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Abstract

Learning discriminative deep feature embeddings by us-
ing million-scale in-the-wild datasets and margin-based
softmax loss is the current state-of-the-art approach for face
recognition. However, the memory and computing cost of
the Fully Connected (FC) layer linearly scales up to the
number of identities in the training set. Besides, the large-
scale training data inevitably suffers from inter-class con-
flict and long-tailed distribution. In this paper, we pro-
pose a sparsely updating variant of the FC layer, named
Partial FC (PFC). In each iteration, positive class centers
and a random subset of negative class centers are selected
to compute the margin-based softmax loss. All class cen-
ters are still maintained throughout the whole training pro-
cess, but only a subset is selected and updated in each it-
eration. Therefore, the computing requirement, the prob-
ability of inter-class conflict, and the frequency of passive
update on tail class centers, are dramatically reduced. Ex-
tensive experiments across different training data and back-
bones (e.g. CNN and ViT) confirm the effectiveness, robust-
ness and efficiency of the proposed PFC. The source code is
available at https://github.com/deepinsight/
insightface/tree/master/recognition.

1. Introduction

Face recognition is playing an increasingly important
role in modern life and has been widely used in many
real-world applications, such as face authentication on mo-
bile devices. Recently, face recognition has witnessed
great advance along with the collection of large-scale train-
ing datasets [3, 50], the evolution of network architectures

* corresponding author. InsightFace is a nonprofit Github project for
2D and 3D face analysis.

Figure 1. PFC picks the positive center by using the label and ran-
domly selects a significantly reduced number of negative centers
to calculate partial image-to-class similarities. PFC kills two birds
(efficiency and robustness) with one stone (partial sampling).

[13, 30], and the design of margin-based and mining-based
loss functions [8, 17, 25, 30, 35, 36, 38, 41].

Even though the softmax loss [3] and its margin-based
[8,25,35,36] or mining-based [17,38,41] variants achieved
state-of-the-art performance on deep face recognition, the
training difficulty accumulates along with the growth of
identities in the training data, as the memory and comput-
ing consumption of the Fully Connected (FC) layer linearly
scales up to the number of identities in the training set.
When there are large-scale identities in the training dataset,
the cost of storage and calculation of the final linear matrix
can easily exceed the capabilities of current GPUs, resulting
in tremendous training time or even a training failure.

To break the computing resource constraint, the most
straightforward solution is to reduce the number of classes
used during training. Zhang et al. [42] propose to use a
hashing forest to partition the space of class weights into
small cells but the complexity of walking through the forest
to find the closest cell is O(logN). Li et al. [22] randomly
split training identities into groups and identities from each
group share one anchor, which is used to construct the vir-
tual fully-connected layer. Even though Virtual FC reduces
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the FC parameters by more than 100 times, there is an ob-
vious performance drop compared to the conventional FC
solution. SST [11] and DCQ [21] directly abandon the
FC layer and employ a momentum-updated network to pro-
duce class weights. However, the negative class number is
constrained to past several hundred steps and two networks
need to be maintained in the GPU.

Besides the training difficulty on large-scale datasets,
celebrity images gathered from the internet and cleaned
by automatic methods [45, 50] exhibit long-tailed distribu-
tion [24, 48] as well as label noise [34]. Some well-known
celebrities have abundant images (head classes) from the
search engine while most celebrities have only a few images
(tail classes) on the web. To keep hard training samples, the
thresholds used in intra-class and inter-class cleaning steps
in [50] are relatively relaxed, leaving label flip noises in the
WebFace42M dataset. Wang et al. [34] point out that label
flips deteriorate the model’s performance heavier than out-
liers as the margin-based softmax loss can not easily handle
inter-class conflict during training.

To alleviate the above-motioned problems, we propose
a sparsely updated fully connected layer, named Partial FC
(PFC), for training large-scale face recognition. In the pro-
posed PFC, the conventional FC layer is still maintained
throughout the whole training process but the updating fre-
quency is significantly decreased as we only sample parts
of negative class centers in each iteration. As illustrated in
Fig. 1, positive class centers are selected and a subset of
negative class centers are randomly selected to compute the
margin-based softmax loss. As only a subset of inter classes
is selected for each iteration, the computing requirement,
the frequency of passive update on tail class centers, and the
probability of inter-class conflict are dramatically reduced.
Extensive experiments across different training datasets and
backbones (e.g. CNN [13] and ViT [10]) confirm the effec-
tiveness, robustness and efficiency of the proposed PFC un-
der a large range of sampling ratios. The advantages of the
proposed PFC can be summarized as follows:

• Efficient. Under the high-performance mode, PFC-0.1
(sampling ratio) applied to ResNet100 can efficiently
train 10M identities on a single server with around
2.5K samples per second, which is five times faster
than the model parallel solution. Under the ultra-fast
mode, the sampling ratio of PFC can be decreased to
an extremely low status (around 0.01) where no ex-
tra negative class is selected. For PFC-0.008 with
ResNet100 trained on WebFace42M, the computation
cost on the FC layer can be almost neglected while the
verification accuracy on IJB-C reaches 97.51%.

