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Abstract

Image manipulation detection algorithms are often
trained to discriminate between images manipulated with
particular Generative Models (GMs) and genuine/real im-
ages, yet generalize poorly to images manipulated with
GMs unseen in the training. Conventional detection algo-
rithms receive an input image passively. By contrast, we
propose a proactive scheme to image manipulation detec-
tion. Our key enabling technique is to estimate a set of tem-
plates which when added onto the real image would lead to
more accurate manipulation detection. That is, a template
protected real image, and its manipulated version, is better
discriminated compared to the original real image vs. its
manipulated one. These templates are estimated using cer-
tain constraints based on the desired properties of tem-
plates. For image manipulation detection, our proposed ap-
proach outperforms the prior work by an average precision
of 16% for CycleGAN and 32% for GauGAN. Our approach
is generalizable to a variety of GMs showing an improve-
ment over prior work by an average precision of 10% aver-
aged across 12 GMs. Our code is available at https://
www.github.com/vishal3477/proactive_IMD.

1. Introduction

It’s common for people to share personal photos on so-
cial networks. Recent developments of image manipula-
tion techniques via Generative Models (GMs) [13] result
in serious concerns over the authenticity of the images. As
these techniques are easily accessible [7,8,21,27,31,44,61],
the shared images are at a greater risk for misuse after ma-
nipulation. Generation of fake images can be categorized
into two types: entire image generation and partial image
manipulation [46, 48]. While the former generates entirely
new images by feeding a noise code to the GM, the lat-
ter involves the partial manipulation of a real image. Since
the latter alters the semantics of real images, it is generally
considered as a greater risk, and thus partial image manipu-
lation detection is the focus of this work.

Figure 1. Passive vs. proactive image manipulation detec-
tion Classic passive schemes take an image as it is to dis-
criminate a real image vs. its manipulated one created by a
Generative Model (GM). In contrast, our proactive scheme
performs encryption of the real image so that our detection
module can better discriminate the encrypted real image vs.
its manipulated counterpart.

Detecting such manipulation is an important step to al-
leviate societal concerns on the authenticity of shared im-
ages. Prior works have been proposed to combat manipu-
lated media [12]. They leverage properties that are prone
to being manipulated, including mouth movement [39], ste-
ganalysis features [51], attention mechanism [11, 23], etc.
However, these methods are often overfitted to the image
manipulation method and the dataset used in training, and
suffer when tested on data with a different distribution.

All the aforementioned methods adopt a passive scheme
since the input image, being real or manipulated, is accepted
as is for detection. Alternatively, there is also a proactive
scheme proposed for a few computer vision tasks, which
involves adding signals to the original image. For example,
prior works add a predefined template to real images which
either disrupt the output of the GM [40, 41, 54] or tag im-
ages to real identities [46]. This template is either a one-hot
encoding [46] or an adversarial perturbation [40, 41, 54].

Motivated by improving the generalization of manipu-
lation detection, as well as the proactive scheme for other
tasks, this paper proposes a proactive scheme for the pur-
pose of image manipulation detection, which works as fol-
lows. When an image is captured, our algorithm adds an
imperceptible signal (termed as template) to it, serving as an
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Table 1. Comparison of our approach with prior works. Generalizable column means if the performance is reported on
datasets unseen during training. [Keys: Img. man. det.: Image manipulation detection, Img. ind.: Image independent]

Method Year Detection Purpose Manipulation Generalizable Add Recover Template # of Img. ind.
scheme type perturbation perturbation learning method templates templates

Cozzolino et al. [10] 2018 Passive Img. man. det. Entire/Partial 4 7 7 - - -
Nataraj et al. [28] 2019 Passive Img. man. det. Entire/Partial 4 7 7 - - -
Rossler et al. [39] 2019 Passive Img. man. det. Entire/Partial 7 7 7 - - -
Zhang et al. [59] 2019 Passive Img. man. det. Partial 4 7 7 - - -
Wang et al. [48] 2020 Passive Img. man. det. Entire/Partial 4 7 7 - - -
Wu et al. [51] 2020 Passive Img. man. det. Entire/Partial 7 7 7 - - -

Qian et al. [35] 2020 Passive Img. man. det. Entire/Partial 7 7 7 - - -
Dang et al. [11] 2020 Passive Img. man. det. Partial 7 7 7 - - -
Masi et al. [26] 2020 Passive Img. man. det. Partial 7 7 7 - - -

