
DECORE: Deep Compression with Reinforcement Learning

Manoj Alwani
Element Inc.

ma@discoverelement.com

Yang Wang
Element Inc.

yw@discoverelement.com

Vashisht Madhavan
Element Inc.

vm@discoverelement.com

Abstract

Deep learning has become an increasingly popular and
powerful methodology for modern pattern recognition sys-
tems. However, many deep neural networks have millions
or billions of parameters, making them untenable for real-
world applications due to constraints on memory size or
latency requirements. As a result, efficient network com-
pression techniques are often required for the widespread
adoption of deep learning methods. We present DECORE,
a reinforcement learning-based approach to automate the
network compression process. DECORE assigns an agent
to each channel in the network along with a light policy
gradient method to learn which neurons or channels to be
kept or removed. Each agent in the network has just one
parameter (keep or drop) to learn, which leads to a much
faster training process compared to existing approaches.
DECORE provides state-of-the-art compression results on
various network architectures and various datasets. For ex-
ample, on the ResNet-110 architecture, it achieves a 64.8%
compression and 61.8% FLOPs reduction as compared to
the baseline model without any accuracy loss on the CIFAR-
10 dataset. It can reduce the size of regular architectures
like the VGG network by up to 99% with just a small accu-
racy drop of 2.28%. For a larger dataset like ImageNet with
only 30 epochs of training, it can compress the ResNet-50
architecture by 44.7% and reduce FLOPs by 42.3%, with
just a 0.69% drop on Top-5 accuracy of the uncompressed
model. We also demonstrate that DECORE can be used to
search for compressed network architectures based on var-
ious constraints, such as memory and FLOPs.

1. Introduction
Deep neural networks (DNNs) have led to significant

advances in image recognition tasks, most notably bench-
marked by the ImageNet challenge [42]. Recent trends
suggest that deeper architectures with more parameters
and more complex computational blocks lead to better re-
sults [13, 47]. These increases in model size, however, in-
cur a higher inference cost, making them difficult to be

deployed in embedded systems or mobile devices. Ad-
ditionally, real-world applications have memory, latency,
or throughput constraints which make it difficult to use
large convolutional neural networks (CNNs) as is. There-
fore, lowering the inference time and memory consumption
of large models would benefit the wider adoption of deep
learning models for these real-world applications.

There has been a significant amount of work on reduc-
ing the inference cost via a more efficient network architec-
ture [5, 7, 27, 43]. Although much progress has been made,
the process of finding efficient architectures often requires
a lot of experience and manual design. The automation of
this process is an active research area of great value, as
newer, more powerful DNN architectures are rapidly be-
ing discovered. Meanwhile, a large body of work has also
been done in the direction of network compression, such as
low-rank decomposition [5,29,30,59], parameter quantiza-
tion [22, 41, 61], and pruning [18, 27, 28, 31, 32, 56].

These compression techniques can be broadly divided
into two categories: non-structured and structured prun-
ing. Non-structured pruning methods [9–12] directly prune
weights of CNN models to get sparse weight matrices.
Along with compression, these approaches can provide
faster network inference using specialized software [8] or
hardware [8, 21, 39]. However, they often cause irregular
memory access that adversely affects the network inference
on general-purpose hardware or BLAS libraries. Structured
pruning overcomes these limitations by removing structured
weights like 2D kernels and feature maps (channels) or lay-
ers, which focuses on network architecture changes and can
be supported by off-the-shelf deep learning libraries like
PyTorch [40], and TensorFlow [1] etc. Pruning structured
weights is a complex problem as we have to find out which
layers or channels are least important in the network and re-
moving them will not affect the accuracy significantly. For
example, in VGG16 [47] the first hidden layer has 64 chan-
nels, an exhaustive search for which channels to remove
without affecting accuracy involves 264 combinations. For
the whole network with around 5, 000 channels in total, it is
computationally infeasible to go through all combinations.
To overcome this problem many techniques have been pro-

12349



posed in the following categories.
Pruning using trained network statistics: These ap-

proaches mostly consist of two steps, first pruning the
weights using network statistics and then fine-tuning the
compressed network to recover from accuracy loss. Among
these techniques, magnitude-based pruning has been pro-
posed to find filters [27] or channels (feature maps) [18]
with the lowest l1-norm as they are least informative and
can be removed. Yang et al. [15] calculates the geomet-
ric median of each layer and prunes the filters close to it.
Greedy pruning [16, 35] is also a common strategy that
prunes filters by considering statistics computed from the
next layer in a greedy layer-wise manner. More recently,
Lin et al. [28] proposed to find the channel’s importance
by calculating the rank of channels. All these methods cal-
culate channel or filter importance at one or neighboring
layers without considering all other layers in a deep neural
network. Yu et al. [56] found that channels that were as-
sumed less important and pruned in early layers could have
a significant impact on the pruning of later layers. To ad-
dress this issue, they calculate the importance score of the
final layer and propagate it to each filter in the network to
get its importance score.

Finding least important channels using trained network
statistics is fairly straightforward, but finding how many
channels or filters to drop from each layer (or the network)
to achieve a certain compression rate requires manual effort.
For example, in [28,56] a fixed compression rate is used be-
fore fine-tuning which limits exploration for different com-
pression rates, as each combination requires fine-tuning to
recover from accuracy loss which could be time-consuming.

Pruning by learning channel importance: Another
group of techniques is learning which channels are impor-
tant by applying compression constraints while retraining
the network, such as sparse scaling parameters in batch nor-
malization layers [34,52,60]. Extension to these approaches
has also taken into account of resource constraints such as
latency and computation [6, 7, 38]. Huang et al. [20] and
Lin et al. [32] introduced a new binary parameter to each
channel (mask) to find out if the channel is important or
not, but learning this binary mask involves an NP-hard opti-
mization. This joint optimization for both compression and
accuracy leads to higher accuracy performance but since the
(combined) loss function is different than the original net-
work, it requires specialized optimizers [20, 32] and needs
iterative fine-tuning which increases time for both model
training and manual adjustments.