• Robust. PFC is amazingly robust under inter-class
conflict, label-flip noise, and real-world long-tailed
distribution. Assisted by a simple online abnormal
inter-class filtering, PFC can further improve robust-

ness under heavy inter-class conflict.
• Accurate. The proposed PFC has obtained state-of-

the-art performance on different benchmarks, achiev-
ing 98.00% on IJB-C and 97.85% on MFR-all.

2. Related Work

Margin-based Deep Face Recognition. The pioneering
margin-based face recognition network [30] uses the triplet
loss in the Euclidean space. However, the training proce-
dure is very challenging due to the combinatorial explosion
in the number of triplets. By contrast, margin-based soft-
max methods [8, 25, 35, 36] focus on incorporating margin
penalty into a more feasible framework, softmax loss, and
achieve impressive performance. To further improve the
margin-based softmax loss, recent works focus on the ex-
ploration of adaptive parameters [24,43,44], inter-class reg-
ularization [12, 47], mining [17, 38, 41], grouping [19], etc.
To accelerate margin-based softmax loss, a virtual fully-
connected layer is proposed by [22] to reduce the FC pa-
rameters by more than 100 times. In addition, DCQ [21]
directly abandons the FC layer and employs a momentum-
updated network to produce class weights.

Robust Face Recognition Training under Noise and
Long-tail Distribution. Most of the face recognition
datasets [3,50] are downloaded from the Internet by search-
ing a pre-defined celebrity list, and the original labels are
likely to be ambiguous and inaccurate [34]. As accu-
rate manual annotations are expensive [34], learning with
massive noisy data has recently drawn much attention in
face recognition [7, 15, 37, 40, 46, 48]. To improve ro-
bustness under noises, recent methods attempt to design
noise-tolerant loss functions (e.g. computing time-varying
weights for samples [15], designing piece-wise loss func-
tions [48] according to model’s predictions, and relaxing
the constraint of intra-class compactness [7]), explore con-
sistent predictions from twin networks [37], and employ
meta-supervision for adaptive label noise cleaning [46]. Be-
sides the label noise, web data are usually long-tail dis-
tributed. To alleviate long-tailed distribution, recent meth-
ods attempt to either improve the margin values for the
tail classes [24] or recall the benefit from sample-to-sample
comparisons [9, 11, 21, 49].

3. Methodology

This section starts with the limitation analysis of the con-
ventional FC Layer. Then, these limitations motivate the
proposal of a more efficient and robust training method,
called Partial FC (PFC). Through learning dynamic analy-
sis on both clean and noisy training data, we finally achieve
a deeper understanding of the role of inter-class interaction.
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(a) Inter-class Conflict (b) Long-tail Distribution

Figure 2. Inter-class conflict and long-tail distribution of Web-
Face42M [50].

3.1. Revisiting FC Layer

In this sub-section, we first discuss the optimization pro-
cedure of the FC layer. Then, we discuss three drawbacks
of the FC layer based on the gradient analysis.

The most widely used classification loss function for face
recognition, i.e., softmax loss, is presented as follow:

L = − 1

B

B∑
i=1

log
eW

T
yi

xi

eW
T
yi

xi +
∑C

j=1,j ̸=yi
eW

T
j xi

, (1)

where Wj ∈ RD denotes the j-th column of class-wise cen-
ters, xi ∈ RD denotes the feature of the i-th sample belong-
ing to the yi-th class, D is the feature dimension, C is the
class number, and B is the batch size.

From the view of features, the network will be updated
towards a direction that the feature will be close to the
ground-truth center and far apart from all other centers. To
illustrate the feature’s gradient in a more straightforward
way, we denote the probability and center of the ground
truth as p+ and W+ while other negative probabilities and
centers as p−j and W−

j :

∂L
∂xi

= −((1− p+)W+ −
C∑

j=1,j ̸=yi

p−j W
−
j ). (2)

From the view of centers, the center Wj belonging to
j-th class will be updated towards a direction that is close
to sample features of j-th class and far apart from sample
features of other classes:

W t
j = W t−1

j + η(
∑
i∈B+

(1− p+i )x
+
i −

∑
i∈B−

p−i x
−
i ), (3)

where η is the learning rate, t is the iteration number, B+

represents all samples belonging to j-th class, B− stands
for all samples of other classes, and |B+| + |B−| equals to
the batch size B.

Even though the softmax loss and its margin-based
or mining-based variants achieved state-of-the-art perfor-
mance on deep face recognition, the fully connected layer
in the softmax loss has the following three drawbacks when
applied to the large-scale web data [50].

(a) Memory Consumption (b) Training Speed

Figure 3. Memory Consumption and training speed comparisons
between model parallel and PFC.