Nirkin et al. [29] 2021 Passive Img. man. det. Partial 7 7 7 - - -
Asnani et al. [3] 2021 Passive Img. man. det. Entire/Partial 4 7 7 - - -

Segalis et al. [41] 2020 Proactive Deepfake disruption Partial 7 4 7 Adversarial attack 1 4
Ruiz et al. [40] 2020 Proactive Deepfake disruption Partial 7 4 7 Adversarial attack 1 4
Yeh et al. [54] 2020 Proactive Deepfake disruption Partial 7 4 7 Adversarial attack 1 4

Wang et al. [46] 2021 Proactive Deepfake tagging Partial 7 4 4 Fixed template > 1 7

Ours - Proactive Img. man. det. Partial 4 4 4 Unsupervised learning > 1 4

encryption. If this encrypted image is shared and manipu-
lated through a GM, our algorithm accurately distinguishes
between the encrypted image and its manipulated version
by recovering the added template. Ideally, this encryption
process could be incorporated into the camera hardware to
protect all images after being captured. In comparison, our
approach differs from related proactive works [40,41,46,54]
in its purpose (detection vs other tasks), template learning
(learnable vs predefined), the number of templates, and the
generalization ability.

Our key enabling technique is to learn a template set,
which is a non-trivial task. First, there is no ground truth
template for supervision. Second, recovering the template
from manipulated images is challenging. Third, using one
template can be risky as the attackers may reverse engineer
the template. Lastly, image editing operations such as blur-
ring or compression could be applied to encrypted images,
diminishing the efficacy of the added template.

To overcome these challenges, we propose a template es-
timation framework to learn a set of orthogonal templates.
We perform image manipulation detection based on the re-
covery of the template from encrypted real and manipulated
images. Unlike prior works, we use unsupervised learning
to estimate this template set based on certain constraints.
We define different loss functions to incorporate proper-
ties including small magnitude, more high frequency con-
tent, orthogonality and classification ability as constraints
to learn the template set. We show that our framework
achieves superior manipulation detection than State-of-The-
Art (SoTA) methods [10, 28, 46, 59]. We propose a novel
evaluation protocol with 12 different GMs, where we train
on images manipulated by one GM and test on unseen GMs.
In summary, the contributions of this paper include:
• We propose a novel proactive scheme for image manipu-

lation detection.
• We propose to learn a set of templates with desired prop-

erties, achieving higher performance than a single tem-

plate approach.
• Our method substantially outperforms the prior works on

image manipulation detection. Our method is more gen-
eralizable to different GMs showing an improvement of
10% average precision averaged across 12 GMs.

2. Related Works

Passive deepfake detection. Most deepfake detection
methods are passive. Wang et al. [48] perform binary de-
tection by exploring frequency domain patterns from im-
ages. Zhang et al. [59] propose to extract the median
and high frequencies to detect the upsampling artifacts
by GANs. Asnani et al. [3] propose to estimate finger-
print using certain desired properties for generative mod-
els which produce fake images. Others use autoencoders
[10], hand-crafted features [28], face-context discrepan-
cies [29], mouth and face motion [39], steganalysis fea-
tures [51], xception-net [9], frequency domain [26] and at-
tention mechanisms [11]. These aforementioned passive
deepfake detection methods suffer from generalization. We
propose a novel proactive scheme for manipulation detec-
tion, aiming to improve the generalization.
Proactive schemes. Recently, some proactive methods
are proposed by adding an adversarial noise onto the real
image. Ruiz et al. [40] perform deepfake disruption by us-
ing adversarial attack in image translation networks. Yeh et
al. [54] disrupt deepfakes to low quality images by perform-
ing adversarial attacks on real images. Segalis et al. [41]
disrupt manipulations related to face-swapping by adding
small perturbations. Wang et al. [46] propose a method to
tag images by embedding messages and recovering them
after manipulation. Wang et al. [46] use a one-hot encod-
ing message instead of adversarial perturbations. Compared
with these works, our method focuses on image manipula-
tion detection rather than deepfake disruption or deepfake
tagging. Our method learns a set of templates and recovers
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Figure 2. Our proposed framework includes two stages: 1) selection and addition of templates; and 2) the recovery of the
estimated template from encrypted real images and manipulated images using an encoder network. The GM is used in the
inference mode. Both stages are trained in an end-to-end manner to output a set of templates. For inferences, the first stage
is mandatory to encrypt the images. The second stage is used only when there is a need of image manipulation detection.

