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Abstract

Existing state-of-the-art methods for Video Object Seg-
mentation (VOS) learn low-level pixel-to-pixel correspon-
dences between frames to propagate object masks across
video. This requires a large amount of densely annotated
video data, which is costly to annotate, and largely redun-
dant since frames within a video are highly correlated. In
light of this, we propose HODOR: a novel method that tack-
les VOS by effectively leveraging annotated static images
for understanding object appearance and scene context. We
encode object instances and scene information from an im-
age frame into robust high-level descriptors which can then
be used to re-segment those objects in different frames. As
a result, HODOR achieves state-of-the-art performance on
the DAVIS and YouTube-VOS benchmarks compared to ex-
isting methods trained without video annotations. With-
out any architectural modification, HODOR can also learn
from video context around single annotated video frames
by utilizing cyclic consistency, whereas other methods rely
on dense, temporally consistent annotations. Source code:
https://github.com/Ali2500/HODOR

1. Introduction
Current state-of-the-art Video Object Segmentation

(VOS) methods learn ‘space-time correspondences’ (STC),
i.e. pixel-to-pixel correspondences, between the image
frames in a video. These methods [7,28,47] achieve impres-
sive results, but require a large amount of temporally dense
annotated video for training. Such datasets require signifi-
cant human effort, and the annotations are largely redundant
since image frames within a video are highly correlated.
The largest publicly available VOS dataset [46] contains
only a few thousand videos. Single image datasets [14, 20],
in contrast, exist with hundreds of thousands of annotated
images. In this work, we explore the following question:
can VOS be learned with only single-image annotations?

To this end, we propose HODOR: High-level Object

(a) Space-time correspondence [6, 7, 19, 23, 28, 32, 33, 36, 47, 48].

(b) High-level Object Descriptors for Object Re-segmentation (ours).

Figure 1. Previous methods (a) learn low-level pixel-pixel corre-
spondence to propagate object masks. HODOR (b) learns high-
level object descriptors to re-segment objects in a different frame.

Descriptors for Object Re-segmentation, a novel VOS
framework which extracts a robust, high-level descriptor for
the given objects and background in an image. These de-
scriptors are then used to find and segment those objects in
another video frame, i.e. re-segment them, even if the object
moves or changes appearance (Fig. 1b). This differs funda-
mentally from STC methods which learn low-level, pixel-
to-pixel correspondences (Fig. 1a). The underlying idea
is that high-level object descriptors can be learned without
sequential video data, as this only requires understanding
object appearance, and not reasoning about motion. Thus,
HODOR can be trained for VOS using only single images
without any video motion augmentation (Fig 2a), and still
be applied to video (Fig 2b). This is inherently not possible
with STC methods since learning correspondences requires
comparing multiple, different frames.

The key to our approach is that it forces object appear-
ance information to pass through a concise descriptor, i.e. an
information bottleneck. This prevents the descriptor from
trivially summarizing the object mask shape and location.
The network thus learns to concisely encode object appear-
ance, and also to match the descriptor to each pixel in order
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Figure 2. HODOR train and inference strategies. HOD: High-level Object Descriptor Encoder. OR: Object Re-segmentation Decoder.
Left: HODOR can be trained with single annotated images (without sequence augmentations). Center: HODOR is run on video by feeding
features from a different frame to the decoder. Right: Training HODOR can take advantage of unlabeled frames using cycle-consistency.

to re-segment the object in the same image.
If we add sequential augmentation to our single im-

age training strategy to increase the network’s robustness,
HODOR out-performs all existing methods trained with
similar augmented image sequences on the DAVIS [30]
and YouTube-VOS [46] benchmarks. This is because STC
methods can only learn correspondences of simple motion
from augmented frames, and thus cannot generalize well to
the complex motion of real video. HODOR however, being
based on high-level object appearance and scene context, is
much more resilient to this discrepancy.

HODOR can also be trained using cycle consistency on
video where only a single frame is annotated (Fig 2c). With-
out modifying the approach at all, we can simply propagate
masks through unlabeled frames and then in reverse back
to the labeled frame to apply the loss. This is enabled by
a fully differentiable formulation for attending to soft in-
put masks which allows gradients to flow through multiple
frame predictions. Based on this, our network can learn to
be more robust to appearance changes that occur in natural
video, while only requiring single annotated frames. Cur-
rent STC methods cannot be trained under this setting.