Pruning by architecture search: Given that designing
deep network architectures requires significant human ef-
fort, there have been some explorations on automatically
learning network architectures. These approaches build net-
works from the ground up using a set of custom building
blocks, relying on variations of a trial-and-error search to

find promising architectures [23, 33, 51, 52, 62], or com-
pressed ones. In [3, 14], Reinforcement Learning (RL) is
used to find compressed architectures but these techniques
often take a long time to train. For example, in [3] a knowl-
edge distillation [4, 17] approach is used to find a com-
pressed student network from a teacher network using RL.
The method utilizes the architecture search to reduce the
depth of a network and size of layers which can take up to
2,500 epochs. This search cost is however prohibitively ex-
pensive for regular deep learning practitioners and further
exacerbated by the growth in the dataset and network com-
plexities. To reduce the architecture search time, generative
adversarial networks have been used in [32] to find com-
pressed structures. It shortens the search time significantly
but still needs many iterations to train both generative and
adversarial networks. Although these methods have led to a
high compression rate, they often require a large amount of
GPU time to obtain high-performing architectures.

Although the approaches mentioned above provide state-
of-the-art results, they are computationally expensive and
time-consuming as they require multiple iterations of prun-
ing and fine-tuning, and often need a lot of manual effort.
In this paper, we present DECORE, a multi-agent reinforce-
ment learning (RL) framework for network compression
which overcomes these limitations. In RL, an agent learns
to perform a sequence of actions in an environment that
maximizes some notion of a cumulative reward [49]. In
our approach, we assign dedicated agents to all channels in
the network which take actions to drop or keep a channel
in the network. The agent gets a positive reward when it
drops the channel for higher compression, but it gets a neg-
ative reward (penalty) if the accuracy is decreased due to
pruning. Using the REINFORCE algorithm [54], we op-
timize agents’ policies to find out which channels to drop
at each layer without affecting accuracy significantly and
in turn maximizing the reward. Training of agents using
the REINFORCE algorithm is independent of the network
training loss which helps speed up the compression process.

Our main contributions are summarized as follows:

• We propose DECORE, a flexible and powerful ap-
proach to automating structure search and model com-
pression. DECORE learns which channels are impor-
tant by jointly training the network to provide high
compression and FLOPs reduction rates.

• DECORE assigns an agent to each channel in the net-
work (multi-agent learning) while each agent learns
only one parameter, as opposed to other RL-based
methods where the policy involves training another
neural network. Learning a single parameter for each
agent makes training much faster and more efficient.

• We demonstrate that our approach is able to find the

12350



most important channels in the network which can be
used to search for compressed network architectures.

• Results on both CIFAR-10 and ImageNet datasets are
reported with various networks to demonstrate that
DECORE is able to achieve better accuracy, as well
as higher compression and acceleration (FLOPs reduc-
tion) rates, compared to other existing methods.

2. Related Work
2.1. Network Pruning

Apart form weight pruning as discussed in section 1, a
few approaches have also been proposed to leverage spar-
sity in networks by removing entire channels [27, 44, 53].
Other approaches prune channels by analyzing trained net-
work statistics [46, 57], or learning the importance of each
channel or filter in the network [7,20,28,34]. Our approach
is similar to these methods in terms of operating on entire
channels, but using RL to identify important channels in-
stead of relying on network statistics. Moreover, our ap-
proach learns channel importance while training the net-
work without changing the loss function like in [20, 32],
which speeds up the overall training process.

2.2. Architecture Search

Modern architecture search approaches have led to state-
of-the-art results for many tasks, but often require a sig-
nificant amount of GPU time to obtain a high-performing
architecture [3, 14, 33, 51, 52, 62]. Our use case is differ-
ent, as we take already trained architectures and search for
compressed architecture while maintaining accuracy. This
drastically reduces the search space and thus makes our ap-
proach more efficient.

Reinforcement learning has also been used to find com-
pressed architectures from trained networks [3, 14, 58].
These approaches focus on finding a fixed set of custom
rules for architecture design and then fine-tune the best ar-
chitecture found. Although the result is a compressed net-
work, these approaches might still take a large amount of
GPU hours to train. However, our proposed approach does
not use any custom rules to look for compressed architec-
tures. Like some of the regularization approaches, we sim-
ply learn which channels are more or less important for pre-
diction. We obtain a compressed network by removing the
channels that have little effect on accuracy.

3. Approach
3.1. DNN compression in RL framework

A Markov Decision Process (MDP) provides a mathe-
matical framework to model decision making in stochastic
environments. At each time step, t, the agent is at state st,

Figure 1. DECORE Policies (a) The policy is inserted before each
convolution layer of VGG. (b) For ResNet blocks, we insert the
policy sequentially (agent i) and also in the parallel path (agent
i+1). We keep the same policy (agent i+1) for the last layer of
parallel paths so that it doesn’t affect future operations. (c) Our
agent samples actions ai and multiplies them with layer li to drop
channels and compute the reward Ri.

where it can choose any available action at and move to the
next state st+1, while accruing reward R(st, at). The prob-
ability of moving to a new state st+1, given st and at, is de-
termined by the state transition probability P (st+1|st, at).
The objective of RL is to find a policy π(at|st), which spec-
ifies the action an agent will take at st to maximize some
notion of cumulative reward [49].

We can therefore frame the network compression process
as an RL problem. At each layer li with Ci channels, we
assign dedicated agents to all channels in that layer. Each
agent decides to drop or keep its channel and subsequently
receives reward Ri,j (channel j at layer i). The neural net-
work does inference at layer li with channels which are
not dropped and reaches the next state/layer li+1. Dropped
channels can then be pruned from the network to create a
compressed network. We train agents with a reward that
incentivizes dropping channels at each layer li without af-
fecting network performance significantly. This creates a
multi-agent RL framework. As compared to a traditional
MDP, the number of time steps (t) for each agent in this
framework is just 1, as at each forward pass they take a
decision to keep or drop channel only once and receive a
reward based on that decision.