the added template for image manipulation detection. Our
method also generalizes better to unseen GMs than prior
works. Tab. 1 summarizes the comparison with prior works.
Watermarking and cryptography methods. Digital wa-
termarking methods have been evolving from using clas-
sic image transformation techniques to deep learning tech-
niques. Prior work have explored different ways to em-
bed watermarks through pixel values [5] and spatial do-
main [42]. Others [18, 20, 52] use frequency domains in-
cluding transformation coefficients obtained via SVD, dis-
crete wavelet transform (DWT), discrete cosine transform
(DCT) and discrete fourier transform (DFT) to embed wa-
termarks. Recently, deep learning techniques proposed by
Zhu et al. [60], Baluja et al. [4] and Tancik et al. [43] use an
encoder-decoder architecture to embed watermarks into an
image. All of these methods aim to either hide sensitive in-
formation or protect the ownership of digital images. While
our algorithm shares the high-level idea of image encryp-
tion, we develop a novel framework for an entirely different
purpose, i.e., proactive image manipulation detection.

3. Proposed Approach
3.1. Problem Formulation

We only consider GMs which perform partial image ma-
nipulation that takes a real image as input for manipulation.
Let Xa be a set of real images which when given as input
to a GM G would output G(Xa), a set of manipulated im-
ages. Conventionally, passive image manipulation detection
methods perform binary classification on Xa vs. G(Xa).
Denote X = {Xa, G(Xa)} ∈ R128×128×3 as the set of
real and manipulated images, the objective function for pas-
sive detection is formulated as follows:

min
θ

{
−
∑
j

(
yj .log(H(Xj ; θ))−(1−yj).log(1−H(Xj ; θ))

)}
.

(1)

where y is the class label and H refers to the classification
network used with parameters θ.

In contrast, for our proactive detection scheme, we apply
a transformation T to a real image from set Xa to formulate
a set of encrypted real images represented as: T (Xa). We
perform image encryption by adding a learnable template
to the image which acts as a defender’s signature. Fur-
ther, the set of encrypted real images T (Xa) is given as
input to the GM, which produces a set of manipulated im-
ages G(T (Xa)). We propose to learn a set of templates
rather than a single one to increase security as it is diffi-
cult to reverse engineer all templates. Thus for a real image
Xa
j ∈Xa, we define T via a set of n orthogonal templates

S = {S1,S2, ...Sn} where Si ∈ R128×128 as follows:

T (Xa
j ) = Xa

j + Si, where i ∈ {1, 2, ..., n}. (2)

After applying the transformation T , the objective func-
tion defined in Eqn. 1 can be re-written as:

min
θ,Si

{
−
∑
j

(
yj .log(H(T (Xj); θ,Si))+

(1− yj).log(1−H(T (Xj); θ,Si))
)}

.

(3)

The goal is to find Si for which corresponding images in
Xa and T (Xa) have no significant visual difference. More
importantly, if T (Xa) is modified by any GM, this would
improve the performance for image manipulation detection.

3.2. Proposed Framework

As shown in Fig. 2, our framework consists of two
stages: image encryption and recovery of template. The
first stage is used for selection and addition of templates,
while the second stage involves the recovery of templates
from images in T (Xa) and G(T (Xa)). Both stages are
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(a) (b) (c) (d) (e) (f)

Figure 3. Visualization of (a) a template set with the size of
3, (b) real images, (c) encrypted real images after adding a
template, (d) manipulated images output by a GM, (e) re-
covered template from (c), and (f) recovered template from
(d). Each row corresponds to image manipulation by differ-
ent GM (top: StarGAN, middle: CycleGAN, bottom: Gau-
GAN). The template recovered from encrypted real images
is more similar to the template set than the one from ma-
nipulated images. The addition of the template creates no
visual difference between real and encrypted real images.
We provide more examples of real images evaluated using
our framework in the supplementary material.

trained in an end-to-end manner with GM parameters fixed.
For inference, each stage is applied separately. The first
stage is a mandatory step to encrypt the real images while
the second stage would only be used when image manipu-
lation detection is needed.

3.2.1 Image Encryption

We initialize a set of n templates as shown in Fig. 2, which
is optimized during training using certain constraints. As
formulated in Eqn. 2, we randomly select and add a tem-
plate from our template set to every real image. Our objec-
tive is to estimate an optimal template set from which any
template is capable of protecting the real image in Xa.