The first limitation is the gradient confusion under inter-
class conflict. As shown in Fig. 2a, there are many class
pairs from WebFace42M [50] showing high cosine similar-
ities (e.g. > 0.4), indicating inter-class conflict still exists
in this automatically cleaned web data. Here, inter-class
conflict refers to images of one person being wrongly dis-
tributed to different classes. If a large number of conflicted
classes exist, the network optimization will suffer from gra-
dient confusion on both features and centers, as the nega-
tive class center Wj in Eq. 2 and the negative features x−

i

in Eq. 3 could be from the positive class.
The second limitation is that centers of tail classes un-
dergo too many passive updates. As shown in Fig. 2b,
the identities of WebFace42M [50] are long-tail distributed,
44.57% of identities containing less than 10 images. Un-
der the training scenario of million-level identities and
thousand-level batch size, B+ in Eq. 3 is empty in most
iterations for a particular class j, especially for tail classes.
When there is an inter-class penalty from training samples
of other classes, Wj is pushed away from the features of
these negative samples, gradually drifting from the direc-
tion of its representing class [11]. Therefore, there may
exist a discrepancy between the class-wise feature center
predicted by the embedding network and the corresponding
center updated by SGD.
The third limitation is that the storage and calculation of
the FC layer can easily exceed current GPU capabilities.
In ArcFace [8], the center matrix W ∈ RD×C is equally
partitioned onto K GPUs. During the forward step, each
GPU first gathers all embedding features (i.e. X ∈ RD×B)
from all GPUs. Then, sample-to-class similarities and their
exponential mappings are calculated independently on each
GPU. To calculate the denominator of Eq. 1 to normalize
all similarity values, the local sum on each GPU is calcu-
lated, and then the global sum is computed through cross-
GPU communication. Finally, the normalized probabilities
are used in Eq. 2 and Eq. 3 to calculate the feature’s gra-
dient and center’s gradient. Even though the model par-
allelization can completely solve the storage problems of
W through adding more GPUs at negligible communica-
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Figure 4. Distributed implementation of the proposed PFC. Face features are first gathered from each GPU. Meanwhile, partial centers are
copied from each CPU to GPU. Positive class centers are picked through labels while partial negative class centers (in grey) are randomly
selected to fill the buffer. After the inner product between gathered features and partial centers on each GPU, we obtain the partial logits.
PFC is memory-saving and efficient because it reduces the GPU memory consumption and computation cost on the FC layer. PFC is also
robust under inter-class conflict due to decreased inter-class interaction during training. On the dataset with extremely heavy inter-class
conflict, abnormal inter-class high similarities can be filtered by a fixed threshold (i.e. 0.4) in PFC to further enhance the robustness.

tion cost, the storage of predicted logits can not be easily
solved by increasing the GPU number.

As illustrated in Fig. 3a, the identity number C goes up
from 1M to 8M, and we accordingly increase the GPU num-
ber K from 8 to 64 to keep C/K consistent. However, the
memory consumption of logits (C/K×B) still significantly
increase as the batch size rises synchronously with K, even
surpassing the memory usage of the backbone. Besides the
memory consumption of the FC layer, the computation cost
in the forward and backward steps is also tremendous. As
shown in Fig. 3b, the throughput can not be improved as the
increased GPUs are used for the calculation of the enlarged
FC layer. Therefore, simply stacking more GPUs can not
efficiently solve large-scale face recognition training.

3.2. Partial FC

To alleviate the drawbacks of the FC layer, we propose
PFC, a sparsely updating variant of the fully connected layer
for training large-scale face recognition models. As illus-
trated in Fig. 4, we maintain all of the class centers during
training but randomly sample a small part of negative class
centers to calculate the margin-based softmax loss instead
of using all of the negative class centers in every iteration.
More specifically, face feature embeddings and labels are
first gathered from each GPU, and then the combined fea-
tures and labels are distributed to all GPUs. In order to
equalize the memory usage and computation cost of each
GPU, we set a memory buffer for each GPU. The size of
the memory buffer is decided by the total number of classes
and the sampling rate of the negative class centers. On each
GPU, positive class centers are first picked through labels
and put in the buffer, then a small part of negative class cen-
ters are randomly selected to fill the rest of the buffer to en-
sure load balance. After the inner product between gathered

(a) Positive Cosine (b) Max Cosine between Centers

Figure 5. Intra-class compactness and inter-class discrepancy
comparisons under different sampling ratios on the WebFace12M
dataset.

embeddings and the partial center matrix on each GPU, we
simultaneously obtain all partial similarity matrices to cal-
culate the margin-based softmax loss.

In PFC, the network will be updated towards a direction
making the feature xi close to the positive class center W+

and away from part of negative class centers W−
j .

∂L
∂xi

= −((1− p+)W+ −
∑

j∈S,j ̸=yi

p−j W
−
j ), (4)

where S is a subset of all negative classes and one positive
class, |S| = C ∗ r, and r is the sampling ratio. By com-
paring Eq. 2 and Eq. 4, we can easily find that PFC directly
decreases the possibility of inter-class conflict by r. In addi-
tion, only positive centers and part of negative centers will
be updated by Eq. 3 in each iteration. Therefore, the fre-
quency of gradient update on Wj also decreases from 1.0 to
r, thus avoiding excessive passive update on tail class cen-
ters. In Fig. 3a and Fig. 3b, PFC saves a large amount of
GPU memory used by softmax logits, thus the model train-
ing can benefit from stacking more GPUs to increase the
throughput on large-scale data.

4045



(a) IJB-C (TAR@FAR=1e-5) (b) MFR-All (TAR@FAR=1e-6)

Figure 6. Verification accuracy on IJB-C and MFR-All under dif-
ferent sampling ratios.

(a) Max Negative Cosine (b) Max Cosine between Centers

Figure 7. Inter-class statistics comparisons under different sam-
pling ratios on the WebFace12M and WebFace12M-Conflict
datasets.

