanding. More than
two modalities are exploited by some methods [2,5,7,16,24]
to improve action recognition. Another approach is fol-
lowed for obtaining video modalities as in [5, 25], which
uses the compressed videos as a source of four modalities, I-
frames, motion vectors, residuals, and the audio modalities.
Using these modalities, the 2D/3D convolution networks
have shown substantial progress in global feature modeling
[2, 4, 8, 19, 21–23, 26]. However, multimodal video Trans-
formers [1, 3, 5, 16] have shown a competitive performance
as a normal reflection of the remarkable Vision Transformer
(ViT) success witnessed on image recognition [27]. Al-
though, supervised multimodal learning provides good per-
formance [1–3, 5–8, 19, 21], some methods tend to leverage
the huge unlabeled video data to learn multimodal networks
in self-/weakly supervised scheme [16, 26, 28, 29]
Modality Fusion. One of the main components of any mul-
timodal algorithm is its modality fusion module that is used
to fuse and derive the cross-modality representations for the
final prediction. Several fusion methods have been pro-
posed and can be categorized into early, mid, and late fu-
sion. These fusion approaches are adopted and empirically
studied in more detail in [1–3,6,7,18]. The fusion methods
vary between a simply modality feature aggregation, con-
catenation, and cross-modality attention [1, 26]. Recently,
several multimodal methods [1, 4, 5] leverage the attention
mechanism to perform cross-modality feature modeling re-
sulting in a remarkable improvement in action recognition.
Modality Dropout and Gating. Several methods, includ-
ing the well-known dropout [30], have been proposed to im-
prove the training process of the deep networks, which pre-
vents DNNs from overfitting. Model overfitting becomes
more challenging when it comes to multimodal training par-
ticularly for video understanding, as concluded in [7]. This
is due to the small video dataset size as compared to image-
based datasets and due to the bias towards majority classes
resulting by highly imbalanced datasets. Therefore, several
methods use random modality dropout, which is first used
in [31], for improving the multimodal gesture recognition
training. By contrast, a drop input token is proposed in [16]
for reducing the training time at the cost of the prediction
quality. Other studies are presented in [6, 32], which pro-
pose a gated multimodal unit for text-vision fusion in case
two modalities are relevant.

Our work differs from previous methods in the fol-
lowing aspects. First, our vision model is a convolution-
free two-stream Transformer that derives spatiotemporal
features with few parameters as compared to [1,5,16]. Sec-
ond, unlike [6, 16, 32], our proposed IMD is learnable that
learns to completely drop the irrelevant modality whereas
the relevant modalities are passed for the fusion step in both

Table 1. Samples of video labels in Kinetics400 dataset and their
most relevant labels in AudioSet dataset selected by KNN after a
semantic label embedding mapping with BERT, when k = 5.

Label Relevant AudioSet Labels

applauding speech;applause;whistling;chime;clapping
clean and jerk fill with liquid;pump liquid;filing rasp;rumble;rustle
feeding birds wild animals;insect;mosquito;bird;patter
sniffing whimper;growling;cheering;whispering;rattle
sneezing gurgling;snoring;babbling;gargling;rapping
tickling whispering;rustle;cheering;growling;screaming
yawning babbling;rapping;frying food;gurgling;snoring
writing writing;speech;typing;chatter;mechanisms

training and inference phase. IMD aims to learn multi-
modality representations from modality-specific annotated
datasets. Thus, the proposed IMD is different in its struc-
ture, purpose, and training approach. Third, to the best of
our knowledge, our work is the first attempt to exploit the
power of both NLP and audio Transformers to automati-
cally annotate audio modality that significantly boosted the
action recognition performance. Fourth, the audio-visual
correspondence (AVC) [8], which considers the dataset as
audio-visual corresponding, learns to align auditory and vi-
sual modalities and decides whether they are extracted from
the same time track of the same video, on the basis of only
positive and negative labels. However, our relevance net-
work (RN) does not learn the modality correspondence or
alignment. Instead, it learns to simply decide whether the
audio modality is class-relevant to the visual modality or not
based on the generated label dictionary SAVLD regardless
of which videos are used to sample the input modalities.
Finally, our proposed intra-class cross-modality augmenta-
tion is different from [33], which is an inter-class sample
mixing. It is also different from [26], which exchanges au-
dio and video tracks for one time as a preprocessing step
to ensure each input sample involves auditory and visual
modalities.