Although we constrain the magnitude of the templates
using L2 loss, the added template still degrades the quality
of the real image. Therefore, when adding the template to
real images, we control the strength of the added template
using a hyperparameter m. We re-define T as follows:

T (Xa
j ) = Xa

j +m× Si where i ∈ {1, 2, ..., n}. (4)

We perform an ablation study of varying m in Sec. 4.3,
and find that setting m at 30% performs the best.

3.2.2 Recovery of Templates

To perform image manipulation detection as shown in
Fig. 2, we attempt to recover our added template from
images in T (Xa) using an encoder E with parameters
θE . For any real image Xa

j ∈ Xa, we define the re-
covered template from encrypted real image T (Xa

j ) as

SR = E(T (Xa
j )) and from manipulated imageG(T (Xa

j ))
as SF = E(G(T (Xa

j ))). As template selection from the
template set is random, the encoder receives more training
pairs to learn how to recover any template from an image,
which contributes positively to the robustness of the recov-
ery process. We visualize our trained template set S, and
the recovered templates SR/F in Fig. 3.

The main intuition of our framework design is that SR
should be much more similar to the added template and
vice-versa for SF . Thus, to perform image manipulation
detection, we calculate the cosine similarity between SR/F
and all learned templates in the set S rather than merely us-
ing a classification objective. For every image, we select the
maximum cosine similarity across all templates as the final
score. Therefore, we update logit scores in Eqn. 3 by cosine
similarity scores as shown below:

min
θE ,Si

{
−
∑
j

(
yj .log( max

i=1...n
(Cos(E(T (Xj); θE),Si)))+

(1−yj).log(1− max
i=1...n

(Cos(E(T (Xj); θE),Si)))
)}

.

(5)

3.2.3 Unsupervised Training of Template Set

Since there is no ground truth for supervision, we define
various constraints to guide the learning process. Let S be
the template selected from set S to be added onto a real
image. We formulate five loss functions as shown below.
Magnitude loss. The real image and the encrypted image
should be as similar as possible visually as the user does not
want the image quality to deteriorate after template addi-
tion. Therefore, we propose the first constraint to regularize
the magnitude of the template:

Jm = ||S||22. (6)

Recovery loss. We use an encoder network to recover the
added template. Ideally, the encoder output, i.e., the recov-
ered template SR of the encrypted real image, should be
the same as the original added template S. Thus, we pro-
pose to maximize the cosine similarity between these two
templates:

Jr = 1− Cos(S,SR). (7)

Content independent template loss. Our main aim is to
learn a set of universal templates which can be used for de-
tecting manipulated images from unseen GMs. These tem-
plates, despite being trained on one dataset, can be applied
to images from a different domain. Therefore, we encour-
age the high frequency information in the template to be
data independent. We propose a constraint to minimize low
frequency information:

Jc = ||L(F(S), k)||22, (8)
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where L is the low pass filter selecting the k × k region in
the center of the 2D Fourier spectrum, while assigning the
high frequency region to zero. F is the Fourier transform.
Separation loss. We want the recovered template SF from
manipulated images G(T (X)) to be different than all the
templates in set S. Thus, we optimize SF to be orthogonal
to all the templates in the set S. Therefore, we take the tem-
plate for which the cosine similarity between SF and the
template is maximum, and minimize its respective cosine
similarity:

Js = max
i=1...n

(Cos(N (Si),N (SF ))), (9)

where N (S) is the normalizing function defined as
N (S) = (S −min(S))/(max(S) −min(S)). Since this
loss minimizes the cosine similarity to be 0, we normalize
the templates before similarity calculation.
Pair-wise set distribution loss. A template set would en-
sure that if the attacker is somehow able to get access to
some of the templates, it would still be difficult to reverse
engineer other templates. Therefore, we propose a con-
straint to minimize the inter-template cosine similarity to
prompt the diversity of the templates in S:

Jp =

n∑
i=1

n∑
j=i+1

Cos(N (Si),N (Sj)). (10)

The overall loss function for template estimation is thus:

J = λ1Jm + λ2Jr + λ3Jc + λ4Js + λ5Jp, (11)

where λ1, λ2, λ3, λ4, λ5 are the loss weights for each term.