(a) Max Negative Cosine of FC (b) Max Negative Cosine of PFC

Figure 8. Hard negative and conflicted negative classes analy-
sis under different sampling ratios on the WebFace12M-Conflict
datasets.

3.3. Rethinking Inter-class Interaction

In Eq. 4, inter-class interaction between features and
centers is significantly decreased by the sampling ratio. To
figure out the impact of the inter-class sampling, we define
three metrics to evaluate the real-time intra-class compact-
ness, real-time inter-class discrepancy, and final inter-class
distribution.

More specifically, we define the Average Positive Co-
sine Similarity (APCS) between xi and positive class center
Wyi

as APCS = 1/B
∑B

i=1 W
T
yi
xi/(∥Wyi

∥ ∥xi∥) where
B is the batch-size and APCS is an real-time indicator of
intra-class optimization status on the training data. We also
define the Average Maximum Negative Cosine Similarity
(AMNCS) between xi and closest negative class center Wj

as AMNCS = 1/B
∑B

i=1 max
j ̸=i

WT
j xi/(∥Wj∥ ∥xi∥), which

is an real-time indicator of inter-class optimization status on
the training data. To evaluate the final inter-class discrep-
ancy, we define the Maximum Inter-class Cosine Similarity
(MICS) as MICSi = max

j ̸=i
WT

i Wj/(∥Wi∥ ∥Wj∥).

In Fig. 5, we compare the intra-class and inter-class sta-
tus under different sampling ratios. We train a series of
ResNet50 models on the WebFace12M dataset [50] by us-
ing margin-based softmax loss [8, 36]. The minimum sam-
pling ratio is the batch size divided by the identity number,
that is 1024/600K ≈ 0.0017, indicating that only within-
batch negative centers are used to construct the margin-
based softmax loss. As illustrated in Fig. 5b, the inter-class
similarities obviously increase when the sampling ratio de-
creases from 1.0 to 0.0017. As the updating frequency of
Wj in Eq. 3 is decreased, the network training weakens the
inter-class optimization and focuses more on the intra-class
optimization. Therefore, PFC achieves higher intra-class
similarities during training as shown in Fig. 5a.

Even though the inter-class discrepancy deteriorates on
the training data when the sampling ratio is dropping, the
verification accuracy on IJB-C [27] and MFR-All [6] can
be still maintained when the sampling ratio is larger than
0.1 as shown in Fig. 6. When the sampling ratio drops to
0.0017, the verification accuracy obviously decreases, indi-
cating that inter-class interaction during training is not suffi-
cient. To improve the inter-class discrepancy, we train three
extra models by enlarging the batch size to 2K, 4K, 8K to
embody more within-batch negative classes where the sam-
pling ratio is also increased accordingly. As given in Fig. 6,
the performance significantly increases when the batch size
is enlarged. Please note that, when PFC does not add ex-
tra negative classes outside batches, the training time con-
sumed on the FC layer is negligible compared to the time
cost on the backbone. Besides enlarging the batch size, we
have also explored inter-class regularization [47]. By in-
cluding MICS as the regularization loss, the performance
can be also obviously improved in Fig. 6. However, inter-
class regularization needs non-ignorable computation cost
on large-scale training data.

Besides the analysis on clean data, we also synthesize a
WebFace12M-Conflict dataset by randomly splitting 200K
identities into another 600K identities, thus WebFace12M-
Conflict contains 1M pseudo classes with a high inter-class
conflict ratio. As shown in Fig. 7a, FC (r = 1.0) con-
fronts with fluctuation during inter-class optimization but
finally over-fits the conflicted dataset (Fig. 7b). By con-
trast, PFC (r = 0.1) relaxes the inter-class optimization,
thus conflicted classes exhibit much higher similarities as
given in Fig. 7b. As WebFace12M-Conflict is synthe-
sized, we can use ground-truth labels to separately calculate
AMNCS for hard negative classes and conflicted negative
classes (i.e. inter-class noises). As shown in Fig. 8b, PFC
(r = 0.1) can punish hard negative classes as normal as
on the clean dataset (Fig. 7a) while the conflicted negative
classes can still achieve increasing similarities during train-
ing. In Fig. 8a, FC (r = 1.0) struggles to decrease the sim-
ilarities between features and conflicted class centers, lead-
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ing to over-fitting (Fig. 7b). As there is a clear margin for
PFC to distinguish hard negative classes and conflicted neg-
ative classes in Fig. 8b, we can further set an online inter-
class filtering threshold (i.e. 0.4) in PFC to suppress conflict
inter-classes. In this paper, we denote PFC with abnormal
inter-class filtering as PFC*.

4. Experiments and Results
4.1. Implementation Details

Datasets. In this paper, we employ the publicly avail-
able dataset, WebFace [50], to train face recognition
models. The cleaned WebFace42M contains 2M identi-
ties, while the subsets WebFace12M and WebFace4M in-
clude 600K and 200K identities, respectively. We syn-
thesize WebFace12M-Conflict (Tab. 3), WebFace12M-Flip
(Tab. 4), WebFace10M-Longtail (Tab. 5) from WebFace to
simulate the scenarios of inter-class conflict, label flip, and
long-tail distribution.