3. Proposed Multimodal Framework
3.1. Label Dictionary SAVLD

SAVLD is a cross-dataset label dictionary in which each
label in an audio-specific dataset is semantically mapped
into one or more labels on the vision-specific dataset. We
achieved this preprocessing step by using the well-known
NLP model BERT [14]. We obtain the sentence-based se-
mantic embeddings of each textual label in audio and video
datasets because most human activity video and audio la-
bels involve more than one word. Each video label embed-
ding is matched with all audio label embeddings. The most
k relevant audio labels are picked by using the k nearest
neighbor algorithm. However, the matching process does
not require much time because the number of labels in two
datasets is small, that is, Kinetics400 has 400 class labels
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Figure 2. Proposed Multimodal Learning Framework. It uses three modalities: RGB, flow, and audio. Audio modality features are
obtained by an off-the-shelf Transformer trained on the audio dataset AudioSet. Here, audio Transformer parameters are not trainable
except the added AB which works as a bridge between our trainable network and the pre-trained frozen audio model. The trainable IMD
is the main part of this framework, it estimates the auditory-visual modality relevance of the input video using the RN, and then it decides
whether to fuse the audio modality or to completely drop it out using thresholding and masking layers (Fig. 4). IMD is optimized with
binary cross-entropy. The IOU is computed between the audio Transformer multi-label predictions and the corresponding k relevant audio
labels generated by SAVLD. The IOU is normalized into the [0–1] range to match the relevant network (RN) output range.

and AudioSet has 527 class labels. Thus, finding the clos-
est k similar labels can be done simply by using any dis-
tance metric. We obtain a dictionary in which each video
label has k audio labels of which they all are considered
semantically similar. This dictionary can be considered Uv

overlapped clusters, where Uv denotes the number of video
dataset classes. The cluster overlap is represented here in
terms of audio labels only. A conceptual overview of build-
ing SAVLD is illustrated in Fig.1, whereas a set of real
Kinetics400-AudioSet mapped labels is shown in Table 1.

3.2. Visual-Modality Two-Stream Transformer

To leverage the pre-trained knowledge on large image
datasets [34], we adopt several parts from the image-based
ViT [27] and the video Transformer [35] to build our two-
stream video Transformer.
Tokenization. Similar tokenization part of [35] is used in
which the input visual-modality sample V ∈ RT×C×W×H ,
of T frames and C = 3 for RGB modality and C = 2 for
optical flow modality, is tokenized into T × N patches in
which each frame is projected to N = HW/P 2 patches
each of which has a spatial dimension of P 2. After orga-
nizing the obtained T × N patches, each patch is mapped
to xj,i ∈ RD, where j = 1, · · · , T , i = 1, · · · , N , and d
denotes the embedding size to be used throughout the visual

S S ST STS...
1 2 L-2 LL-1

Figure 3. Visual-Modality Transformer Encoder. It consists of
L− 2 Spatial S blocks and 2 Spatio-Temporal ST blocks. STs are
spatial–temporal factorized-based attention blocks to preserve the
Transformer efficiency

two-stream transformer.
z0j,i = xj,iE+Epos

j,i , (1)

where for each patch xj,i, a spatiotemporal positional em-
bedding Epos

j,i ∈ RD is added. Additionally, a learnable
classification embedding z00,0 ∈ RD is added to learn the
visual-modality semantic video representation.
Visual-Modality Transformer Encoder. Our visual two-
stream Transformer encoder involves L stacked blocks,
each of which is a spatial-based module except the last
two blocks {L,L − 1} which involve a spatiotemporal
factorized self-attention to better model the spatiotempo-
ral knowledge. Using this approach, our Transformer pro-
vides competitive performance with few parameters as com-
pared to [35] which involves spatiotemporal attention in
each block. Each Transformer block consists of a multi-
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headed self-attention (MSA) [36], LayerNorm (LN) [37],
and multilayer perception (MLP) modules. The first L − 2
blocks of the proposed Transformer encoder can be formu-
lated as:

zℓj,i = MSA
(
LN(zℓ−1

j,i )
)
+ zℓ−1

j,i , (2)

where ℓ ∈ {0, ..., L − 2}. The last two blocks can be for-
mulated as:

z̀ℓj,i = LR
(
MSAtime(LN(zℓ−1

j,i ))
)
+ zℓ−1

j,i ,

zℓj,i = MSAspace
(
LN(z̀ℓj,i

)
+ z̀ℓj,i,

(3)

where LR refers to a linear layer that added after each tem-
poral module. The classification embeddings of RGB and
optical flow streams are fused with two fully-connected lay-
ers each of which is followed by ReLU activation.

3.3. Audio Transformer

We choose the pretrained AST [38] because it is the most
closely similar Transformer to our video Transformer. We
adopt AST to extract high semantically audio features and
to perform a multi-label prediction. AST has been built
on the basis of ViT [27] in which it treats audio modality
processing as a vision task because it converts input audio
modality into 128×100t spectrogram. AST is mostly iden-
tical to ViT except for a few changed Transformer param-
eters, where AST uses patch size P = 16 with a stride of
10. Overall, we follow the audio input normalization and
inference settings in [38] because we adopt AST as a down-
stream task with frozen parameters. We obtain the output
predictions of AST on its audio dataset (i.e., AudioSet) to
obtain the video label using the label dictionary SAVLD.
Additionally, we obtain the learned class embedding which
is then passed to a learnable audio bottleneck.
Audio Bottleneck (AB). We add a learnable audio bottle-
neck as a semantic representation bridge between audio and
video datasets, such as AudioSet-Kinetics400. This condi-
tion is because all audio model parameters are frozen while
training our video-based action recognition model. This
bottleneck plays a significant role by transforming the audio
features from audio-dataset-oriented predictions to video-
oriented predictions in the training phase. Simply, it con-
sists of one LN and two LR each of which is followed by
ReLU activation.

3.4. Trainable Irrelevant Modality Dropout (IMD)

IMD is the main part of our framework that automati-
cally drops out the irrelevant audio modality. IMD consists
of two main modules: The first module is a simple relevance
network that receives the concatenated modalities of audi-
tory and visual Transformers and decides whether they are
relevant. The output of this network is sigmoidal predic-
tions representing the relevance level. The sigmoidal pre-
dictions are forwarded to a binary thresholding layer to de-
cide whether audio-modality embedding can be fused with

Trainable Irrelevant Modality Dropout (IMD)

Relevance Network
Irrelevant modality dropout & relevant modality fusion
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C f
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Figure 4. Proposed Irrelevant Modality Dropout (IMD). It is
composed of two main networks. Relevance network (RN) which
estimates the class-based audio-vision relevance of the input clip.
The IMD network performs two steps: the output of the RN is
thresholded and masked as in Eqs. 5–7. Consequently, the audio
modality is completely dropped or fused as in Eq. 8.

visual-modality embedding for the final classification or to
drop it. The thresholding and dot product layers compose a
masking layer in which the irrelevant modality is multiplied
with 0. The proposed IMD can be formulated as follows:

rev = σ(MLP(LN(zL0,0)) + zL0,0), (4)

δ =

{
0, if z < α

rev, otherwise
, (5)

z
(a)L
0,0 , z

(v)L
0,0 = split(zL0,0), (6)

zL0,0 = Concate((z
(a)L
0,0 · δ), z(v)L0,0 ), (7)

zav = MLP(LN(zL0,0)), (8)

where α denotes the defined threshold for the audio-visual
modality relevance and zav is the fused output. Figure 4 il-
lustrates the IMD network and its main layers. Although it
is designed for audio-modality dropout, it may be adopted
for other modalities in the case of textual-vision applica-
tions whenever possible to easily build a cross-dataset label
dictionary as the SAVLD we built for audio-visual training.