4. Experiments
4.1. Settings

Experimental setup and dataset. We follow the ex-
perimental setting of Wang et al. [48], and compare with
four baselines: [48], [59], [10] and [28]. For training, [48]
uses 720K images from which the manipulated images are
generated by ProGAN [19]. However, as our method re-
quires a GM to perform partial manipulation, we choose
STGAN [21] in training as ProGAN synthesizes entire im-
ages. We use 24K images in CelebA-HQ [19] as the real
images and pass them through STGAN to obtain manip-
ulated images for training. For testing, we use 200 real
images and pass them through unseen GMs such as Star-
GAN [7], GauGAN [31] and CycleGAN [61]. The real
images for testing GMs are chosen from the respective
dataset they are trained on, i.e. CelebA-HQ for StarGAN,
Facades [61] for CycleGAN, and COCO [6] for GauGAN.

To further evaluate generalization ability of our ap-
proach, we use 12 additional unseen GMs that have diverse
network architectures and loss functions, and are trained on
different datasets. We manipulate each of 200 real images

Table 2. Performance comparison with prior works.

Method Train GM Set Test GM Average precision (%)
size CycleGAN StarGAN GauGAN

[28] CycleGAN - 100 88.20 56.20
[10] ProGAN - 77.20 91.70 83.30
[59] AutoGAN - 100 100 61.00
[48] ProGAN - 84.00 100 67.00

Ours

STGAN 3 96.12 100 91.62
20 99.66 100 90.58

AutoGAN 3 97.87 97.89 86.57
20 97.05 97.18 84.24

STGAN +
AutoGAN 3 100 100 99.69

Table 3. Performance comparison with Wang et al. [48].

Method Train GM Test GM TDR (%) at low FAR (0.5%)
CycleGAN StarGAN GauGAN

[48] ProGAN 55.98 93.88 37.14
Ours STGAN 88.50 100.00 43.00

with these 12 GMs which gives 2, 400 manipulated images.
The real images are chosen from the dataset that the respec-
tive GM is trained on. The list of GMs and their training
datasets are provided in the supplementary.
Implementation details. Our framework is trained end-
to-end for 10 epochs via Adam optimizer with a learning
rate of 10−5 and a batch size of 4. The loss weights are set
to ensure similar magnitudes at the beginning of training:
λ1 = 100, λ2 = 30, λ3 = 5, λ4 = 0.003, λ5 = 10. If not
specified, we set the template set size n = 3. We set k = 50
in the content independent template loss. All experiments
are conducted using one NVIDIA Tesla K80 GPU.
Evaluation metrics. We report average precision as
adopted by [48]. To mimic real-world scenarios, we fur-
ther report true detection rate (TDR) at a low false alarm
rate (FAR) of 0.5%.

4.2. Image Manipulation Detection Results

As shown in Tab. 2, when our training GM is STGAN,
we can outperform the baselines by a large margin
on GauGAN-based test data, while the performance on
StarGAN-based test data remains the same at 100%. When
training on STGAN, our method achieves lower perfor-
mance on CycleGAN. We hypothesis that it is because Au-
toGAN and CycleGAN share the same model architecture.
To validate this, we change our training GM to AutoGAN
and observe improvement when tested on CycleGAN. How-
ever, the performance drops on other two GMs because the
amount of training data is reduced (24K for STGAN and
1.5K for AutoGAN). Increasing the number of templates
can improve the performance for when trained on STGAN
and test on CycleGAN, but degrades for others. The degra-
dation is more when train on AutoGAN. It suggests that it is
challenging to find a larger template set on a smaller train-
ing set. Finally, using both STGAN and AutoGAN training
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Table 4. Average precision of 12 testing GMs when our method is trained on only STGAN. All the GMs have different archi-
tectures and are trained on diverse datasets. The average precision of almost all GMs are over 90% showing the generalization
ability of our method.

GM UNIT MUNIT StarGAN2 BicycleGAN CONT Enc. SEAN ALAE Pix2Pix DualGAN CouncilGAN ESRGAN GANimation Average[22] [15] [8] [62] [32] [63] [33] [17] [55] [30] [50] [34]
[48] 64.94 95.33 100 100 98.18 67.81 92.73 91.26 98.91 74.13 57.04 55.19 82.97

Ours 100 100 100 99.05 98.75 97.63 93.10 92.50 92.49 89.71 87.30 58.69 92.43

Table 5. Performance comparison of our proposed method
with Ruiz et al. [40]. The performance for our proposed
method is better than [40] when the testing GM is unseen.
Both methods use StarGAN as the training GM.