For testing, we extensively evaluate the proposed PFC
on popular benchmarks, including LFW [16], CFP-FP [31],
AgeDB [29], IJB-B [39] and IJB-C [27]. As the perfor-
mance on these celebrity benchmarks tend to be saturated,
we conduct the ablation study on MFR [6], which contains
1.6M images of 242K identities (non-celebrity) covering
four demographic groups: African, Caucasian, South-Asian
and East-Asian. On MFR, True Accept Rates (TARs) @
False Positive Rate (FAR) = 1e-6 across different races are
reported from the online test server after submitting the
models. Besides, we also report the TARs@FAR = 1e-4 on
the masked face recognition track of MFR.
Experimental settings. All experiments in this paper are
implemented using Pytorch, and mixed-precision [28] is
employed to save GPU memory and accelerate training. We
follow [8, 36] to set the hyper-parameters of margin-based
softmax loss and adopt flip data augmentation. We use cus-
tomized ResNet [8, 13] and ViT [10] as the backbone. On
different datasets, CNN models are trained for 20 epochs
while ViT models are trained for 40 epochs. For the training
of CNN models, the default batch size per GPU is set as 128
unless otherwise indicated. We employ the SGD optimizer
with polynomial decay (power=2) and the learning rate is
set as 0.1 for the single node training (8 Tesla V100 32GB
GPUs). To accelerate the training on WebFace42M, we em-
ploy four nodes with 8× 4 GPUs and linearly warm up the
learning rate from 0 to 0.4 within the first 2 epochs. After-
wards, polynomial decay (power=2) is used for another 18
epochs as shown in Fig. 9a. For the training of ViT models,
the default batch size per GPU is set as 384. We use the
AdamW [26] optimizer with a base learning rate of 0.001
and a weight decay of 0.1. To achieve quick training, we
employ eight nodes with 8× 8 GPUs and linearly warm up

http://iccv21-mfr.com/

Datasets MFR
All Afr Cau S-Asian E-Asian Mask

WF4M+FC-1.0 86.25 83.35 91.11 88.14 65.79 72.05
WF4M+PFC-0.04 74.11 (- 12.14) 71.43 81.79 76.25 52.24 54.21
WF4M+PFC-0.1 85.76 (- 0.49) 83.82 91.00 87.90 66.04 71.13
WF4M+PFC-0.2 86.36 (+ 0.11) 84.47 91.39 88.45 66.61 71.88
WF4M+PFC-0.3 86.85 (+ 0.60) 84.86 91.57 88.57 67.52 72.28
WF4M+PFC-0.4 86.81 (+ 0.56) 84.75 91.44 88.41 67.17 71.99
WF12M+FC-1.0 91.70 90.72 94.94 93.44 75.10 80.47
WF12M+PFC-0.013 87.85 (- 3.85) 87.07 92.32 90.70 68.28 72.98
WF12M+PFC-0.1 91.24 (- 0.46) 90.80 94.67 93.18 74.97 79.73
WF12M+PFC-0.2 91.78 (+ 0.08) 91.09 95.00 93.53 75.90 79.92
WF12M+PFC-0.3 91.82 (+ 0.12) 91.14 95.00 93.61 75.55 80.08
WF12M+PFC-0.4 91.81 (+ 0.11) 90.97 95.03 93.40 75.55 80.61
WF42M+FC-1.0 93.86 93.33 96.20 95.24 79.46 83.90
WF42M+PFC-0.008 91.27 (- 2.59) 90.34 95.16 93.04 76.93 81.24
WF42M+PFC-0.1 93.95 (+ 0.09) 93.48 96.37 95.51 80.03 83.79
WF42M+PFC-0.2 94.04 (+ 0.18) 93.67 96.38 95.49 80.07 84.32
WF42M+PFC-0.3 94.03 (+ 0.17) 93.68 96.38 95.52 79.76 84.46
WF42M+PFC-0.4 93.95 (+ 0.09) 93.38 96.35 95.46 79.57 84.42

Table 1. Performance comparisons under different sampling ratios
on different training datasets. ResNet50 is used here.

Net GFlops IJB-C MFR
1e-5 All Afr Cau S-Asian E-Asian Mask

R18 2.62 93.36 79.13 75.50 86.10 80.55 57.77 63.87
R50 6.33 95.94 94.03 93.68 96.38 95.52 79.76 84.31
R100 12.12 96.45 96.69 96.68 98.09 97.72 86.14 89.64
R200 23.47 96.93 97.70 97.79 98.70 98.54 89.52 91.87
ViT-T 1.51 95.97 92.30 91.72 95.20 93.63 77.41 78.46
ViT-S 5.74 96.57 95.87 95.74 97.47 96.85 84.87 85.82
ViT-B 11.42 97.04 97.42 97.62 98.53 98.20 88.77 89.48
ViT-L 25.31 97.23 97.85 98.07 98.81 98.66 89.97 90.88

Table 2. Performance analysis of PFC (r=0.3) using different net-
work structures (i.e. CNN and ViT). Here, WebFace42M is used
as the training data and the gradient check-pointing [5] is used to
save memory.