There are two further advantages: The encoder can pro-
cess, and model interactions between, an arbitrary number
of objects. This improves performance and makes the in-
ference speed largely independent of the number of objects.
This is in contrast to many works [6, 7, 28, 47] where part
of the network requires separate forward passes per ob-
ject. (2) The decoder can jointly attend to object descriptors
over multiple past frames with negligible overhead. Thus,
we can incorporate temporal history during inference even
though the method can be trained on just single images.

To summarize: we propose a novel VOS framework
that uses high-level descriptors to propagate objects across
video. This enables training using just single images, with
or without other unlabeled video frames. Our model pro-
cesses an arbitrary number of objects simultaneously, and
can readily incorporate temporal context during inference.
We achieve state-of-the-art results on DAVIS and YouTube-
VOS among methods trained without video annotation.

2. Related Work
We group existing VOS methods into three categories:

pixel-pixel, object-object and object-pixel. Though not all

methods perfectly fit this taxonomy, it is nonetheless useful
in comparing our approach to existing works.

Pixel-pixel Correspondence. Such approaches learn low-
level space-time correspondence between pixels, and use
these correspondences to propagate object masks between
video frames. Whereas early VOS approaches [8,13,16,29]
used pre-computed optical flow as a measure for pixel-pixel
correspondence, FEELVOS [36] was the first to learn these
correspondences in an end-to-end fashion within the VOS
framework, and STM [28] significantly improved upon this.
Nearly all subsequent VOS methods [6, 7, 19, 23, 32, 33, 47,
48], including the two current state-of-the-arts (STCN [7]
and AOT-L [48]) are based on the space-time correspon-
dence paradigm, with each proposing various novel tech-
niques for improving speed and performance. HODOR di-
verges from this paradigm by instead learning correspon-
dences between pixels and high-level object descriptors.

Self-supervised Pixel-pixel Correspondence. One set
of methods learns pixel-pixel correspondences using unla-
belled video via self-supervision. To do this, some meth-
ods [15, 41] optimize their network with colorization and
image reconstruction based training objectives. Other meth-
ods [12, 44] learn from cyclic consistency by propagating
random image patches through a video sequence. HODOR
can also be trained with cyclic consistency, but with the ob-
jective of learning high-level object descriptors rather than
low-level pixel correspondences.

Object-object Comparison. Another common VOS
approach involves directly comparing object representa-
tions [16, 18, 24, 39, 49]. Such methods first learn object
proposals for the target image, and then match these propos-
als to previously tracked objects. This paradigm is inspired
by methods in multi-object tracking [1, 37, 45], and often
involves spatial similarity constraints and object ReID vec-
tors [11,16] for temporal association. Such methods require
training for proposal generation on a specific set of object
classes, and thus do not generalize well to novel categories.

Object-pixel Comparison. An alternative to the pixel-
pixel and object-object approaches described above is learn-
ing high-level representations for the set of given objects,
and then re-segmenting these objects in the target frame by
directly comparing the representations to the pixel features
in that frame. Early VOS methods followed this paradigm
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Figure 3. The HODOR Architecture consists of a backbone, the HOD encoder, and the OR decoder. Q, K, and V refer to Queries, Keys
and Values, respectively. The encoder jointly encodes all objects and background cells (here 2× 2) to descriptors, which are then decoded
to masks by the decoder. Some steps are simplified (the final upsampling) or omitted (fc layers, skip connections). See Sec. 3 for details.

by finetuning a segmentation network during inference on
the given first frame object masks [2, 25, 29, 38] to embed
an object representation in the weights of a network, which
is then applied directly to subsequent frames. This is ex-
tremely slow and usually achieves poor results. The most
similar work to ours is SiamMask [43]. It learns a vector
representation for each object which is directly compared
to pixel features to determine whether or not the pixels be-
long to that object. However, this approach trains on large
amounts of annotated video data, and compared to HODOR
and other existing methods, does not achieve good results.
To the best of our knowledge, no other method from this
category even achieves competitive results for VOS.

After online finetuning based methods fell out of fash-
ion, leaderboards for VOS benchmarks were dominated
by object-object association based methods [16, 24] until
the emergence of FEELVOS [36] and STM [28]. Since
then, state-of-the-art VOS approaches are almost exclu-
sively based on the pixel-pixel correspondence paradigm.

3. Method
The HODOR network architecture consists of three com-

ponents: (1) a backbone which learns multi-scale image
features, (2) a High-level Object Descriptor (HOD) en-
coder, and (3) an Object Re-segmentation (OR) decoder.
With HODOR, we revisit the idea of learning object-level
descriptors for VOS which have mostly been replaced in
favour of STC-based approaches. To this end, our network
architecture enables the essence of an object to be encoded
without directly memorizing the object mask’s shape or lo-
cation. We also introduce attention layers which allow mul-
tiple objects to be processed simultaneously, and allow in-
teractions between their descriptors. These attention layers
also enable the descriptors to be enriched with image fea-
tures (in the encoder), and vice versa (in the decoder).