3.5. Framework Optimization

Our framework has two learning targets; optimizing the
modality Transformers to learn the final human activity
and optimizing the relevance network to accurately estimate
the audio-video relevance. Therefore, we adopt two cross-
entropy losses. The first loss is a binary cross-entropy for
optimizing the RN by using the label dictionary SAVLD.
The second loss is the default category cross-entropy for the
classification learning, which is weighted with the RN loss
to form the final loss. Before the category cross-entropy is
applied to the output fused class embedding, it is first fed
into the final classification MLP as follows:

Yv = Softmax(MLP(LN(zav))) (9)
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3.6. Intra-Class Cross-Modality Augmentation

We propose an intra-class cross-modality augmentation
for human activity recognition, which has shown a positive
impact in the Transformer training because human activ-
ity recognition on video does not require audio-video cor-
respondence as in the case of speech-visual recognition.
Thus, in our work, we focus on relevance rather than cor-
respondence in which the audio modality should be rele-
vant to the visual class label regardless of its video source.
Therefore, we run a cross-modality intra-class augmenta-
tion by pairing audio and visual modalities from different
videos but belong to the same class.

4. Experimental Results
4.1. Experiments Setup

Datasets and Evaluation Metrics. Since our aim is to
tackle the problem of multimodal video understanding in
vision-specific datasets, we have conducted an extensive
experiments on two well-known video datasets. Kinet-
ics400 [10] is downloadable from YouTube, where we used
in this work 241, 722 videos of 400 classes for training, and
19, 877 videos for validation. The videos of Kinetics400
are trimmed in 10 seconds. UCF-101 [11] contains 13, 320
videos of 101 classes. Its video length about 7.2 seconds. It
is split into three training/validation splits. We adopted AST
audio model pretrained on AudioSet [12], which is consid-
ered one of the largest available audio dataset. It contains
1.8M sound clips of 10-second length. We followed the
most used evaluation metric Top-1 and Top-5. We sampled
3 spatial crops and 4 temporal clips from each video and
averaged their obtained accuracy. We compared our mul-
timodal video Transformer with state-of-the-art methods in
terms of computational cost floating-point operation and the
number of parameters
Implementation Details. The entire proposed framework
is built in Pytorch [39]. The training and evaluation phases
are conducted on two machines (i.e., 8 × TITAN RTX and
2 × RTX 2080 Ti). Unless otherwise specified, we ensure
to run each set of the framework training instances by us-
ing the same settings on the same machine. The GPU’s
memory is saved for the visual RGB and flow stream be-
cause AST is frozen during training and inference, except
its bottleneck AB. The input RGB modality is sampled as
a clip with spatial resolution of 3 × 224 × 224 and tempo-
ral length of 8-frames. Similarly, flow modality is sampled
with the same RGB spatial and temporal settings except for
the channel of 2 to represent the x and y flow components.
We trained each instance with a global input batch of 64 for
15 epochs. SGD optimizer is utilized with an initial learning
rate of 0.005 and weight decay of 1e− 4. Our visual video
Transformer uses a patch of 16 × 16 size, block depth 12,
embedding size D = 768, and self-attention of 12 heads.

Table 2. Impact of embedding extractor and similarity distance
methods on the AudioSet-Kinetics400 SAVLD quality.

Embed. Extractor Similarity Top-1 (%) Top-5 (%)

word2vec Euclidean 80.9 94.3
GloVe Euclidean 81.2 94.5
BERT Euclidean 82.8 95.7

BERT Manhattan 82.6 95.5
BERT Cosine 82.8 95.9

The label dictionary SAVLD is saved as a text file, where
each row represents the video dataset label and its k rele-
vant audio labels.

4.2. Ablation Study

In this section, we conduct a set of extensive ablation
studies on the proposed framework variants to explore their
optimal settings. We start with SAVLD building techniques
and then, the modality combination on the visual-modality
specific dataset performance. Finally, the effect of IMD el-
ements is studied.