Datasets MFR
All Afr Cau S-Asian E-Asian

WF12M+FC-1.0 91.70 90.72 94.94 93.44 75.10
WF12M-Conflict+FC-1.0 79.93 79.09 87.56 84.49 55.83
WF12M-Conflict+FC*-1.0 91.18 90.28 94.52 92.74 74.37
WF12M-Conflict+PFC-0.1 91.20 (+ 11.27) 90.65 94.65 93.40 74.99
WF12M-Conflict+PFC*-0.1 91.58 (+ 11.65) 91.01 94.81 93.42 75.42
WF12M-Conflict+PFC-0.2 90.55 (+ 10.62) 90.43 94.33 93.13 73.53
WF12M-Conflict+PFC*-0.2 91.68 (+ 11.75) 91.19 95.04 93.64 75.52
WF12M-Conflict+PFC-0.3 89.59 (+ 9.66) 89.24 93.67 92.35 71.85
WF12M-Conflict+PFC*-0.3 91.68 (+ 11.75) 91.03 94.85 93.60 75.51
WF12M-Conflict+PFC-0.4 87.78 (+ 7.85) 87.51 92.63 91.04 68.59
WF12M-Conflict+PFC*-0.4 91.54 (+ 11.61) 91.07 94.63 93.57 75.48

Table 3. Performance analysis of PFC under synthetic inter-class
conflict. The WebFace12M-Conflict dataset contains 1M classes
split from the WebFace12M dataset. ResNet50 is used here.
“+PFC*” denotes additional inter-class filtering to neglect abnor-
mal negative class centers with cosine similarities higher than 0.4.

the learning rate from 0 to 0.001 within the first 4 epochs.
Then, polynomial decay (power=2) is used for another 36
epochs.

4.2. Ablation Study

PFC across different datasets and sampling ratios.In
Tab. 1, we train ResNet50 models on three different datasets
with different sampling ratios. Compared to the perfor-
mance of FC, PFC-0.1 not only accelerates the training but
also achieves comparable results across different datasets
with identities ranging from 200K to 2M . When the sam-
pling ratio is increased to 0.2 and 0.3, PFC exhibits con-
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Datasets MFR
All Afr Cau S-Asian E-Asian

WF12M+FC-1.0 91.70 90.72 94.94 93.44 75.10
WF12M+PFC-0.1 91.24 (- 0.46) 90.80 94.67 93.18 74.97
WF12M+PFC*-0.1 91.53 (- 0.17) 90.99 94.87 93.34 75.26
WF12M-Flip(10%)+FC-1.0 88.77 87.12 92.81 90.58 70.74
WF12M-Flip(10%)+PFC-0.1 89.60 (+ 0.83) 89.60 94.02 92.19 72.23
WF12M-Flip(10%)+PFC*-0.1 90.03 (+ 1.26) 89.80 94.12 92.25 73.27
WF12M-Flip(20%)+FC-1.0 85.42 83.98 90.92 87.95 65.54
WF12M-Flip(20%)+PFC-0.1 87.62 (+ 2.20) 87.53 92.82 90.87 69.27
WF12M-Flip(20%)+PFC*-0.1 88.17 (+ 2.75) 87.96 93.20 91.15 70.05
WF12M-Flip(40%)+FC-1.0 43.87 41.61 52.80 48.03 28.60
WF12M-Flip(40%)+PFC-0.1 78.53 (+ 34.66) 79.33 87.52 83.86 57.54
WF12M-Flip(40%)+PFC*-0.1 80.20 (+ 36.33) 80.57 88.66 85.03 59.94

Table 4. Performance analysis of PFC under different synthetic
label-flip noise ratios (e.g. 10%, 20% and 40%). ResNet50 is used
here. “+PFC*” denotes additional abnormal inter-class filtering as
in Tab. 3.

Datasets MFR
All Afr Cau S-Asian E-Asian

WF10M-Longtail-FC-1.0 87.44 85.79 91.86 89.30 69.39
WF10M-Longtail-DCQ 89.37 87.24 92.16 91.94 71.35
WF10M-Longtail-PFC-0.1 91.92 (+ 4.48) 90.73 94.80 92.77 76.18
WF10M-Longtail-PFC-0.2 91.96 (+ 4.52) 91.14 95.05 93.54 76.53
WF10M-Longtail-PFC-0.3 91.64 (+ 4.20) 90.58 94.75 93.28 76.02
WF10M-Longtail-PFC-0.4 91.03 (+ 3.59) 90.11 94.57 93.07 75.98

Table 5. Performance analysis of PFC models trained on the
WebFace10M-Longtail dataset. ResNet50 is used here.