Method Test GM Average precision (%)
StarGAN CycleGAN GANimation Pix2Pix

[40] 100 51.50 52.43 49.08
Ours 100 95.26 60.12 91.85

data can achieve the best performance.
TDR at low FAR. We also evaluate using TDR at low FAR
in Tab. 3. This is more indicative of the performance in the
real world application where the number of real images are
exponentially larger than manipulated images. For compar-
ison, we evaluate the pretrained model of [48] on our test
set. Our method performs consistently better for all three
GMs, demonstrating the superiority of our approach.
Generalization ability. To test our generalization abil-
ity, we perform extensive evaluations across a large set of
GMs. We compare the performance of our method with [48]
by evaluating its pretrained model on a test set of different
GMs. Our framework performs quite well on almost all the
GMs compared to [48] as shown in Tab. 4. This further
demonstrates the generalization ability of our framework in
the real world where an image can be manipulated by any
unknown GM. Compared to [48], our framework achieves
an improvement in the average precision of almost 10% av-
eraged across all 12 GMs.
Comparison with proactive scheme work. We com-
pare our work with previous work in proactive scheme [40].
As [40] proposes to disrupt the GM’s output, they only pro-
vide the distortion results of the manipulated image. To en-
able binary classification, we take their adversarial real and
disrupted fake images to train a classifier with the similar
network architecture as our encoder. Tab. 5 shows that [40]
works perfectly when the testing GM is the same as the
training GM. Yet if the testing GM is unseen, the perfor-
mance drops substantially. Our method performs much bet-
ter showing the high generalizability.
Comparison with steganography works. Our method
aligns with the high-level idea of digital steganographhy
methods [4, 5, 42, 52, 63] which are used to hide an image
onto other images. We compare our approach to the re-
cent deep learning-based steganography method, Baluja et
al. [4], with its publicly available code. We hide and retrieve

Table 6. Performance comparison of our proposed method
with steganography and adversarial attack methods.

Method Type Test GM Average precision (%)
CycleGAN StarGAN GauGAN

Baluja [4] Steganography 85.64 88.06 81.26
PGD [25] Adversarial 90.28 98.22 57.71
FGSM [14] attack 89.21 98.29 63.81
Ours - 99.95 100 98.23

the template using the pre-trained model provided by [4].
Our approach has far better average precision for each test
GM compared to [4] as shown in Tab. 6. This validates
the effectiveness of template learning and concludes that the
digital steganography methods are less generalizable across
unknown GMs than our approach.
Comparison with benign adversarial attacks. Adver-
sarial attacks are used to optimize a perturbation to change
the class of the image. The learning of the template us-
ing our framework is similar to a benign usage of adver-
sarial attacks. We conduct an ablation study to compare
our method with common attacks such as benign PGD and
FGSM. We remove the losses in Eqs. 6, 8, and 10 responsi-
ble for learning the template and replace them with an ad-
versarial noise constraint. Our approach has better average
precision for each test GM than both adversarial attacks as
shown in Tab. 6. We observe that adversarial noise per-
formed similar to passive schemes offering poor generaliza-
tion to unknown GMs. This shows the importance of using
our proposed constraints to learn the universal template set.
Data augmentation. We apply various data augmentation
schemes to evaluate the robustness of our method. We adopt
some of the image editing techniques from Wang et al. [48],
including (1) Gaussian blurring, (2) JPEG compression, (3)
blur + JPEG (0.5), and (4) blur + JPEG (0.1), where 0.5
and 0.1 are the probabilities of applying these image edit-
ing operations. In addition, we add resizing, cropping, and
Gaussian noise. The implementation details of these tech-
niques are in the supplementary. These techniques are ap-
plied after addition of our template to the real images.

We evaluate in three scenarios when augmentation is ap-
plied in (1) training, (2) testing, (3) both training and test-
ing. As shown in Tab. 7, for the augmentation techniques
adopted from [48], we outperform [48] in almost all tech-
niques. We observe significant improvement when blurring
or JPEG compression is applied jointly but the improvement
is less when they are applied separately.