3.2. State Representation

We model each layer of a neural network with a channel
vector si ∈ RCi , where Ci is the number of channels in
layer i. Each element wj of si represents the weight (im-
portance) of channel j in layer i. A high value of wj means
that channel j is very important and dropping it would affect
the network accuracy significantly. We initialize all channel
vectors si with the same value and our algorithm learns to

12351



increase the weight values of channels that lead to high net-
work accuracy and reduce the weight of those that do not.
After training, low weight channels are removed from the
network, resulting in a compressed model.

Our state representation does not take into account any
other layer dependent variables, such as hidden values,
height, width, number of input/output channels, kernel size,
etc. [3, 14], which makes this approach very general. For
example, this approach could be used to find important in-
put channels for network training [55] or removing channels
only from early layers which have a high memory consump-
tion and DRAM access time [2].

3.3. Policy Representation

The agent makes the decision at each layer i to maximize
the reward, based on a simple policy:

pj =
1

1+e−wj

πj =

{
1 with pj
0 with 1− pj

ai = πi = {π0, π1, ..., πCi
}

We convert the weights into probabilities via a sigmoid
function and then choose which channels to keep at layer
i by taking independent Bernoulli samples. Sample values
are either 0 or 1, where 0 means dropping the channel and
1 keeping it. During training, we multiply each layer’s acti-
vation li with ai to drop or keep channels. This is similar to
dropout [48] but here the probability of dropping the chan-
nel depends on the agent weight. There is a single parameter
(weight) for each agent to learn. This is in contrast to poli-
cies parameterized by neural networks in deep RL [36, 37],
which makes our approach simple and fast as we don’t need
to train dedicated neural networks to find good policies.

During training, we initialize the state vectors with a
value of 6.9, which corresponds to a value of 0.99 after ap-
plying the sigmoid function. We assume initially that all
channels in a pre-trained network are important and thus
the initial probability of keeping a channel should be high.
Each channel has a 99% chance of being selected during
sampling and 1% chance not, which encourages little ex-
ploration and assists policy optimization. Figure 1 shows
our policy in action for a layer li.

We insert policies only before convolution or linear lay-
ers of the network. We avoid inserting policies in batch
normalization or depth wise convolution layers, as they op-
erate on individual channels and the decision to drop chan-
nels could be affected by the next layer’s policy. Our policy
insertion also depends on the network architecture. For ex-
ample, ResNet or MobileNet architectures consist of resid-
ual blocks where computation happens in parallel paths and
they are merged with a channel-wise addition. For these
blocks, we keep the same policy at the end of parallel

paths so that the same channels are dropped before merg-
ing. Figure 1 shows the policy insertion for VGG [47] and
ResNet [13] architectures. We use a similar approach to in-
sert policies in computation layers of diverse architectures
like GoogleLeNet [50] and DenseNet [19].

3.4. Reward

The objective of our modeling is to compress the net-
work while maintaining predictive accuracy. We combine
two different rewards to balance these considerations.

At each layer i, dropped channels represent the compres-
sion achieved at that layer. We compute the compression
reward Ri,C at layer i by summing all the dropped channels
in that layer. We compute the number of dropped channels
using the layer’s action vector ai:

Ri,C =
∑Ci

j=1 1− ai,j

After taking a series of actions at each layer, the network
makes a prediction, ŷ, using only information from pre-
served channels. Each correct prediction suggests that the
agent has taken right actions and thus should be rewarded.
An incorrect prediction incurs a penalty, λ, which can be
tuned to adjust the preference for compression or accuracy:

Racc =

{
1 if ŷ = y
−λ else

The penalty is a high negative value which forces the agent
not to drop the channels if predictions are wrong. Our final
reward at each layer combines these rewards via multipli-
cation. The value is high only when both compression and
accuracy rewards are high,

Ri = Ri,C ∗Racc

3.5. Optimization with Reinforcement Learning

The agent must learn to take decisions to maximize the
expected sum of rewards across all layers. We can estimate
the expected reward using trajectories τ sampled from the
policy. In our framework, the agent takes the decision only
once so the trajectory has a single time step. For example,
the trajectory for layer i is τi = (si, ai). The optimization
objective in this case is:

w∗ = argmaxw J(w) =
∑L

i=1 argmaxw Eτi∼πw(τi)[Ri]

We use the REINFORCE policy gradient algorithm [36,54]
to learn policy parameters w,

▽wJ(w) =
∑L

i=1 ▽wEτi∼πw(τi)[Ri]

▽wJ(w) =
∑L

i=1 Eτi∼πw(τi)[▽w log πw(ai|si)Ri]

▽wJ(w) =
1
N

∑N
b=1

∑L
i=1[▽w log πw(ab,i|sb,i)Rb,i]

12352



where N is the batch size used to estimate the gradient and
L is a depth of the network. The gradients are used to update
the policy or weights at each layer. We train policies and
neural networks jointly using their own loss functions.

In traditional RL approaches the state representation is
stochastic and the agent takes an action by looking at each
state to learn policies. This is contrary to our approach as
we try to learn state representation without requiring expen-
sive policy optimization methods like Actor-Critic [25] and
PPO [45]. Given that each agent has only one parameter,
the policy gradient approach learns fast and efficiently.

4. Experiments
4.1. Datasets and Model Architectures

We evaluate our approach by measuring the accuracy,
compression, and acceleration (FLOPs reduction) rates
of standard deep networks on common image classifica-
tion benchmark datasets, such as CIFAR10 [26] and Im-
ageNet [42]. To demonstrate effectiveness of our ap-
proach we experimented with multiple widely-used model
architectures, including VGG [47] with sequential layers,
ResNet [13] with residual blocks, GoogleLeNet [50] with
inception module, and DenseNet [19] with dense block.