Method ID GPU BS Mem Speed MFR-All
Model Parallel 2M 8 128 18.9 2463 95.35
HF-Softmax 2M 8 128 10.7 1034 93.21
D-Softmax 2M 8 128 13.8 1840 91.69
PFC-0.1 2M 8 128 11.8 3552 96.19
Model Parallel 10M 8 16 32.0 502 -
PFC-0.1 10M 8 64 14.1 2497 -
Model Parallel 2M 64 240 30.5 15357 95.46
PFC-0.1 2M 64 240 17.2 23396 96.08
Model Parallel 10M 64 72 27.2 4840 -
PFC-0.1 10M 64 72 9.4 17819 -

Table 6. Large-scale training comparison on WebFace42M and
synthetic 10M identities. ResNet100 and V100 GPUs are used
here. “BS” abbreviates the batch size. The memory is GPU storage
in GB and the speed is throughput in samples/second.

sistent better performance than the baseline, indicating ran-
dom sampling on large-scale datasets is beneficial for both
training speed and model’s robustness. When the sampling
ratio is too small (e.g. around 0.01), there is an obvious per-
formance drop on MFR-All because (1) the inter-class in-
teraction is insufficient under a low sampling ratio during
training, and (2) trillion-level negative pair comparison dur-
ing testing is very challenging.
PFC across different network structures.In Tab. 2, we
train PFC (r=0.3) on the WebFace42M dataset by using
CNN or ViT as the backbone. As can be seen, PFC
achieves impressive performance across different network
complexities and ViT-based networks can obtain better per-
formance than CNN-based networks under the similar com-
putation cost. Specifically, the ViT large (ViT-L) model
obtains 97.23% TAR@FAR =1e-5 on IJB-C and 97.85%
TAR@FAR =1e-6 on MFR-All.
Robustness under inter-class conflict. In Tab. 3,

(a) Loss&LR (b) Ver. on MFR-All

Figure 9. Training status comparisons between model parallel and
PFC on WebFace42M. ResNet100 is employed here. The batch
size is 128× 8× 4.

Method Verification Accuracy IJB
LFW CFP-FP AgeDB IJB-B IJB-C

CosFace [36] (CVPR18) 99.81 98.12 98.11 94.80 96.37
ArcFace [8] (CVPR19) 99.83 98.27 98.28 94.25 96.03
AFRN [18] (ICCV19) 99.85 95.56 95.35 88.50 93.00
MV-Softmax [38] (AAAI20) 99.80 98.28 97.95 93.60 95.20
GroupFace [19] (CVPR20) 99.85 98.63 98.28 94.93 96.26
CircleLoss [33] (CVPR20) 99.73 96.02 - - 93.95
DUL [4] (CVPR20) 99.83 98.78 - - 94.61
CurricularFace [17] (CVPR20) 99.80 98.37 98.32 94.8 96.10
URFace [32] (CVPR20) 99.78 98.64 - - 96.60
DB [2] (CVPR20) 99.78 - 97.90 - -
Sub-center [7] (ECCV20) 99.80 98.80 98.31 94.94 96.28
BroadFace [20] (ECCV20) 99.85 98.63 98.38 94.97 96.38
BioMetricNet [1] (ECCV20) 99.80 99.35 96.12 - -
SST [11] (ECCV20) 99.75 95.10 97.20 - -
VPL [9] (CVPR21) 99.83 99.11 98.60 95.56 96.76
VirFace [23] (CVPR21) 99.56 97.15 - 88.90 90.54
DCQ [21] (CVPR21) 99.80 98.44 98.23 - -
Virtual FC [22] (CVPR21) 99.38 95.55 - 67.44 71.47
WebFace12M [50] (CVPR21) 99.83 99.38 98.33 - 97.51
WebFace42M [50] (CVPR21) 99.83 99.38 98.53 - 97.76
MC-mini-AMC [46] (ICCV21) - 96.53 97.25 93.13 95.27
WF4M, R100, PFC-0.04 99.83 99.06 97.52 94.91 96.80
WF4M, R100, PFC-0.3 99.85 99.23 98.01 95.64 97.22
WF12M, R100, PFC-0.013 99.83 99.21 97.93 95.84 97.39
WF12M, R100, PFC-0.3 99.83 99.40 98.53 96.31 97.58
WF42M, R100, PFC-0.008 99.83 99.32 98.27 96.02 97.51
WF42M, R100, PFC-0.3 99.85 99.40 98.60 96.47 97.82
WF42M, R200, PFC-0.3 99.83 99.51 98.70 96.57 97.97
WF42M, ViT-B, PFC-0.3 99.83 99.40 98.53 96.56 97.90
WF42M, ViT-L, PFC-0.3 99.83 99.44 98.67 96.71 98.00

Table 7. Performance comparisons between PFC and recent state-
of-the-art methods on various benchmarks. 1:1 verification ac-
curacy (%) is reported on the LFW, CFP-FP and AgeDB datasets.
TAR@FAR=1e-4 is reported on the IJB-B and IJB-C datasets. Un-
der the small sampling ratios, only within-batch negative classes
are used to construct the softmax loss. Therefore, the batch size of
r = 0.04 and r = 0.013 is enlarged to 8K, while the batch size
of r = 0.008 is amplified to 16K.

we synthesize a WebFace12M-Conflict dataset by ran-
domly splitting 200K identities into 600K identities, thus
WebFace12M-Conflict contains 1M classes with a high
inter-class conflict ratio. The performance of baseline
significantly drops from 91.70% to 79.93% on MFR-All,
while PFC is less affected by the conflicted inter-classes,
demonstrating the robustness of PFC under heavy inter-
class conflict. By using an online abnormal inter-class fil-
tering (Fig. 4 and Fig. 8), PFC*-0.2/0.3 can achieve almost
the same performance as on the cleaned version of Web-
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Face12M. Even though the baseline (FC) can also use the
trick of abnormal inter-class filtering, the margin between
hard inter-classes and conflicted inter-classes in FC is less
clear than the proposed PFC as shown in Fig. 8. Therefore,
FC* only achieves 91.18% even all of the negative classes
are checked at higher computation cost in each iteration.