The architecture is illustrated in Fig. 3. Given an RGB
image I ∈ RH×W×3, the backbone produces a pair of C-
dimensional feature maps F = {F 4, F 8} at the 4× and
8× downsampled input resolution scales, respectively. As-
sume that the image I contains O objects of interest with

segmentation masksMf = {Mf
1 , ...,M

f
O}. We first com-

pute a background mask consisting of all the pixels which
do not belong to any object. This background mask is then
split into B separate masksMb = {M b

1 , ...,M
b
B} by divid-

ing it into a grid with B cells.

3.1. Encoder

The encoder accepts as input the set of masksMf ∪Mb

and the image feature map F 8, and produces a set of ob-
ject descriptors Df = {df

1 , ...,df
O} containing one C-

dimensional descriptor per foreground object, and likewise
a set of descriptors Db = {db

1, ...,db
B} containing one C-

dimensional descriptor for each background patch. Intu-
itively, these descriptors are a concise latent representation
for their respective patches (object or background).

Each descriptor is initialized by average pooling the
set of pixel features belonging to the corresponding patch.
These are then iteratively and jointly refined by a series
of transformer-like layers. Each layer consists of multi-
head self-attention between the set of descriptors Df ∪ Db,
followed by multi-head cross-attention in which these de-
scriptors absorb patch-specific information from the feature
maps F 8 conditioned on the masksMb ∪Mf .

With some abuse of notation, let us use D(l) = Df ∪
Db ∈ R(O+B)×C to denote the set of descriptors at the l-th
layer of the encoder and M =Mf ∪Mb ∈ R(O+B)×H×W

for the set of patch masks. The l-th layer of our encoder can
then be described as follows:

D(l) ←− D(l−1) + SelfAttn(D(l−1))

D(l) ←− D(l) + MaskedCrossAttn(D(l), F 8,M)

D(l) ←− D(l) + FFN(D(l))

(1)

We omit the typical LayerNorm for the sake of text clar-
ity (cf . [3]). FFN denotes a Feed-forward Network con-
sisting of three fully-connected layers with ReLU activa-
tions. SelfAttn denotes multi-head attention [35] wherein
queries, keys, and values are produced by applying separate
linear projections to the input tensor. MaskedCrossAttn

denotes multi-head attention where queries are produced
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from the embeddings, but keys and values are produced
from the image feature map F 8. We describe this opera-
tion as ‘Masked’ because we condition the pixel features
F 8 on the mask M to enable the descriptors to better focus
on their respective patches. This could be done by replacing
the dot product affinities between the descriptors D and F 8

in the KeyT Query matrix (KTQ) with−∞ for pixels where
the respective mask value for the given patch is zero. How-
ever, this operation is not differentiable, and it restricts each
descriptor to attend to only those pixels for which the corre-
sponding patch mask value is one. Furthermore, numerical
issues can arise for empty masks during training.

Differentiable Soft Attention-masking. We propose a
better formulation which is differentiable, allows the mask
M to be non-binary (i.e. have soft values), and affords the
network more flexibility to focus on relevant image features.
Given the mask M ∈ [0, 1] and a learnable, positive scalar
α, we define the attention operation as follows:

softmax

(
KTQ + αM√

C

)
· V (2)

This is identical to the standard attention operation pro-
posed by Vaswani et al. [35] except for the term ‘+αM ’. In
practice, each attention head is assigned a different learn-
able parameter α which is optimized during training. Thus,
different attention heads attend to pixel features conditioned
on different magnitudes of masking. This enables the net-
work to learn descriptors which focus on their respective
patch features, but that are also able to capture scene infor-
mation from other parts of the image if this is beneficial for
the training objective. This is inspired by Press et al. [31]
who used additive offsets in temporal attention in NLP.

The encoder is thus designed to learn descriptors condi-
tioned on object/background masks. This formulation con-
tains an inherent information bottleneck which does not al-
low the input mask’s shape or location from directly ‘leak-
ing’ into the descriptors. Specifically, in Eq. 2, the mask
M can only influence the softmax(·) term, i.e. the weights
with which the Values (V ) are summed, but M cannot di-
rectly be copied into the attention operation output.

