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(a) Prediction uncertainty for free (b) Boundary information for free

Figure 1. Two examples of insights that come for free with Hyperbolic Image Segmentation. For both examples, each black dot
denotes a pixel embedding in hyperbolic space. Left (Pascal VOC): next to per-pixel classification, the distance to the origin in hyperbolic
space provides a free measure of uncertainty. Right (COCO-Stuff-10k): the hyperbolic positioning of pixels even allows us to pinpoint
interiors and edges of objects, as indicated by the colored boxes and their corresponding pixels in the segmentation map. Other benefits of
hyperbolic embeddings for segmentation include zero-label generalization and better performance in low-dimensional embedding spaces.

Abstract

For image segmentation, the current standard is to per-
form pixel-level optimization and inference in Euclidean
output embedding spaces through linear hyperplanes. In
this work, we show that hyperbolic manifolds provide a
valuable alternative for image segmentation and propose a
tractable formulation of hierarchical pixel-level classifica-
tion in hyperbolic space. Hyperbolic Image Segmentation
opens up new possibilities and practical benefits for seg-
mentation, such as uncertainty estimation and boundary in-
formation for free, zero-label generalization, and increased
performance in low-dimensional output embeddings.

1. Introduction
A ubiquitous goal in visual representation learning is to

obtain discriminative and generalizable embeddings. Such
visual embeddings are learned in a deep and highly non-
linear fashion. On top, a linear layer separates categories
through Euclidean hyperplanes. The choice for a zero cur-

* Equal contribution

vature Euclidean embedding space, although a de facto
standard, requires careful re-consideration as it has direct
consequences for how well a task can be optimized given
the latent structure that is inherently present in both the data
and the category space [19, 22, 29].

This work takes inspiration from recent literature advo-
cating hyperbolic manifolds as embedding spaces for ma-
chine learning and computer vision tasks. Foundational
work showed that hyperbolic manifolds are able to em-
bed hierarchies and tree-like structures with minimal dis-
tortion [29]. Follow up work has demonstrated the ben-
efits of hyperboles for various tasks with latent hierarchi-
cal structures, from text embedding [42, 55] to graph infer-
ence [8, 12, 22]. Notably, Khrulkov et al. [19] showed that
hyperbolic embeddings also have profound connections to
visual data, due to latent hierarchical structures present in
vision datasets. This connection has brought along early hy-
perbolic success in computer vision for few-shot and zero-
shot learning [15, 19, 23], unsupervised learning [32, 46],
and video recognition [25, 40].

Common amongst current hyperbolic computer vision
works is that the task at hand is global, i.e. an entire im-
age or video is represented by a single vector in the hy-
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perbolic embedding space [3, 19, 23, 25]. Here, our goal
is to take hyperbolic deep learning to the pixel level. This
generalization is however not trivial. The change of mani-
fold brings different formulations for basic operations such
as addition and multiplication, each with different spatial
complexity. Specifically, the additional spatial complexity
that comes with the Möbius addition as part of the hyper-
bolic multinomial logistic regression makes it intractable to
simultaneously optimize or infer all pixels of even a sin-
gle image. Here, we propose an equivalent re-formulation
of multinomial logistic regression in the Poincaré ball that
bypasses the explicit computation of the Möbius addition,
allowing for simultaneous segmentation optimization on
batches of images in hyperbolic space. We furthermore
outline how to incorporate hierarchical knowledge amongst
labels in the hyperbolic embedding space, as previously
advocated in image and video recognition [23, 25]. The
proposed approach is general and can be plugged on top
of any segmentation architecture. The code is available
at https://github.com/MinaGhadimiAtigh/
HyperbolicImageSegmentation.