4.2.1 Semantic Audio-Video Dictionary Quality

Embedding Extractor. We chose the well-known NLP
model termed BERT to extract the best sentence-based se-
mantic features for each textual label due to two main rea-
sons: first, BERT has been trained in an unsupervised man-
ner and has undergone millions of unorganized text from
real-world sources. Thus, it can provide better semantic
features that can detect the most relevant text. Secondly,
unlike word2vec [40] and GloVe [15], BERT as a text fea-
ture extractor is a context-aware text analyzer that provides
different embedding for the same word depending on its po-
sition in the sentence. The performance of the proposed
framework on Kinetics400 using SAVLD constructed with
the three embedding extractors is reported in Table 2.
Embedding Matching. Three vector similarity matching
methods, namely, Euclidean, Manhattan, and cosine sim-
ilarity distance are evaluated. The lower part of Table 2
reports their performance on BERT embedding matching.
Notably, the similarity distance function does not show
large effect on the framework performance.

4.2.2 Modality Combination

Modality combination on human activity recognition with
the proposed framework is evaluated. Table 3 reports
three modality combination schemes, namely, unimodal, bi-
modal, and multimodal on all the possible three modali-
ties, audio, RGB, and optical flow. The use of more than
one modality can remarkably improve video-based action
recognition However, RGB remains the modality with the
largest effect on recognition accuracy.
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Table 3. Performance of the proposed framework variants in terms
of modality combination on Kinetics400.

Scheme Modality Top-1 (%) Top-5 (%)

Uni-modal
Audio 26.8 45.1

RGB 79.1 93.9

Bi-modal
Audio-Flow 56.7 72.8

Audio-RGB 81.6 94.8

RGB-Flow 81.1 94.3

Multi-modal Audio-RGB-Flow 82.8 95.7

Table 4. Impact of different IMD settings on the proposed frame-
work performance on Kinetics400.

Loss K-Ya α M/W Top-1 (%) Top-5 (%)
IOU 10-10 0.50 M 81.7 95.4

Dice 10-10 0.50 M 81.6 95.5

IOU 20-10 0.50 M 81.7 94.8

IOU 10-20 0.50 M 82.3 95.5

IOU 20-20 0.50 M 81.9 95.1

IOU 10-20 0.25 M 82.8 95.7
IOU 10-20 0.75 M 80.9 94.4

IOU 10-20 0.25 W 80.4 94.3

4.2.3 Trainable Irrelevant Modality Dropout (IMD)

Overlapping Loss. The overlap between the output pre-
dictions of the pre-trained audio model AST and the cor-
responding K relevant textual audio labels in the SAVLD
is computed as ground truth for the RN optimization. The
overlap is then normalized between 0 and 1 to match the sig-
moidal prediction of RN. We tested two overlap loss func-
tions IOU and Dice overlap [41]. The upper part of Ta-
ble 4 shows the performance of two functions. The overlap
function does not show a large effect on the framework per-
formance because this loss is performed only to build the
ground truth for the binary cross-entropy rather than to op-
timize the framework itself.
Most k Audio Relevant Labels. The overlap between AST
predictions and the relevant textual label vectors is com-
puted with same size of two vectors. However, we tested
the impact of using different sizes of k against Ya. Table 4
shows that 10− 20 is the best k − Ya ratio for ground truth
computation.
Relevance Thresholding (α). The sigmoidal predictions of
the RN indicate the audio relevance to the visual modality
on the input video sample. Thus, these sigmoidal predic-
tions range between 0 and 1, which are going to be used
by the thresholding layer in the dropout module. The ef-
fect of various threshold values on the dropout rate affecting
the framework performance is reported in Table 4. Notably,
when α = 0.25, the framework shows better results.
Irrelevant Modality Masking Scheme. Two types of

masking schemes in IMD are evaluated. The first scheme
is the default explained masking (M) method in this work
in which the relevant sigmoidal score larger than α is sim-
ply multiplied with the audio embeddings received from the
audio Transformer, whereas the relevance is less than α is
multiplied by 0 to completely mask the audio embeddings
from the fusion step. The second scheme is applying the
same weighting (W) method in two cases when relevant sig-
moidal scores are larger or less than α. The lower part of
Table 4 shows that the weighting relevance method provides
less performance compared with the masking method.

4.3. Comparison with State-of-the-art

Modality Fusion Methods. We compare our proposed
IMD to other fusion methods in the literature. When we
adopt the relevant fusion methods, we disable the RN learn-
ing to ensure the fusion process is performed on each audio-
visual input sample. Several fusion methods, including SE
Gate [7], NL Gate [7], late-concat [7], AVC [8], and GMU
[6], are evaluated. Table 5 reports the performance of our
framework when using each method of these fusion meth-
ods.