3.2. Decoder

Whereas the encoder produces descriptors Df ∪ Db by
conditioning the image features F on patch masks Mf ∪
Mb, the decoder does the opposite: it (re)produces the
patch masksMf ∪Mb by conditioning the image features
F on the descriptorsDf ∪Db. The architecture is similar to
that of the encoder consisting of a series of transformer-like
layers with multi-head attention. However, now the image
feature map F 8 is updated iteratively by attending to the
descriptors. There are two additional differences: (1) the
cross-attention does not involve any masking. (2) The self-
attention cannot be used for feature maps with large spatial

dimensions due to its quadratic memory complexity, so we
instead use a 3 × 3 deformable convolution [9]. Since the
purpose of self-attention is to enrich pixel features by allow-
ing them to attend to all other pixels, a deformable convo-
lution can be thought of as having a similar effect where a
pixel can interact with a set of other pixels at learned offsets.
Although recent works [10, 51] proposed efficient variants
of attention for image features, we found that deformable
convolutions still require less memory.

Let us denote with F 8(l) the feature map at the l-th layer
of the decoder, and let us use D ∈ R(O+B)×C to denote the
descriptors produced by the encoder. The l-th decoder layer
can then be described as (again omitting LayerNorms):

F 8(l) ←− F 8(l−1) + DeformConv(F 8(l−1))

F 8(l) ←− F 8(l) + CrossAttn(F 8(l), D)

F 8(l) ←− F 8(l) + FFN(F 8(l))

(3)

For the CrossAttn, a linear projection generates the
queries from the feature map F 8(l) and the keys and val-
ues are two separate linear projections of the descriptors D.
We omit the final FFN from Fig. 3 for space reasons.

The final decoder layer outputs a feature map F 8(L),
which we bilinearly upsample by a factor of 2 and then
add to the image feature map F 4 ∈ F . We then apply a
3×3 convolution to get F 4(L) and at this scale we compute
the per-pixel object logits based on the dot product between
F 4(L) and the descriptors D. The resulting logits are up-
sampled to the input resolution, before applying a softmax
over the descriptor dimension, yielding the output masks
M . Formally, M ∈ RH×W×(O+B) is calculated as follows:

F 4(L) ←− Conv
(
F 4 + upsample2(F 8(L))

)
M ←− softmax

(
upsample4(F 4(L) ·D)

) (4)

3.3. Video Object Segmentation

So far we discussed how the decoder can reproduce the
patch masks which were input to the encoder. However,
since the descriptors encode a robust representation for the
objects in an image, the decoder can re-segment them in any
image I ′ where these objects exist. Let us use It, Ft, Dt

andMt to denote the image frame, feature maps, descrip-
tors, and masks at frame t of a given video clip, respectively.
Given the first frame I1 of a T -frame clip, and the segmen-
tation masks Mf

1 for O objects in the first frame, we can
learn a set of descriptors Df

1 ∪ Db
1 which encode these ob-

jects as well as the background (cf . Sec. 3.1). We can then
segment these objects in another video frame It by simply
giving the decoder the feature maps Ft for that frame and
conditioning it on the first-frame descriptors Df

1 ∪ Db
1.

This strategy, however, would not generalize well to
lengthy videos with significant scene changes and where
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objects intersect and occlude each other. In practice, we
therefore propagate the object masks sequentially frame-by-
frame: t : 1 −→ 2 −→ ... −→ T . At each frame t, the encoder
creates an updated set of object descriptors Df

t ∪ Db
t from

the masks Mt−1 predicted for the previous frame (or the
initial input masks when t− 1 = 1). The decoder then seg-
ments the objects in frame t using these updated descriptors.

Temporal History. To mitigate large object appear-
ance and scene changes in video, existing VOS meth-
ods [7, 28, 47] incorporate temporal context from multiple
past frames when predicting object masks for the current
frame. HODOR also achieves the same feat efficiently:
recall that the decoder is conditioned on the set Df ∪ Db

which contains a variable number of object/background de-
scriptors. To incorporate temporal history when predicting
masks for frame t, we simply take the union of the set of
descriptors for the past Tp frames which we want to incor-
porate, i.e. Df

t−Tp
∪ Db

t−Tp
∪ ... ∪ Df

t−1 ∪ Db
t−1. In the

decoder, feature map F 8
t will be refined by jointly attend-

ing to the set of all descriptors in the Tp frame history. The
subsequent dot-product with the descriptors will produce a
set of masks Mt ∈ RH×W×Tp×(O+B). We temporally ag-
gregate over the time dimension to obtain masks for each of
the O +B patches (we use max for our method).