15391



Table 7. Average precision (%) with various augmentation
techniques in training and testing for three GMs. We ap-
ply data augmentation to three scenarios: (1) in training
only (2) in testing only and (3) in both training and testing.
[Keys: aug.=augmentation, B.=blur, J.=JPEG compression,
Gau. No.=Gaussian Noise]

Augmentation Augmentation Method Test GMs
Train Test type CycleGAN StarGAN GauGAN

7 7
No [48] 84.00 100 67.00

augmentation Ours 96.12 100 91.62

4 7

Blur [48] 90.10 100 74.70
Ours 93.55 100 92.35

JPEG [48] 93.20 91.80 97.50
Ours 98.74 98.30 91.85

B+J (0.5) [48] 96.80 95.40 98.10
Ours 94.44 100 98.16

B+J (0.1) [48] 93.50 84.50 89.50
Ours 95.79 100 95.94

Resizing
Ours

100 100 98.97
Crop 84.45 84.92 94.43

Gau. No. 99.95 100 99.11

7 4

Blur

Ours

95.74 84.87 70.74
JPEG 91.91 82.96 84.16

B+J (0.5) 89.23 82.18 75.53
Resizing 93.12 77.41 91.45

Crop 84.04 73.87 70.12
Gau. No. 73.83 69.47 66.70

4 4

Blur

Ours

92.16 100 90.15
JPEG 94.00 97.92 85.91

B+J (0.5) 87.37 84.92 74.68
Resizing 99.98 100 92.73
Cropping 77.63 89.22 79.96
Gau. No. 97.44 100 82.32

As for the different scenarios on when data augmenta-
tion is applied, scenario 2 performs the worst because the
augmentation applied in testing has not been seen during
training. Scenario 3 performs better than scenario 2 in most
cases. There is a much larger performance drop when blur-
ring and JPEG are applied together than separately. Crop-
ping performs the worst for both Scenario 1 and 3.

4.3. Ablation Studies

Template set size. We study the effects of the template
set size. As shown in Fig. 4, the average precision increases
as the set size is expanding from 1 and saturates around the
set size 10. In the meantime, the average cosine similarity
between templates within the set increases consistently, as
it gets harder to find many orthogonal templates. We also
test our framework’s run-time for different set sizes. On a
Tesla K80 GPU, for the set size of 1, 3, 10, 20 and 50, the
per-image run-time of our manipulation detection is 26.19,
27.16, 28.44, 34.26, and 43.76 ms respectively. Thus, de-
spite increasing the set size enhances our accuracy and se-
curity, there is a trade-off with the detection speed which is
a important factor too. For comparison, we also test the pre-
trained model of [48] which gives a per-image run-time of
54.55 ms. Our framework is much faster even with a larger
set size which is due to the shallow network in our proactive
scheme compared to a deeper network in passive scheme.

Template strength. We use a hyperparameter m to con-

Figure 4. Ablation study with varying template set sizes.
The performance improves when the set size increases,
while the inter-template cosine similarity also increases.

Figure 5. Ablation with varying template strengths in the
encrypted real images. The lower the template strength, the
higher the PSNR is and the harder it is for our encoder to
recover it, which leads to lower detection performance.

trol the strength of our added template. We ablate m and
show the results in Fig. 5. Intuitively, the lower the strength
of the template added, the lower the detection performance
since it would be harder for the encoder to recover the orig-
inal template. Our results support this intuition. For all
three GMs, the precision increases as we enlarge the tem-
plate strength, and converges after 50% strength. We also
show the PSNR between the encrypted real image and the
original real image. The PSNR decreases as we enlarge the
strength as expected. We choose m = 30% for a trade-off
between the detection precision and the visual quality.
Loss functions. Our training process is guided by an ob-
jective function with five losses (Eqn. 11). To demonstrate
the necessity of each loss, we ablate by removing each loss
and compare with our full model. As shown in Tab. 8, re-
moving any one of the losses results in performance degra-
dation. Specifically, removing the pair-wise set distribution
loss, recovery loss or separation loss causes a larger drop.

To better understand the importance of the data-driven
template set, we fix the template set during training, i.e.,
removing the three losses directly operating on the tem-
plate and only considering recovery and separation losses
for training. We observe a significant performance drop,
which shows that the learnable template is indeed crucial
for effective image manipulation detection.

Finally, we remove the encoder from our framework and
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Table 8. Ablation study to remove losses used in our train-
ing. Removing any one loss deteriorates the performance
compared to our proposed method. Fixing the template
or performing direct classification made the results worse.
This shows the importance of a variable template and using
an encoder for classification purposes.