4.2. Training Details

We used PyTorch [40] to implement the proposed
method but our approach is very flexible and can be inte-
grated with any deep learning library like TensorFlow [1].
To train policies, we used the ADAM optimizer [24] with
a batch size of 256 and a learning rate of 0.01. Training
begins with fixed policy vectors of an initial value 6.9 (Sec-
tion 3.3), yet different subnetworks are generated in each
forward pass due to Bernoulli sampling. For each correct
prediction, the agent gets a positive reward, and for each
wrong prediction it is penalized. We found the value of
the penalty hyperparameter λ through a grid search, run-
ning each experiment for 10 epochs. The high penalty leads
to better accuracy as the agent is more penalized for every
wrong prediction. As we lower the penalty it tries to com-
press the network more without largely affecting accuracy.

Additionally, we also fine-tune the network at each op-
timization step so that it may recover from drops in per-
formance after pruning. Joint training of policies and the
network is more computationally efficient and sample ef-
ficient than approaches that separate learning from search
[27, 28, 52]. On the CIFAR dataset, all models are trained
for 300 epochs. We stopped policy training after 260 epochs
and dropped all the channels with a probability of less than
50%. We continued fine-tuning the remaining subnetwork
in the next 40 epochs to improve accuracy. Finally, we re-
moved the dropped channels from the network to get the
compressed model. On the ImageNet dataset, models were

trained for just 30 epochs. We stopped policy training after
20 epochs and fine-tune in the remaining epochs.

4.3. Results and Analysis

4.3.1 Results on CIFAR-10

We evaluated the performance of the proposed approach
on CIFAR-10 with four diverse networks, VGGNet-16/19,
DenseNet-40, GoogleLeNet, and ResNet-56/110. We used
VGGNet with the variation of the original VGG-16 for
CIFAR-10 similar to [27, 28, 32]. For GoogLeNet, the final
output layer was changed to have 10 classes. DenseNet-40
has 40 layers with a growth rate of 12. For a fair compar-
ison, we used the same trained networks used by [28, 32].
For all our experiments, we tried to adjust the penalty pa-
rameter (λ) to achieve similar accuracy as reported state-of-
the-art results and compared the parameters/FLOPs reduc-
tion rates.

VGGNet: Table1 shows that with a higher penalty (λ =
500), our approach DECORE-500 was able to achieve
0.15% higher accuracy than the baseline model with a 63%
parameter and 35% FLOPs reduction rate, which shows
that this network was over parameterized for this problem
and DECORE can be used as a regularizer. As compared
to approaches that prune networks using network statis-
tics [27,28], our approach provides higher compression and
acceleration (FLOPs reduction) rates at similar or higher
accuracy. As compared to L1 pruning [27], our approach
DECORE-200 was able to get a 25% higher compression
rate (89% vs 64%) and a 30.5% higher FLOPs reduction
rate (64.8% vs 34.3%) at 0.16% higher accuracy (93.56% vs
93.40%). Similarly, as compared to HRANK [28], our ap-
proach provides better results at various compression rates.
For example, with a high penalty, DECORE-200 was able to
achieve 6.1% higher compression and 11.3% higher FLOPs
reduction rates at 0.13% higher accuracy (93.56% vs 93.43)
compared to HRANK-1. Similarly, with a low penalty,
DECORE-50 was able to achieve 6.3% higher compression
and 11.8% higher FLOPs reduction rates at 0.45% higher
accuracy (91.68% vs 91.23%) as compared to HRANK-3.
Moreover, HRANK [28] manually sets different compres-
sion rates at each layer for higher compression or accuracy,
and our method automatically (just by changing penalty λ)
finds an optimal setting and generates better results over-
all. For the training process, HRANK trains each layer for
30 epochs (480 epochs for 16 layers), and the training time
increases as the number of layers increases, while our ap-
proach only needs to train for 300 epochs for all settings.

Our approach also finds better results than existing meth-
ods which learn channel importance [20, 60]. For in-
stance, as compared to SSS [20], DECORE-200 achieved
15.2% higher compression and 23.2% higher FLOPs reduc-
tion rates at 0.54% higher accuracy (93.56% vs 93.02%).
As compared to Zhao et al. [60], DECORE-200 achieved

12353



Model Top-1(%) Params(PR) FLOPs(PR)

VGG16 93.96 14.98M(0.0%) 313.73M(0.0%)
DECORE-500 94.02 5.54M(63.0%) 203.08M(35.3%)
L1 [27] 93.40 5.40M(64.0%) 206.00M(34.3%)
SSS∗ [20] 93.02 3.93M(73.8%) 183.13M(41.6%)
Zhao et al. [60] 93.18 3.92M(73.3%) 190.00M(39.1%)
HRank-1 [28] 93.43 2.51M(82.9%) 145.61M(53.5%)
DECORE-200 93.56 1.66M(89.0%) 110.51M(64.8%)
GAL-0.05 [32] 92.03 3.36M(77.6%) 189.49M(39.6%)
HRank-2 [28] 92.34 2.64M(82.1%) 108.61M(65.3%)
DECORE-100 92.44 0.51M(96.6%) 51.20M(81.5%)
GAL-0.1 [32] 90.73 2.67M(82.2%) 171.89M(45.2%)
HRank-3 [28] 91.23 1.78M(92.0%) 73.70M(76.5%)
DECORE-50 91.68 0.26M(98.3%) 36.85M(88.3%)

VGG19 93.76 20.0M(0.0%) 398.44M(0.0%)
N2N [3] 91.64 1.0M(95.0%) -
DECORE-40 91.65 0.3M(98.5%) 43.9M(89.0%)

Table 1. Pruning results of VGGNet on CIFAR10. In all tables and
figures, PR means pruned rate, GAL-X refers to GAL with spar-
sity factor X , DECORE-λ is DECORE with penalty λ, HRANK-
N refers to HRANK with a compression rate setting N , and M/B
means millions/billions. For a fair comparison, we provide mul-
tiple results of HRANK, GAL and others at various compression
rates. SSS∗ shows the results standardized by HRANK and GAL.

15.7% higher compression and 25.7% higher FLOPs reduc-
tion rates at 0.38% higher accuracy (93.56% vs 93.18%).