This formulation has three advantages: (1) it incurs little
computational overhead since we only need the O + B de-
scriptors for each past frame instead of the full feature maps.
(2) We can train with only single images, and still incorpo-
rate temporal context during inference without any architec-
tural changes. (3) We can segment an arbitrary number of
objects with a single forward pass of the network. This is in
contrast to several VOS methods (e.g. [7,28]) which require
a per-object forward pass for at least part of the network.

3.4. Training

HODOR’s problem formulation makes it versatile with
respect to the type of training data it can utilize. For the ba-
sic setting, we only need a static image dataset with anno-
tated object masks. However, annotated image sequences,
if available, can also be utilized by simply propagating the
object (and background) masks over the given sequence.

Furthermore, our problem formulation enables the se-
quential propagation of object masks over a video to be
end-to-end differentiable, i.e. even if we only supervise the
masks predicted for the last frame of a given clip, the error
will be backpropagated over the entire temporal sequence
to the first frame. This allows HODOR to also be trained
on unlabeled frames from videos with arbitrarily sparse
and temporally inconsistent object ID annotations. Given
a training clip with T frames where only frame t = 1 is
annotated, we can propagate the given object masks from
t : 1 −→ T , and then further propagate them in reverse tem-

poral order from t : T −→ 1. We can then use the principle
of cyclic consistency [12,44] for supervision by supervising
the predicted masks for t = 1 to be identical to the input
masks. The inherent information bottleneck of our method
enables it to be trained effectively under this setting without
trivially copying the input masks across the sequence.

4. Experimental Evaluation

Datasets. We evaluate HODOR on the DAVIS’17 [30] and
YouTube-VOS 2019 [46] benchmarks. The DAVIS dataset
comprises 60, 30, and 30 video sequences for training, val-
idation and testing, respectively. YouTube-VOS is a larger
dataset with 3471 videos for training and 507 for validation.
For both benchmarks the task is to segment and track an ar-
bitrary number of objects in each video. The ground truth
mask for each object is only provided for the first frame in
which an object appears. The evaluation measures are the
J score (Jaccard Index),F score (F1-score) and the average
of the two (J&F) is treated as the final measure.

Implementation Details. Our backbone network is the
‘Tiny’ variant of the Swin transformer [21] with Feature
Pyramid Network (FPN) and both our encoder and decoder
consist of 5 layers. For all training settings involving static
images, we use the COCO [20] dataset. Whenever train-
ing on image sequences, each sequence contains T = 3
frames. We provide between 1 and 4 randomly chosen la-
beled objects per image/sequence. The encoder and decoder
weights are randomly initialized, whereas the backbone is
initialized from an off-the-shelf checkpoint trained for ob-
ject detection [20]. The model is trained using the AdamW
optimizer [22] with a batch size of 8 parallelized across 4
Nvidia RTX3090 GPUs. During inference, we use a tem-
poral history comprising 7 past frames. The inference runs
at∼17 frames/s on an Nvidia RTX3090, independent of the
number of instances. The dimensionality of the descriptors
C = 256. See supp. material for further implementation
details e.g. learning rate schedule, training time.

4.1. Training Data Versatility

Table 1 shows results on the DAVIS’17 validation set
for HODOR trained under different settings. For compar-
ison, we also report results for STCN [7], the current state-
of-the-art VOS method, whenever applicable. On just sin-
gle images, HODOR achieves 61.6 J&F , which is at the
level of early VOS approaches [2,38] which use online fine-
tuning. STCN inherently requires an image sequence and
cannot be trained in this setting. In row 2, we train on im-
age sequences generated by duplicating the same image T
times without any augmentation. Whereas existing space-
time correspondence based methods collapse under this set-
ting by learning to trivially copy the input mask, HODOR
achieves 69.4 J&F . Even though this setting does not pro-
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Figure 4. Qualitative results on the DAVIS 2017 validation set: We omit the given first frame masks and only show results for other
frames. Note that fish, pigs, rope, guns, and soapbox carts are not annotated in COCO, which is used to train our model.

Table 1. J&F scores for various training settings on the DAVIS
2017 validation set. The sequence length T = 3 in all experi-
ments. CC: Cyclic Consistency.

Training Setting HODOR STCN [7]

1 Single image 61.6 -

2 T× duplicated image (no aug) 69.4 -

3 T× duplicated image (with aug) 77.5 75.8

4 T× dupl. video frame (with aug) 79.0 72.8

5 T frames, 1 annotated (with CC) 80.6 -

6 Temporally dense video 81.3 85.4

vide any extra ‘information’ to the network compared to
row 1, the J&F increases significantly (61.6−→ 69.4). This
is because the model experiences noisy input masks due to
the sequential propagation involved in this setting. Dur-
ing inference, the model can robustly track objects across
videos even if the intermediate frame masks are imprecise,
as it has encountered similar masks during training.