Table 5. Performance comparison of the proposed IMD against
other relevant fusion methods on Kinetics400. IMD∗ refers to ap-
ply the proposed intra-class cross-modality augmentation.

Fusion Method Top-1 (%) Top-5 (%)
SE Gate [7] 79.2 94.1
NL Gate [7] 80.8 94.8
late-concat [7] 78.6 93.9
AVC [8] 79.5 94.2
GMU [6] 80.9 94.8

IMD (ours) 82.3 95.1
IMD∗(ours) 82.8 95.7

Action Recognition. In this part, we evaluate our overall
framework against the state-of-the-art multimodal methods
for video-based action recognition on two datasets Kinet-
ics400 [10] and UCF-101 [11]. Several uni/multimodal ac-
tion recognition methods have shown good performance in-
cluding the CNN-based models: TSN [50], I3D [10], AVS-
lowFast [47], SlowFast [43], X3D [44], MoViNet-A5 [42],
and G-Blend [7] along with the Transformer-based models:
VATT [16], TimeSFormer [35], Swin Video Transformer
[45], X-ViT [46], MBT [1], Mformer [48], ViViT-L [49],
MM-ViT [5]. However, our multimodal Transformer-based
framework outperforms all aforementioned methods on the
two datasets with considerable margins. Table 6 reports the
action recognition performance on Kinetics400 dataset, and
Table 7 reports the results on UCF-101 dataset. Unlike our
framework, most multimodal video-based deep models are
usually evaluated on multimodality datasets. However, we
compared our method with the best available models on
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Table 6. Comparison to prior uni and multimodal action recog-
nition methods on Kinetics400 dataset. Most compared methods
are Transformer-based except the CNN-based methods: MoViNet-
A5, SlowFast, and X3D. All methods are organized by their size
in which the upper part involves the Transformers of base (B) size,
whereas the lower part involves the ones with large (L) size.

Model P-train Top-1 Top-5 GFLOPs

MoViNet-A5 [42] IN-1K 78.2 N/A 29
SlowFast 16x8 [43] IN-1K 79.8 93.9 7, 020
VATT-B [16] IN-1K 79.6 94.9 9, 090
X3D-XXL [44] IN-1K 80.4 94.6 5, 823
TimeSFormer-B [35] IN-21K 78.0 93.7 590
Swin-B [45] IN-1K 80.6 94.6 3, 384
Swin-B [45] IN-21K 82.7 95.5 3, 384
X-ViT-16x [46] IN-21K 80.2 94.7 850
IMD-B (ours) IN-21K 82.8 95.7 4, 464

AVSlowFast [47] - 78.8 93.6 7, 020
G-Blend [7] Sport1M 80.4 94.8 3, 303
MBT (AV) [1] IN-21K 80.8 94.6 N/A
TimeSFormer-L [35] IN-21K 80.7 94.7 7, 140
Mformer-L [48] IN-1K 80.2 94.8 35, 553
ViViT-L [49] IN-21K 80.6 94.7 17, 352
VATT-L [16] IN-1K 82.1 95.5 29, 800
Swin-L [45] IN-21K 83.1 95.9 7, 248
IMD-L (ours) IN-21K 84.2 96.3 8, 232

Table 7. Comparison to to prior multimodal action recognition
methods on UCF-101. Methods are organized by pretrained data.

Model Pretrained Weights Top-1 (%)

CoViAR [25] IN-1K 90.4
TSN [50] IN-1K 94.2
CoViAR + OF [25] IN-1K 94.9
Two-stream fusion [18] IN-1K 92.5
MM-ViT [5] IN-21K 95.4
IMD-B (ours) IN-21K 95.9
I3D [10] Kinetics 95.4
MM-ViT [5] Kinetics 98.9
IMD-B (ours) Kinetics 99.1

these modality-specific datasets in which our IMD mod-
els provides a Top-1 performance boost of the most sim-
ilar multimodal methods (highlighted in LightBlue color)
G-Blend and MBT with ∼3.8% and ∼3.4%, respectively.