Compared to architecture search approaches such as
GAL [32], DECORE-100 provided 19% higher compres-
sion and 41.9% FLOPs reduction rates at 0.41% higher ac-
curacy (GAL-0.05). For high compression (low penalty),
DECORE-50 was able to achieve 16.1% more compression
and 43.1% FLOPs reduction rates at 0.95% higher accu-
racy than GAL-0.1. As compared to RL based architecture
search method N2N [3], DECORE achieves 3.5% higher
compression on the VGG-19 network at similar accuracy.
N2N [3] training can take more than 2,500 epochs to get the
best architecture. DECORE achieves similar accuracy and
higher compression with just 300 epochs (< 9%).

GoogleLeNet: Table 2 shows at higher penalty
DECORE-500 was able to find 0.15% higher accuracy
than the baseline model with 23% compression and 19.8%
FLOPs reduction rates. DECORE-200 was able to find
more compression (38% vs L1, 25.5% vs HRANK-1) and
lower FLOPs (45.6% vs L1, 23.6% vs HRANK-1) at simi-
lar accuracy, compared to approaches using network statis-
tics, such as L1 [27] and HRANK [28]. In a low penalty
setting, DECORE-175 provided 16.3% higher compression
and 14.3% FLOPs reduction as compared to HRANK-2.

Compared to architecture search methods, DECORE-
175 provided more compression (36.8% than GAL-0.05
and 32.4% than GAL-ApoZ), lower FLOPs (46.5% than
GAL-0.05 and 34.7% than GAL-ApoZ), and higher accu-
racy (0.4% than GAL-0.05 and 2.22% than GAL-ApoZ). It
shows that DECORE can be applied to inception modules

Model Top-1(%) Params(PR) FLOPs(PR)

GoogLeNet 95.05 6.15M(0.0%) 1.52B(0.0%)
DECORE-500 95.20 4.73M(23.0%) 1.22B(19.8%)
L1∗ [27] 94.54 3.51M(42.9%) 1.02B(32.9%)
HRank-1 [28] 94.53 2.74M(55.4%) 0.69B(54.9%)
DECORE-200 94.51 1.17M(80.9%) 0.33B(78.5%)
GAL-ApoZ∗ [18] 92.11 2.85M(53.7%) 0.76B(50.0%)
GAL-0.05 [32] 93.93 3.12M(49.3%) 0.94B(38.2%)
HRank-2 [28] 94.07 1.86M(69.8%) 0.45B(70.4%)
DECORE-175 94.33 0.86M(86.1%) 0.23B(84.7%)

Table 2. Pruning results of GoogleLeNet on CIFAR10. L1∗ and
GAL-ApoZ∗ are results standardized by HRANK and GAL

Model Top-1(%) Params(PR) FLOPs(PR)

DenseNet-40 94.81 1.04M(0.0%) 282.92M(0.0%)
DECORE-175 94.85 0.83M(20.7%) 228.96M(19.1%)
Liu et al.-40% [34] 94.81 0.66M(36.5%) 190.00M(32.8%)
GAL-0.01 [32] 94.29 0.67M(35.6%) 182.92M(35.3%)
HRank-1 [28] 94.24 0.66M(36.5%) 167.41M(40.8%)
DECORE-115 94.59 0.56M(46.0%) 171.36M(39.4%)
Zhao et al. [60] 93.16 0.42M(59.7%) 156.00M(44.8%)
GAL-0.05 [32] 93.53 0.45M(56.7%) 128.11M(54.7%)
HRank-2 [28] 93.68 0.48M(53.8%) 110.15M(61.0%)
DECORE-70 94.04 0.37M(65.0%) 128.13M(54.7%)

Table 3. Pruning results of DenseNet on CIFAR10. Liu et al.-α%
means α percentage of parameters are pruned.

to achieve same performance as state-of-the-art approaches.
DenseNet-40: DenseNet is a sophisticated architecture

with channel concat (a growth rate of 12) at each layer,
and channels in one layer are used in the following layers.
Dropping even a single channel in this architecture means
removing this channel from all the following layers. Ta-
ble 3 shows DECORE results for the DenseNet architecture.
With a higher penalty, DECORE-175 was able to achieve
20.7% compression and 19.1% FLOPs reduction rates at
similar accuracy as the baseline model. With a slightly
lower penalty, DECORE-115 was able to compress baseline
by 46% and reduce FLOPs by 39.4% with just a 0.22% ac-
curacy drop, better results compared to other techniques. In
a high compression setting, DECORE-70 achieved 65.0%
compression and 54.7% FLOPs reduction with just a 0.77%
drop in accuracy. These results demonstrate that our ap-
proach can be applied to complex architectures too.

ResNet-56/110: Table 4 summarizes results on the
ResNet-56/110 architecture. For ResNet-56, DECORE-200
provided 49% compression and 49.9% FLOPs reduction
rates without any accuracy loss. Upon a 50% FLOPs con-
straint, the RL-based architecture search method AMC [14]
finds the best network with 91.9% accuracy which is 1.4%
less than DECORE-200. In a high compression setting (low
penalty), DECORE-55 compressed the network by 85.3%
and reduced FLOPs by 81.5% with a 2.4% accuracy drop.
As shown in the table, DECORE provided more compres-

12354



Table 4. Pruning results of ResNet-56/110 on CIFAR10.