In row 3, we train on image sequences generated by ap-
plying T random affine transformations to static images.
With this setting, our J&F further improves to 77.5. This
is because such augmentations coarsely approximate video
motion, thus making the learned object descriptors more ro-
bust to object appearance and scene changes. Existing VOS
methods also ubiquitously train on such augmented image
sequences as a pretraining step, however we out-perform
them under this setting (77.5 vs. 75.8). Qualitative results
of this model can be seen in Fig. 4 and the supplementary
material, including an analysis of the object descriptors.

We then explore how effectively HODOR can leverage
single frame annotations that are part of a video sequence.
For the next two experiments, we utilize the YouTube-
VOS [46] and DAVIS [30] training sets, but assume that
only one frame per video (the middle-most frame) is anno-
tated (we only use 3,531 of the 98,797 available video frame
annotations). In row 4, we fine-tune models from row 3 by
similarly augmenting the selected frames. This further im-
proves the J&F from 77.5 to 79.0. STCN on the other
hand performs worse (72.8), likely because of overfitting.

For row 5, we fine-tune the model from row 3, but this
time using cyclic consistency by randomly sampling T − 1
unlabeled frames around the single annotated frame in each
video. This improves the J&F from 77.5 to 80.6. The fact
that this is higher than the 79.0 J&F in row 4 shows that
HODOR can effectively learn video motion cues from un-
labeled frames. Existing supervised STC methods cannot
be trained with this strategy since they lack the informa-
tion bottleneck needed to prevent the network from trivially
copying the input mask and also because they cannot back-
propagate gradients through the predicted mask.

Finally, we train on temporally dense video annotations
with full supervision (row 6), which improves the J&F
from 77.5 to 81.3. STCN out-performs us here (85.4 J&F)
because the same information bottleneck which enables us
to train on single images and unlabeled frames with cyclic
consistency also has the drawback of limiting the network’s
access to fine-grained video motion cues. By contrast,
pixel-to-pixel correspondence methods lack such a bottle-
neck thus enabling them to better leverage dense video data.
Nonetheless, to the best of our knowledge, we are the first
to surpass 81 J&F on DAVIS’17 using an approach not
based on pixel-to-pixel correspondences. Note also that our
approach has much better scaling properties since we re-
quire only one frame annotation per video as opposed to the
dense annotations required by existing methods.

4.2. Comparison to State-of-the-art

In Table 2, we report results for existing VOS methods
categorized by the type of training data used. Results for
HODOR are given for two settings: (1) when trained on
augmented image sequences from COCO [20] (cf . Table 1,
row 3), and (2) after fine-tuning with cyclic consistency us-
ing just one labeled frame per training set video (cf . Table 1,
row 5). We use the same model checkpoint for all three
benchmarks. For the sake of completeness we also list re-
sults for methods that do not require any annotations, and
also those trained on densely annotated video.

In the ‘Labeled Images’ category, HODOR trained on
COCO achieves 77.5 J&F on DAVIS’17, outperforming
all existing methods. This includes earlier methods [2, 25,
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Table 2. Quantitative results on the DAVIS and YouTube-VOS datasets. For YouTube-VOS we focus on the 2019 validation set, but
substitute 2018 validation set results when only those are available (slightly higher, highlighted in grey). As is common, we evaluate
unseen (us) and seen (s) object classes separatly for Youtube-VOS, UI†: Unlabeled Images, OL: Online Fine-tuning, ∗: retrained by us.

