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(a) Prediction uncertainty for free (b) Boundary information for free

Figure 1. Two examples of insights that come for free with Hyperbolic Image Segmentation. For both examples, each black dot
denotes a pixel embedding in hyperbolic space. Left (Pascal VOC): next to per-pixel classification, the distance to the origin in hyperbolic
space provides a free measure of uncertainty. Right (COCO-Stuff-10k): the hyperbolic positioning of pixels even allows us to pinpoint
interiors and edges of objects, as indicated by the colored boxes and their corresponding pixels in the segmentation map. Other benefits of
hyperbolic embeddings for segmentation include zero-label generalization and better performance in low-dimensional embedding spaces.

Abstract

For image segmentation, the current standard is to per-
form pixel-level optimization and inference in Euclidean
output embedding spaces through linear hyperplanes. In
this work, we show that hyperbolic manifolds provide a
valuable alternative for image segmentation and propose a
tractable formulation of hierarchical pixel-level classifica-
tion in hyperbolic space. Hyperbolic Image Segmentation
opens up new possibilities and practical benefits for seg-
mentation, such as uncertainty estimation and boundary in-
formation for free, zero-label generalization, and increased
performance in low-dimensional output embeddings.

1. Introduction
A ubiquitous goal in visual representation learning is to

obtain discriminative and generalizable embeddings. Such
visual embeddings are learned in a deep and highly non-
linear fashion. On top, a linear layer separates categories
through Euclidean hyperplanes. The choice for a zero cur-
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vature Euclidean embedding space, although a de facto
standard, requires careful re-consideration as it has direct
consequences for how well a task can be optimized given
the latent structure that is inherently present in both the data
and the category space [19, 22, 29].

This work takes inspiration from recent literature advo-
cating hyperbolic manifolds as embedding spaces for ma-
chine learning and computer vision tasks. Foundational
work showed that hyperbolic manifolds are able to em-
bed hierarchies and tree-like structures with minimal dis-
tortion [29]. Follow up work has demonstrated the ben-
efits of hyperboles for various tasks with latent hierarchi-
cal structures, from text embedding [42, 55] to graph infer-
ence [8, 12, 22]. Notably, Khrulkov et al. [19] showed that
hyperbolic embeddings also have profound connections to
visual data, due to latent hierarchical structures present in
vision datasets. This connection has brought along early hy-
perbolic success in computer vision for few-shot and zero-
shot learning [15, 19, 23], unsupervised learning [32, 46],
and video recognition [25, 40].

Common amongst current hyperbolic computer vision
works is that the task at hand is global, i.e. an entire im-
age or video is represented by a single vector in the hy-
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computation of the margin likelihood by factoring out the
explicit computation of the Möbius addition, resulting in a
memory footprint of 1.1 GB. The key to our approach is the
observation that we do not need the actual result of the ad-
dition, only its inner product in the numerator of Equation 7
〈−py ⊕c zij , wy〉 and its squared norm in the denominator
|| − py ⊕c zij ||2.

To that end, we first rewrite the Möbius addition as:

p̂y ⊕c zij = αp̂y + βzij ,

α =
1 + 2c〈p̂y, zij〉+ c||zij ||2

1 + 2c〈p̂y, zij〉+ c2||p̂y||2||zij ||2
,

β =
1− c||p̂y||2

1 + 2c〈p̂y, zij〉+ c2||p̂y||2||zij ||2
.

(9)

with p̂y = −py for clarity. The formulation above allows
us to precompute α and β for reuse. Then, we rewrite the
inner product with wy as:

〈p̂y ⊕c zij , wy〉 = 〈αp̂y + βzij , wy〉,
= α〈p̂y, w〉+ β〈zij , w〉.

(10)

Where an explicit computation of the Möbius addition re-
quires evaluating a tensor in RW×H×C×n for a single im-
age, this is reduced to adding two tensors in RW×H×C .
The squared norm of the Möbius addition can be efficiently
computed as follows:

||p̂y ⊕c zij ||2 =

n∑
m=1

(αp̂my + βzmij )
2,

=

n∑
m=1

(αp̂my )2 + αp̂my βz
m
ij + (βzmij )

2,

= α2
n∑

m=1

(p̂my )2 + 2αβ

n∑
m=1

p̂my z
m
ij + β2

n∑
m=1

(zmij )
2,

= α2||p̂y||2 + 2αβ〈p̂y, zij〉+ β2||zij ||2,
(11)

which is a summation of three tensors in RW×H×C . More-
over, all terms have already been computed when precom-
puting α and β. By the reformulation of the inner prod-
uct and squared norm when computing the class logits, we
make hyperbolic classification feasible at the pixel level.

3.3. Hierarchical hyperbolic class embedding

It has been repeatedly shown that the hyperbolic space is
able to embed hierarchical structures with minimal distor-
tion [33, 36, 38]. To that end, we investigate the potential
of incorporating hierarchical relations between classes for
image segmentation on hyperbolic manifolds. Let Y denote
the set of all classes, which form the leaf nodes of hierar-
chy N . For class y ∈ Y , let Ay denote the ancestors of y.
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Figure 3. Visualizing class embeddings in hyperbolic space for
the 20 classes of Pascal VOC. The colors outline the hierarchical
structure of the classes. The higher the curvature, the more the
gyroplanes are positioned towards the edge of the Poincaré disk.
In the analyses, we investigate the quantitative effect of hyperbolic
curvature for segmentation performance.

The probability of class y for output zij is then given by a
hierarchical softmax:

p(ŷ = y|zij) =
∏

h∈Hy

p(h|Ah, zij)

=
∏

h∈Hy

exp(ζh(zij))∑
s∈Sh

exp(ζs(zij))
,

(12)

with Hy = {y} ∪ Ay and with Sh the siblings of h. The
above formulation calculates the joint probability from root
to leaf node, where the probability at each node is given as
the softmax normalized by the siblings in the same subtree.
Given this probability function, training can be performed
with cross-entropy and the most likely class is selected dur-
ing inference based on Equation 12. In Figure 3, we visu-
alize how incorporating such knowledge results in a hierar-
chically consistent embedding of class gyroplanes.

4. Analyses
4.1. Setup

Datasets. We evaluate Hyperbolic Image Segmentation on
three datasets, COCO-Stuff-10K [6], Pascal VOC [14], and
ADE20K [54]. COCO-Stuff-10K contains 10,000 images
from 171 classes consisting of 80 countable thing classes
such as umbrella or car, and 91 uncountable stuff classes
such as sky or water. The dataset is split into 9,000 images
in the training set and 1,000 images in the test set. Pascal
VOC contains 12,031 images from 21 classes consisting of
20 object classes like person and sheep and a background
class. The dataset is split into 10,582 images in the train set
and 1,449 images in the test set. ADE20K contains 22,210
images from 150 classes, such as car and water. The dataset
is split into 20,210 in the train set and 2000 images in the
test set. For all datasets, we have made the full hierarchies
and they are shown in the supplementary materials.

Implementation details. For all experiments, we use
DeeplabV3+ with a ResNet101 backbone [10]. We initial-
ize the learning rate to be 0.001, 0.001, and 0.01 for COCO-
stuff-10k, ADE20K, and Pascal VOC. We train the model
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