Model Top-1(%) Params(PR) FLOPs(PR)

ResNet-56 93.26 0.85M(0.0%) 125.49M(0.0%)
DECORE-450 93.34 0.64M(24.2%) 92.48M(26.3%)
L1 [27] 93.06 0.73M(14.1%) 90.90M(27.6%)
NISP [56] 93.01 0.49M(42.4%) 81.00M(35.5%)
GAL-0.6 [32] 92.98 0.75M(11.8%) 78.30M(37.6%)
HRank-1 [28] 93.17 0.49M(42.4%) 62.72M(50.0%)
AMC [14] 91.90 - 62.72M(50.0%)
DECORE-200 93.26 0.43M(49.0%) 62.93M(49.9%)
He et al. [16] 90.80 - 62.00M(50.6%)
GAL-0.8 [32] 90.36 0.29M(65.9%) 49.99M(60.2%)
HRank-2 [28] 90.72 0.27M(68.1%) 32.52M(74.1%)
DECORE-55 90.85 0.13M(85.3%) 23.22M(81.5%)

ResNet-110 93.50 1.72M(0.0%) 252.89M(0.0%)
DECORE-500 93.88 1.11M(35.7%) 163.30M(35.4%)
L1 [27] 93.30 1.16M(32.6%) 155.00M(38.7%)
GAL-0.5 [32] 92.55 0.95M(44.8%) 130.20M(48.5%)
HRank-1 [28] 93.36 0.70M(59.2%) 105.70M(58.2%)
DECORE-300 93.50 0.61M(64.8%) 96.66M(61.8%)
HRank-2 [28] 92.65 0.53M(68.7%) 79.30M(68.6%)
DECORE-175 92.71 0.35M(79.6%) 58.37M(76.9%)

sion and lower FLOPs rates than other approaches.
Similarly for ResNet-110, DECORE-300 provided

64.8% compression and 61.8% FLOPs reduction without
accuracy loss, which demonstrates more compression and
lower FLOPs rates than other approaches while achieving
higher accuracy. DECORE-175 compressed the network
even further to 79.6% with 76.9% FLOPs reduction and just
a 0.79% drop in accuracy.

4.3.2 Results on ImageNet

Table 5 shows our performance with different penalty val-
ues on the more challenging dataset, ImageNet. DECORE-
8 shows at higher penalty (λ = 8), our proposed
method was able to achieve 11.0% compression (25.50M
to 22.69M) and 13.5% (4.09B to 3.54B) FLOPs reduction
at a 0.16%/0.15% Top-1/Top-5 accuracy improvement.

With a slightly lower penalty (λ = 6), DECORE-6
was able to achieve 74.58%/92.18% Top-1/Top-5 accuracy
(1.57%/0.69% drop as compared to the baseline model)
with the number of parameters reduced to 14.10M (44.71%
of the baseline) and FLOPs reduced to 2.36B (42.30% of the
baseline). Compared to network statistics based approaches
such as ThiNet-70 [35], DECORE-6 achieved 2.54% higher
Top-1 accuracy and a 11.14% higher compression rate with
similar FLOPs. As compared to other methods that learn
channel importance, such as SSS-32 [20] and He et al. [16],
DECORE-6 provided higher accuracy, more compression,
and lower FLOPs too.

Furthermore, DECORE-6 achieved 27.85% higher com-
pression and 2.63% (74.58% vs 71.95%) higher Top-1 ac-
curacy than architecture search methods such as GAL-

Table 5. Pruning results of ResNet-50 on ImageNet. X-joint
means jointly pruning channels and blocks.

Model Top-1(%) Top-5(%) Params FLOPs

ResNet-50 76.15 92.87 25.50M 4.09B
DECORE-8 76.31 93.02 22.69M 3.54B
SSS-32 [20] 74.18 91.91 18.60M 2.82B
He et al. [16] 72.30 90.80 - 2.73B
ThiNet-70 [35] 72.04 90.67 16.94M 2.44B
GAL-0.5 [32] 71.95 90.94 21.20M 2.33B
DECORE-6 74.58 92.18 14.10M 2.36B
GDP-0.6 [31] 71.19 90.71 - 1.88B
GDP-0.5 [31] 69.58 90.14 - 1.57B
SSS-26 [20] 71.82 90.79 15.60M 2.33B
GAL-1 [32] 69.88 89.75 14.67M 1.58B
GAL-0.5-joint [32] 71.80 90.82 19.31M 1.84B
HRank-1 [28] 71.98 91.01 13.77M 1.55B
ThiNet-50 [35] 70.01 90.02 12.38M 1.71B
DECORE-5 72.06 90.82 8.87M 1.60B
ThiNet-30 [35] 68.42 88.30 8.66M 1.10B
GAL-1-joint [32] 69.31 89.12 10.21M 1.11B
HRank-2 [28] 69.10 89.58 8.27M 0.98B
DECORE-4 69.71 89.37 6.12M 1.19B

0.5 [32]. It is worth noting that DECORE was able to find
better performance in just 30 epochs which is much faster
than architecture search approaches such as GAL (trains
generator and discriminator in each batch) and pruning-
based methods such as HRANK (90 epochs).

Another interesting observation is that on a small dataset
like CIFAR10, pre-trained models often have high accu-
racy and it could become challenging to prune these models
without losing the accuracy. To meet this end the λ param-
eter is set high so that we can achieve compression without
any noticeable accuracy drop. On the flip side, for more
complex datasets like ImageNet, λ can have a lower value.

5. Analysis: Does DECORE find important
channels?

To investigate the effect of learned policies on network
compression, we reviewed policies of the VGG16 network
trained on CIFAR10 for 200 epochs with 4,736 agents (just
for convolution and linear layers). We didn’t train the
network jointly in this experiment so that the analysis of
learned policies is not mixed with network update.

After training the agents, we remove the channels with
high weight values and observe how much it changes the
accuracy. If the model accuracy drops significantly without
high weight channels, it suggests that the RL algorithm has
correctly identified the most important channels in the net-
work. Figure 2 shows the effect on network accuracy after
low and high weight channels are removed at each layer.
The pre-trained network (without any channel drop) has an
accuracy of 93.96%. By removing the highest weight chan-
nel only (1 channel out of 4736), there is a noticeable accu-
racy drop of 1.42% (92.54% vs 93.96%). This decrease is

12355



Figure 2. DECORE finds important weights After training
VGG16 with DECORE, we remove high weight channels and ob-
serve significant drops in accuracy. On the flip side, removing low
weight channels has a little impact on accuracy, and thus they can
be dropped to compress the model.

relatively large, given that removing this channel only com-
presses the network by 0.004%. It suggests that DECORE
is able to learn the most important channels, as dropping
even one of them will greatly impact accuracy. In contrast,
if we remove the lowest weight channel, the accuracy drop
is negligible. For instance, if we remove 20 highest weight
channels the network loses half of its accuracy (47.63%),
and after dropping top 50 channels (just 1% of all chan-
nels) the accuracy remains only 13% which can almost be
considered as a random network. However, dropping 50 of
the lowest weight channels does not impact accuracy much.
This illustrates that DECORE is able to identify channels
with the least and most importance.