4.4. Discussion and Limitations

On the basis of the reported results and overall frame-
work building, few worth-mentioning points need to be
declared. First, our framework is a convolution-free
Transformer-based neural network. It shows a larger per-
formance enhancement on large datasets compared with its
performance on small datasets, as shown in Tables 6 and
7. Second, our designed visual-modality two-stream Trans-
former attempts to cut the number of Transformer parame-

ters while preserving the best spatiotemporal representation
learning. Third, audio-modality masking based on the sig-
moidal scores provided by the RN is relayed on the audio
Transformer accuracy on its audio dataset (e.g., AudioSet).
For example, as reported in Table 4, the best α = 0.25.
This finding is because the AST and most audio recognition
models in the literature still do not show as high recognition
accuracy as visual-based models because audio modality is
more challenging compared with visual data. AST [38] pro-
vides mAP of 0.485. In this manner, we think that thresh-
old α can be higher when a better pretrained audio model is
used. Fourth, the proposed intra-class cross-modality aug-
mentation method shows a positive effect on the framework
training. However, its main effectiveness is related to the
framework design, which considers that the audio modal-
ity is noisy and unlabeled. Thus, intra-class cross-modality
augmentation improves the performance by pairing visual
and auditory modalities. Finally, even though we evaluate
the quality of the SAVDL dictionary indirectly using its im-
pact on the action recognition performance. However, it
is of future interest to build a new evaluation method that
can effectively evaluate the quality of text-to-text similarity
matching.

5. Conclusion

In this work, we introduced a novel audio-visual action
recognition framework. It leverages the power of NLP and
audio recognition models to automatically annotate audio
modality in the input unlabeled audio for video-based ac-
tion recognition in an online training manner. The proposed
framework features a novel IMD that completely drops
the irrelevant audio modality based on a recommendation
provided by an RN, which in turn learns to estimate the
audio modality relevance to the input video category. Our
framework aims to create cross-modality high semantic
features that can help to bridge the relevance gap between
the visual and auditory modalities in videos. As long as a
strong pre-trained model on a large dataset is available to
be used as a transfer learning task, this training scheme can
be adopted by other bimodality and multimodality models.
Thus, the same idea can be further investigated for other
modalities, such as textual-auditory and textual-visual
model training, which is part of our future interest.
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Andreas Köpf, Edward Yang, Zach DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, 2019.
6

[40] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. Distributed Representations of Words and
Phrases and their Compositionality. In NIPS, oct 2013. 6

[41] W.R. Crum, Oscar Camara, and D.L.G. Hill. Generalized
Overlap Measures for Evaluation and Validation in Medical
Image Analysis. IEEE Transactions on Medical Imaging,
25(11):1451–1461, nov 2006. 7

[42] Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang,
Mingxing Tan, Matthew Brown, and Boqing Gong.
MoViNets: Mobile Video Networks for Efficient Video
Recognition. pages 16020–16030, 2021. 7, 8

[43] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
ICCV, 2019. 7, 8

[44] Christoph Feichtenhofer. X3D: Expanding Architectures for
Efficient Video Recognition. CVPR, pages 200–210, 2020.
7, 8

[45] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video Swin Transformer. arXiv,
pages 1–12, 2021. 7, 8

[46] Adrian Bulat, Juan-Manuel Perez-Rua, Swathikiran Sud-
hakaran, Brais Martinez, and Georgios Tzimiropoulos.
Space-time mixing attention for video transformer. In
NeurIPS, 2021. 7, 8

[47] Fanyi Xiao, Yong Jae Lee, Kristen Grauman, Jitendra Ma-
lik, and Christoph Feichtenhofer. Audiovisual SlowFast Net-
works for Video Recognition. arXiv, 2020. 7, 8

[48] Mandela Patrick, Dylan Campbell, Yuki M. Asano, Is-
han Misra, Florian Metze, Christoph Feichtenhofer, Andrea
Vedaldi, and João F. Henriques. Keeping Your Eye on the
Ball: Trajectory Attention in Video Transformers. In Ad-
vances in Neural Information Processing Systems, jun 2021.
7, 8

[49] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen
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