Loss removed Test GM Average precision (%)
CycleGAN StarGAN GauGAN

Magnitude loss (Jm) 94.43 100 87.44
Pair-wise set distribution loss (Jp) 66.60 79.99 74.55
Recovery loss (Jr) 51.59 94.18 90.61
Content independent template loss (Jc) 92.01 100 80.54
Separation loss (Js) 92.24 100 64.06
Jm, Jp and Jc (fixed template) 46.93 59.88 43.64
Jr and Js (removing encoder) 50.00 98.24 55.00
None (ours) 96.12 100 91.62

use a classification network with similar number of lay-
ers. Instead of recovering templates, the classification net-
work is directly trained to perform binary image manipu-
lation detection via cross-entropy loss. The performance
drops significantly. This observation aligns with the previ-
ous works [10,47,59] stating that CNN networks trained on
images from one GM show poor generalizability to unseen
GMs. The performance drops for all three GMs but Cycle-
GAN and GauGAN are affected the most, as the datasets are
different. For our proposed approach, when we are recover-
ing the template, the encoder ignores all the low frequency
information of the images which are data dependent. Thus,
being more data (i.e., image content) independent, our en-
coder is able to achieve a higher generalizability.

Template selection. Given a real image, we randomly
select a template from the learnt template set to add to
the image. Thus, every image has an equal chance of se-
lecting any one template from the set, resulting in many
combinations for the entire test set. This raises the ques-
tion of finding a worst and best combination of templates
for all images in the test set. To answer this, we exper-
iment with a template set size of 50 as a large size may
offer higher variation in performance. For each image in
T (Xa) and G(T (Xa)), we calculate the cosine similarity
between added template S and recovered template SR/F .
For the worst/best case of every image, we select the tem-
plate with the minimum/maximum difference between the
real and manipulated image cosine similarities. As shown
in Tab. 9, GauGAN gives much more variation in the perfor-
mance compared to CycleGAN and StarGAN. This shows
that the template selection is an important step for image
manipulation detection. This brings up the idea of training
a network to select the best template for a specific image,
by using the best case described above as a pseudo ground
truth to supervise the network. We hypothesis template se-
lection could be important, but with experiments, the dif-
ference of performance among different templates is nearly
zero and the network’s selection doesn’t help in the per-

Table 9. Ablation of template selection schemes at set size
of 50.

Selection scheme Test GM Average precision (%)
CycleGAN StarGAN GauGAN

Random selection 99.90± 0.02 100± 0.00 93.56± 0.52
Biasing one template 99.05± 0.37 100± 0.00 91.21± 0.97
Network based 95.46 100 90.47
Worst case 94.85 100 80.55
Best case 99.95 100 98.23

formance compared with selecting the template randomly
as shown in Tab. 9. Therefore, we cannot have a pseudo
ground truth to train another network for template selection.

Another option for template selection is to select the
same template for every test image which is equivalent
to using one template compromising the security of our
method. Nevertheless, we test this option to see the per-
formance variation of biasing one template for all images.
The performance variation is larger than our random selec-
tion scheme. This shows that each template has a similar
contribution to image manipulation detection.

5. Conclusion

In this paper, we propose a proactive scheme for image
manipulation detection. The main objective is to estimate a
set of templates, which when added to the real images im-
proves the performance for image manipulation detection.
This template set is estimated using certain constraints and
any template can be added onto the image right after it is
being captured by any camera. Our framework is able to
achieve better image manipulation detection performance
on different unseen GMs, compared to prior works. We also
show the results on a diverse set of 12 additional GMs to
demonstrate the generalizability of our proposed method.

Limitations. First, although our work aims to protect
real images in a proactive manner and can detect whether
an image has been manipulated or not, it cannot perform
general deepfake detection on entirely synthesized images.
Second, we try our best to collect a diverse set of GMs to
validate the generalization of our approach. However, there
are many other GMs that do not have open-sourced codes
to be evaluated in our framework. Lastly, how to supervise
the training of a network for template selection is still an
unanswered question.

Potential societal impact. We propose a proactive scheme
which uses encrypted real images and their manipulated
versions to perform manipulation detection. While this of-
fers more generalizable detection, the encrypted real im-
ages might be used for training GMs in the future, which
could make the manipulated images more robust against our
framework, and thus warrents more research.
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