DAVIS val 17 DAVIS test-dev 17 YouTube-VOS val 18 /val 19

OL J&F J F J&F J F J&F Jus Fus Js Fs

UI† DINO [4] 71.4 67.9 74.9 - - - - - - - -

L
ab

el
ed

im
ag

es

OSVOS [2] ✓ 60.3 61.6 69.1 49.0 45.6 52.5 - - - - -
OnAVOS [38] ✓ 63.6 61.0 66.1 57.7 54.8 60.5 - - - - -
OSVOSS [25] ✓ 68.0 64.7 71.3 57.5 - - - - - - -
STM (5x Mix) [28] 60.0 57.9 62.1 - - - 69.1 - - - -
DMN+AOA (COCO) [18] 67.9 65.8 70.0 - - - - - - - -
KMN (5x Mix) [32] 68.9 67.1 70.8 - - - - - - - -
STCN (5x Mix) [7] 75.8 73.1 78.6 - - - - - - - -
CFBI (COCO) [47] ∗ 57.6 55.8 59.4 54.0 51.7 56.3 68.4 64.7 70.9 68.2 69.7
STCN (COCO) [7] ∗ 55.0 52.3 57.6 51.7 49.5 54.0 69.4 66.4 73.9 67.8 69.3
HODOR (Ours, COCO) 77.5 74.7 80.2 65.0 62.6 67.4 71.7 65.5 71.4 73.7 76.0
HODOR (Ours, COCO + CC) 80.6 77.8 83.4 66.0 63.6 68.4 72.4 63.9 70.5 75.8 79.3

U
nl

ab
el

ed
vi

de
os

MAST [15] 65.5 63.3 67.6 - - - 64.9 61.5 68.4 64.3 65.3
STC-CRW [12] 67.6 64.8 70.2 - - - - - - - -
MAMP [27] (uses optical flow) 70.4 68.7 72.0 - - - 68.2 65.4 73.7 66.3 67.5

L
ab

el
ed

vi
de

os

FEELVOS [36] 71.5 69.1 74.0 57.8 55.2 60.5 - - - - -
AFB-URR [19] 74.6 73.0 76.1 - - - 79.6 74.1 82.6 78.8 83.1
e-OSVOS [26] ✓ 77.2 74.4 80.0 64.8 60.9 68.6 71.4 74.3 74.3 71.7 66.0
STM [28] 81.8 79.2 84.3 - - - 79.4 72.8 80.9 79.7 84.2
CFBI [47] 81.9 79.1 84.6 74.8 71.1 78.5 81.0 75.2 83.0 80.6 85.1
EG-VOS [23] 82.8 80.2 85.2 - - - 80.2 74.0 80.9 80.7 85.1
KMN [32] 82.8 80.0 85.6 77.2 74.1 80.3 81.4 75.3 83.3 81.4 85.6
DMN+AOA [18] 84.5 81.4 87.5 78.3 74.8 81.7 82.7 76.7 84.8 82.6 87.0
HMMN [33] 84.7 81.9 87.5 78.6 74.7 82.5 82.5 77.3 85.0 81.7 86.1
STCN [7] 85.4 82.2 88.6 76.5 73.1 79.6 82.7 78.2 85.9 81.1 85.4
AOT-L [48] 85.4 82.4 88.4 81.2 77.3 85.1 84.5 78.4 86.7 84.0 88.8

29, 38] that perform online fine-tuning (best score: 68.0
J&F from OSVOSS [25]), and also current state-of-the-
art methods which pre-train on similar augmented image
sequences. The best performing method among these is
STCN (75.8 J&F) which is 1.7 J&F lower than our 77.5.
It is worth noting that while DMN+AOA [18] use COCO
images for this training step, STM [28], KMN [32] and
STCN [7] use a collection of 5 image datasets [5,17,34,42,
50] (‘5x Mix’ in the table). To verify that this discrepancy
does not disadvantage other methods, we retrained STCN
and CFBI on COCO images using their respective training
code. These results are marked with ‘∗’ in the table. We
see that HODOR performs better than both, but the differ-
ence for YouTube-VOS is smaller than that for DAVIS. A
possible explanation for the large performance difference
of these methods on the two datasets is that the augmen-
tations applied to static images are quite aggressive, which
make objects undergo significant movement across frames.
This better approximates YouTube-VOS videos where ob-
jects also frequently undergo large motions. By contrast,
object motion in DAVIS videos is milder, and because these

methods learn pixel-to-pixel correspondences, they do not
perform well during inference if the nature of object motion
is different from what was encountered during training.

Finally, we also report our result after fine-tuning on
cyclic consistency using only the middle-most annotated
frame from each video in the YouTube-VOS and DAVIS
training set. This improves the J&F by 3.1, 1.0 and 0.7
points on the DAVIS validation, DAVIS test and YouTube-
VOS validation sets, respectively.

4.3. Ablations

We perform ablations to investigate our design choices
and report the results in Table 3. Additional ablations and
failure cases are given in supplementary.

Multi-instance. Unlike most other VOS methods,
HODOR handles all objects in a single forward pass. This
enables it to effectively utilize multi-object context and
learn better descriptors. For experiment (1), we train and
infer with only one foreground instance, and merge multi-
ple forward passes by running a pixel-wise argmax over the
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object logits during inference. This reduces the J&F from
77.5 to 71.5, clearly highlighting the benefit of our multi-
instance approach which also increases inference speed by
negating the need for per-object forward passes.