6. DECORE for compressed Network Archi-
tecture Search

In real-world scenarios, there are often stringent limits
on resources available. Although we can not directly op-
timize the network with hard constraints, the penalty re-
ward in our approach can be tuned to ensure trained mod-
els falling within those ranges. As shown in section 5,
DECORE learns the weight value for each channel in the
network which reflects the importance of that channel. We
also noticed that dropping low weight channels doesn’t re-
ally impact the accuracy much, which means it’s possi-
ble to sort all agents’ weight values and drop the lowest
weight channels till the constraint is met. This simple yet
effective approach can help meet various types of require-
ments, eliminating the need to train networks with hard con-
straints. In this experiment, we explore the effect of hard
constraints on performance, including our findings on the
MobileNetV2 [43] architecture which is hand designed for
real-world applications. MobileNetV2 has 2.28M param-
eters which require around 8.7MB of on-device memory
and 86.7M FLOPs during the inference on the CIFAR-10

Table 6. Top-1 accuracy with Size/FLOPs constraint on CIFAR

Size (MB) FLOPs (M)

Model(Top-1%) 0.5MB 1MB 5MB 25M 50M 100M

VGG16 89.74 91.30 93.05 88.32 91.54 93.09
ResNet-56 91.52 92.56 93.26 91.59 92.60 93.31
MobileNetV2 90.97 91.95 92.58 92.01 92.31 92.58

dataset. As a reference, the baseline MobileNetV2 model
we are using has 92.58% Top-1 accuracy for CIFAR-10.

In all experiments, we learned the policies for 200
epochs and then fine-tuned the compressed network for 60
epochs. Similar to section 5 we didn’t train the network
jointly while learning policies. Table 6 shows the perfor-
mance drop of different models on the CIFAR10 dataset
with different size constraints (in terms of memory stor-
age and FLOPs). As explained above, we dropped the low
weight channels till the constraint is satisfied. With a stor-
age constraint of just 1MB, there is a maximum of 2.66%
performance drop across all models. When we decrease the
size limit to 0.5MB, there is a negligible performance dif-
ference than the 1MB results. This illustrates that our tech-
nique is robust to varying memory constraints.

In addition to size constraints, we explore constraints on
the number of FLOPs in a compressed network. FLOPs
are highly correlated with latency on CPU-only devices and
thus the results in Table 6 reflect performance with potential
latency constraints. With a very low 50M FLOP limit, we
observed a maximum performance drop of 2.42% across all
models. These results suggest that our approach can flexi-
bly handle various hard constraints on computation, and by
proxy latency, without a significant drop in performance.
More stringent constraints (e.g., size < 0.01MB or FLOPs
< 10M ) lead to degenerate architectures and joint training
(Section 4.2) is recommended for these scenarios.

Last but not least, DECORE identifies the importance of
each channel in the network once and then remove low pri-
ority channels to obtain a target architecture based on con-
straints. Compared to other methods [3,14], it doesn’t need
to retrain the network when the target criteria is changed.

7. Conclusion
We present DECORE as an efficient reinforcement learn-

ing approach to network compression and compressed ar-
chitecture search. DECORE can find a trade-off between
accuracy and compression by tuning the penalty (just 1 hy-
perparameter) for misclassifications, allowing for more con-
trol over the compressed model structure. Once trained the
proposed method can also be used to search network archi-
tectures with different resource constraints without retrain-
ing for those constraints. Exploring other reward functions
that target different resource constraints is an interesting di-
rection to explore in future work, along with network ar-
chitectures for other visual reasoning tasks such as object
detection, semantic segmentation, etc.

12356



References
[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Mur-
ray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete War-
den, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
flow: A system for large-scale machine learning. 2016. 1,
5

[2] Manoj Alwani, Han Chen, Michael Ferdman, and Peter
Milder. Fused-layer CNN accelerators. In 49th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2016. 4

[3] Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, and
Kris M. Kitani. N2N learning: Network to network com-
pression via policy gradient reinforcement learning. In In-
ternational Conference on Learning Representations, 2018.
2, 3, 4, 6, 8

[4] Lei Jimmy Ba and Rich Caruana. Do deep nets really need
to be deep? arXiv:1312.6184, 2013. 2

[5] Emily L. Denton, Wojciech Zaremba, Joan Bruna, Yann Le-
Cun, and Rob Fergus. Exploiting linear structure within con-
volutional networks for efficient evaluation. In Advances in
Neural Information Processing Systems, pages 1269–1277,
2014. 1

[6] Edgar Galván and Peter Mooney. Neuroevolution in deep
neural networks: Current trends and future challenges. IEEE
Transactions on Artificial Intelligence, 2021. 2

[7] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu,
Tien-Ju Yang, and Edward Choi. Morphnet: Fast & simple
resource-constrained structure learning of deep networks. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2018. 1, 2, 3

[8] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pe-
dram, Mark A Horowitz, and William J Dally. EIE: Effi-
cient inference engine on compressed deep neural network.
ACM SIGARCH Computer Architecture News, 44(3):243–
254, 2016. 1

[9] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv:1510.00149,
2015. 1

[10] Song Han, Jeff Pool, John Tran, and William J Dally. Learn-
ing both weights and connections for efficient neural net-
works. arXiv:1506.02626, 2015. 1

[11] Babak Hassibi and David G Stork. Second order derivatives
for network pruning: Optimal brain surgeon. In NIPS, 1993.
1

[12] Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal
brain surgeon and general network pruning. In IEEE interna-
tional conference on neural networks, pages 293–299, 1993.
1

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
arXiv:1512.03385, 2015. 1, 4, 5

[14] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. AMC: AutoML for model compression and ac-

celeration on mobile devices. In European Conference on
Computer Vision (ECCV), September 2018. 2, 3, 4, 6, 7, 8