In Tab. 4, we randomly change the image labels by
adding synthesized label-flip noise into the WebFace12M
dataset. As the noise ratios increases from 0% to 40%,
the performance of baseline dramatically declines from
91.70% to 43.87%. By contrast, the proposed PFC-0.1 is
more robust under label-flip noise, achieving an accuracy
of 78.53% under 40% label-flip noise. By using the ab-
normal inter-class filtering, PFC*-0.1 trained on the noisy
WebFace12M (40% label-flips) further improves the verifi-
cation accuracy to 80.20%, surpassing the FC baseline by
36.33%.
Robustness under long-tail distribution. In Tab. 5, we
construct a long-tail distributed dataset from WebFace42M.
Specifically, 200K identities are directly copied and the rest
of 1.8M identities are randomly condensed to contain 2 to 4
face images per identity. As can be seen, PFC-0.2 achieves
a verification accuracy of 91.96% on MFR-All, surpassing
the FC baseline by 4.52% and DCQ by 2.59%, indicating
that PFC is more robust under long-tail distribution.
Memory saving and training acceleration. In Tab. 6, we
compare PFC-0.1 with other sampling-based methods (e.g.
HF-Softmax [42] and D-Softmax [14]) on WebFace42M us-
ing single computing node. Even though HF-Softmax can
significantly reduce memory consumption, the time cost on
feature retrieval using CPU can not be ignored. Besides,
inter-class conflict still exists in the automatic cleaned Web-
Face42M, thus hard mining can even deteriorate the model’s
performance. D-Softmax separates softmax loss into intra-
class and inter-class objectives and reduces the calculation
redundancy of the inter-class objective. However, there ex-
ists an obvious performance drop for D-Softmax on MFR-
All. In addition, the classification layer of D-Softmax uses
data parallelism, thus the communication cost of the center
weights will decrease the training speed. By contrast, the
proposed PFC-0.1 is not only faster but also more accurate,
achieving the verification accuracy of 96.19%.

In Tab. 6, we also test the training speed of PFC-0.1 on
synthetic 10M identities by using 8 GPUs. PFC-0.1 can run
five times faster than the baseline, consuming less than half
GPU memory. As logits occupy a large amount of GPU
memory, the batch size of the baseline can be only 16, re-
sulting in a slow training speed. When the GPU number
increasing from 8 to 64, we can observe similar phenom-
ena of memory reduction and throughput improvement. In
Fig. 9, we compare the loss and performance between the
FC baseline and PFC-0.1 during training. The loss of PFC
in Fig. 9a is lower than the baseline as the denominator of

Eq. 1 is smaller for PFC-0.1. In Fig. 9b, PFC-0.1 achieves
better performance than the baseline with half training time,
indicating that PFC-0.1 can significantly accelerate model
training on the large-scale dataset.

4.3. Celebrity Benchmark Results

To compare with recent state-of-the-art competitors, we
train PFC models on different datasets and test on vari-
ous benchmarks. As reported in Tab. 7, the proposed PFC
(r = 0.3) achieves state-of-the-art results compared to
the competitors on pose-invariant verification, age-invariant
verification, and mixed-media (image and video) face ver-
ification. Even though Virtual FC [22] can reduce the pa-
rameters by more than 100 times, there is an obvious per-
formance drop for Virtual FC on the large-scale test set.
By contrast, the PFC model (r = 0.04) trained on Web-
Face4M significantly outperforms the Virtual FC model by
27.47% and 25.33% on IJB-B and IJB-C, respectively. Both
SST [11] and DCQ [21] abandon the FC layer and employ
a momentum-updated network to produce class weights.
However, PFC only needs to train one network instead of a
pair of networks. On CFP-FP, PFC models trained on Web-
Face4M with sampling ratios of r = 0.04 and r = 0.3 out-
perform the DCQ model by 0.62% and 0.79%, respectively.
When WebFace42M [50] is employed, the performance on
all of these benchmarks tends to be saturated. However, the
proposed PFC can still break the record. Specifically, the
ResNet200 model trained with PFC-0.3 achieves 99.51% on
CFP-FP and 98.70% on AgeDB, while the ViT large model
trained with PFC-0.3 obtains 96.71% and 98.00% verifica-
tion accuracy on IJB-B and IJB-C.

5. Conclusions and Discussions

In this paper, we propose Partial FC (PFC) for training
face recognition models on large-scale datasets. In each it-
eration of PFC, only a small part of class centers are se-
lected to compute the margin-based softmax loss, the proba-
bility of inter-class conflict, the frequency of passive update
on tail class centers, and the computing requirement can be
dramatically reduced. Through extensive experiments, we
confirm the effectiveness, robustness and efficiency of the
proposed PFC.

Limitations. Even though the PFC models trained on Web-
Face have achieved impressive results on high-quality test
sets, it may perform poorly when face resolution is low or
faces are captured in low illumination.

Negative Societal Impact. The PFC models may be used in
surveillance and breach privacy rights, thus we will strictly
control the license of code and models for academic re-
search use only.
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