Attention Masking in Encoder. Recall from Sec. 3.1 that
we condition the descriptors on their respective patch masks
with our proposed soft attention mechanism. Experiment
(2) shows the result without attention masking. Thus, the
only cue for the descriptors to specialize to their respective
targets is their initialization (average pooling over the target
pixel features); this reduces the J&F to 74.4. For experi-
ment (3), we apply hard attention masking by thresholding
the masks at 0.5 and setting the KT Q matrix entries inside
the attention operation to −∞ for pixels where the mask is
zero. This strategy yields a similarly reduced J&F of 74.5.
The performance increase from using our learned soft atten-
tion masking shows that it helps the encoder to better condi-
tion the descriptors on the given object/background masks.

Encoder/Decoder Layers. For experiments (4-7), we ab-
late the depth of the encoder and decoder. Reducing the
depth from 5 to 3 in either of them reduces theJ&F by∼1.
For the zero-layer case, the 5 encoder layers are replaced
by a single MLP consisting of 3 fully-connected layers and
the 5 decoder layers are replaced with two 3 × 3 convolu-
tions. For the zero-layer decoder, the J&F reduces to 74.4,
whereas the zero-layer encoder reduces the J&F to 72.8.
This shows that while both components play an important
role in the overall performance, the encoder has a larger im-
pact. One reason could be that whereas self-attention in the
encoder allows object descriptors to interact, such interac-
tions are not as profound in the decoder where deformable
convolutions are used instead of self-attention.

Deformable Convolution in Decoder. Due to memory
constraints, we use a 3 × 3 deformable convolution [9] in-
stead of the self-attention operation (cf . Sec. 3.2). In exper-
iment (8), we instead use a regular 3 × 3 convolution and
observe a reduction in J&F from 77.5 to 75.1. This high-
lights the importance of substituting self attention with an
operation that is able to attend to far-away spatial locations.

Background Descriptors. We use nine background de-
scriptors initialized by dividing the image into a 3 × 3 grid
and average pooling the background pixel features in each
cell. This gives HODOR more flexibility to model the back-
ground. For experiment (9) we instead use a single back-
ground descriptor, reducing the J&F from 77.5 to 76.2.

5. Discussion

Limitations. Aside from our performance on dense video
data (discussed in Sec. 4.1), another limitation of our
method is that when there are distractor objects in the scene
with similar appearances, HODOR sometimes compels it-

Table 3. Several ablation results on the DAVIS 2017 validation set.

Setting J&F J F
1 Single foreground instance 71.5 69.2 73.9

2 No masking in encoder 74.4 71.5 77.2
3 Hard masking in encoder 74.5 71.8 77.1

4 # layers in encoder: 5 −→ 0 72.8 70.5 75.2
5 # layers in encoder: 5 −→ 3 76.6 73.9 79.4

6 # layers in decoder: 5 −→ 0 74.4 71.7 77.1
7 # layers in decoder: 5 −→ 3 76.4 73.6 79.3

8 Regular convolution in decoder 75.1 72.0 78.2

9 1x background descriptor 76.2 73.7 78.7

HODOR 77.5 74.7 80.2

self to segment an object even if that object has moved out
of the video scene. Since such cases arise more frequently
in YouTube-VOS videos, this is one reason why our J&F
score for YouTube-VOS is lower than that for DAVIS. In fu-
ture work, improved training strategies could be formulated
to better optimize the model for such challenging cases.

Ethical Considerations. As with most computer vision
methods, the dual-use dilemma can and should not be ig-
nored. However, it is unlikely that our approach could
be utilized to facilitate negative use-cases (e.g. population
tracking or surveillance) more effectively than dedicated
approaches for these applications. Another important eth-
ical aspect is that dataset annotation is often performed by
an exploited labor force deprived of minimum wage and/or
legally binding benefits. Reducing the need for such anno-
tations can thus be seen as a positive aspect of our approach.

6. Conclusion

We proposed a novel VOS approach which uses high-
level descriptors for encoding and propagating objects
across video. Our approach contains an information bottle-
neck which enables training on single images and unlabeled
frames using cyclic consistency. Thus, unlike existing STC
based methods which train on dense video data, HODOR
can be trained on static images, or on videos with arbi-
trarily sparse, temporally inconsistent frame annotations.
Since annotating single frames is easier than dense video,
HODOR has strong potential for scaling up performance by
learning from large-scale video datasets with sparse, or even
automatically generated frame annotations [40].
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