[15] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi
Yang. Filter pruning via geometric median for deep con-
volutional neural networks acceleration. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 2

[16] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In IEEE/CVF
International Conference on Computer Vision (ICCV), 2017.
2, 7

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. arXiv:1503.02531, 2015. 2

[18] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang.
Network trimming: A data-driven neuron pruning approach
towards efficient deep architectures. arXiv:1607.03250,
2016. 1, 2, 6

[19] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.
Densely connected convolutional networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2017. 4, 5

[20] Zehao Huang and Naiyan Wang. Data-driven sparse struc-
ture selection for deep neural networks. In Proceedings of
the European conference on computer vision (ECCV), pages
304–320, 2018. 2, 3, 5, 6, 7

[21] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and <0.5 MB model size. arXiv:1602.07360, 2016. 1

[22] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In CVPR,
page 2704–2713, 2018. 1

[23] J. Jin, Z. Yan, K. Fu, N. Jiang, and C. Zhang. Neural network
architecture optimization through submodularity and super-
modularity. arXiv:1609.00074, 2016. 2

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2014. 5

[25] Vijay R. Konda and John N. Tsitsiklis. Actor-critic algo-
rithms. In NIPS, pages 1008–1014, 2000. 5

[26] A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. Master’s thesis, Department of
Computer Science, University of Toronto, 2009. 5

[27] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710, 2016. 1, 2, 3, 5, 6, 7

[28] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. HRank:
Filter pruning using high-rank feature map. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1529–1538, 2020. 1, 2, 3,
5, 6, 7

[29] Shaohui Lin, Rongrong Ji, Chao Chen, Dacheng Tao, and
Jiebo Luo. Holistic CNN compression via low-rank decom-
position with knowledge transfer. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 2018. 1

12357



[30] Shaohui Lin, Rongrong Ji, Xiaowei Guo, and Xuelong
Li. Towards convolutional neural networks compression via
global error reconstruction. International Joint Conference
on Artificial Intelligence, 2016. 1

[31] Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue
Huang, and Baochang Zhang. Accelerating convolutional
networks via global and dynamic filter pruning. In Interna-
tional Joint Conference on Artificial Intelligence. 1, 7

[32] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang,
Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doer-
mann. Towards optimal structured CNN pruning via genera-
tive adversarial learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 1, 2, 3, 5, 6, 7

[33] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. arXiv:1806.09055, 2018.
2, 3

[34] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 2736–2744, 2017. 2, 3, 6

[35] Jianhao Luo, Jianxin Wu, and Weiyao Lin. ThiNet: A filter
level pruning method for deep neural network compression.
In IEEE/CVF International Conference on Computer Vision
(ICCV), 2017. 2, 7

[36] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International conference on ma-
chine learning, pages 1928–1937, 2016. 4

[37] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Martin
Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013. 4

[38] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for
resource efficient inference. arXiv:1611.06440, 2016. 2

[39] Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai
Li, Yiran Chen, and Pradeep Dubey. Faster CNNs with di-
rect sparse convolutions and guided pruning. International
Conference on Learning Representations, 2017. 1

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, pages
8024–8035, 2019. 1, 5

[41] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.
XNOR-Net: ImageNet classification using binary convolu-
tional neural networks. In ECCV, 2016. 1

[42] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet large scale visual recognition chal-
lenge. International Journal of Computer Vision, (3), 2015.
1, 5

[43] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Inverted residuals and lin-
ear bottlenecks mobile networks for classification, detection
and segmentation. arXiv:1801.04381, 2018. 1, 8

[44] Simone Scardapane, Danilo Comminiello, Amir Hussain,
and Aurelio Uncini. Group sparse regularization for deep
neural networks. Neurocomputing, 241:81–89, 2017. 3

[45] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. volume abs/1707.06347, 2017. 5

[46] Noah Simon, Jerome Friedman, Trevor Hastie, and Robert
Tibshirani. A sparse-group lasso. Journal of computational
and graphical statistics, 22(2):231–245, 2013. 3

[47] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition. Pro-
ceedings of the International Conference on Learning Rep-
resentations, 2014. 1, 4, 5

[48] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929–1958, 2014. 4

[49] Richard S Sutton and Andrew G Barto. Reinforcement learn-
ing: An introduction. MIT press, 2018. 2, 3

[50] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, and D. Erhan. Going deeper with convolutions.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2015. 4, 5

[51] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2820–2828, 2019. 2,
3

[52] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114, 2019.
2, 3, 5

[53] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural networks.
arXiv:1608.03665, 2016. 3

[54] Ronald J Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992. 2, 4

[55] Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang
Chen, and Fengbo Ren. Learning in the frequency domain.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020. 4

[56] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I
Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and
Larry S Davis. NISP: Pruning networks using neuron impor-
tance score propagation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), page 9194–9203, 2018. 1, 2, 7

12358



[57] Ming Yuan and Yi Lin. Model selection and estimation in re-
gression with grouped variables. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 68(1):49–
67, 2006. 3

[58] Huixin Zhan and Yongcan Cao. Deep model compression
via deep reinforcement learning, 2019. 3

[59] Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, and
Jian Sun. Efficient and accurate approximations of nonlinear
convolutional networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2015. 1

[60] Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao,
Wenjun Zhang, and Qi Tian. Variational convolutional neural
network pruning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2019. 2, 5, 6

[61] Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu,
and Ian Reid. Towards effective low-bitwidth convolutional
neural networks. In CVPR, page 7920–7928, 2018. 1

[62] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv:1611.01578, 2016. 2, 3

12359


	. Introduction
	. Related Work
	. Network Pruning
	. Architecture Search

	. Approach
	. DNN compression in RL framework
	. State Representation
	. Policy Representation
	. Reward
	. Optimization with Reinforcement Learning

	. Experiments
	. Datasets and Model Architectures
	. Training Details
	. Results and Analysis
	Results on CIFAR-10
	Results on ImageNet


	. Analysis: Does DECORE find important channels?
	. DECORE for compressed Network Architecture Search
	. Conclusion