We perform a number of analyses to showcase the ef-
fect and new possibilities that come with Hyperbolic Im-
age Segmentation. We present the following: (i) Hyper-
bolic embeddings provide natural measures for uncertainty
estimation and for semantic boundary estimation in image
segmentation, see Figure 1. Different from Bayesian un-
certainty estimation, our approach requires no additional
parameters or multiple forward passes, i.e. this informa-
tion comes for free. (ii): Hyperbolic embeddings with hi-
erarchical knowledge provide better zero-label generaliza-
tion than Euclidean counterparts, i.e. hyperboles improve
reasoning over unseen categories. (iii): Hyperbolic em-
beddings are preferred for fewer embedding dimensions.
Low-dimensional effectiveness is a cornerstone in hyper-
bolic deep learning [29]. We find that these benefits extend
to image segmentation, with potential for explainability and
on-device segmentation [3]. We believe these findings bring
new insights and opportunities to image segmentation.

2. Related work

2.1. Image segmentation

Widely used segmentation approaches follow the
encoder-decoder paradigm, where an encoder learns lower-
dimensional representations and the decoders serves to re-
construct high-resolution segmentation maps [5, 9, 10, 24,
31, 34]. Early adaptations of decoders used parametrized
upsampling operations through deconvolutions [24, 31] or
multiple blocks of a bi-linear upsampling followed by more
convolutional layers [5]. More recent works seek to rein-
force the upsampling with context information by merging
feature maps at various scales, i.e. feature pyramids [52],

or by combining the decoding with global context fea-
tures through fully connected layers [49]. For example,
the widely adapted Deeplab architecture [9] uses atrous
convolutions with various levels of dilation within the de-
coder to effectively obtain context information at various
scales. Other recent approaches focus on improving the uti-
lization of multi-scale information, e.g. using multi-scale
attention [41], squeeze-and-attention [53], and Transform-
ers [48]. Commonly in semantic image segmentation, the
final classification is performed through multinomial logis-
tic regression in Euclidean space. As a promising alterna-
tive, we advocate for using the hyperbolic space to perform
pixel-level classification on top of any existing architecture.

2.2. Hyperbolic deep learning

The hyperbolic space has gained traction in deep learn-
ing literature for representing tree-like structures and tax-
onomies [18, 20, 29, 30, 36, 38, 47], text [2, 42, 55], and
graphs [4, 8, 12, 22, 26, 50]. Hyperbolic alternatives have
been proposed for various network layers, from interme-
diate layers [17, 39] to classification layers [3, 11, 17, 39].
Recently, hyperboles have also been applied in computer
vision for hierarchical action search [25], few-shot learning
[19], hierarchical image classification [13], and zero-shot
image recognition [23]. In this work, we build upon these
foundations and make the step towards semantic image seg-
mentation, which requires a reformulation of the hyperbolic
multinomial logistic regression to become tractable.

Previous works have shown the potential of a hierarchi-
cal view on image segmentation. For instance, [51] in-
corporate an open vocabulary perspective based on Word-
Net [27] hypernym/hyponym relations. By learning a joint-
embedding of image features and word concepts, combined
with a dedicated scoring function to enforce the asymmet-
ric relation between hypernyms and hyponyms, their model
is able to predict hierarchical concepts. This approach is
akin to that of [21] who use hierarchy-level specific con-
volutional blocks. These blocks, individually tasked with
discriminating only between child classes, are dynamically
activated such that only a subset of the entire graph is ac-
tivated at any given time depending on which concepts are
present in the image. This is trained with a loss function
consisting of a sum of binary cross-entropy losses at each
of the child-concept prediction maps. Here, we seek to in-
corporate hierarchical information on the hyperbolic mani-
folds, which can be applied on top of any segmentation ar-
chitecture without needing to change the architecture itself.

Recent work by [44] investigated the use of the hyper-
bolic space for instance segmentation in images, but only do
so after the fact, i.e. on top of predicted instance segmenta-
tions. In contrast, our approach enables tractable hyperbolic
classification as part of the pixel-level segmentation itself.

4454



3. Image segmentation on the hyperbole
3.1. Background: The Poincaré ball model

Hyperbolic geometry encompases several conformal
models [7]. Based on its widespread use in deep learn-
ing and computer vision, we operate on the Poincaré ball.
The Poincaré ball is defined as (Dn

c , g
Dc), with manifold

Dn
c = {x ∈ Rn : c||x|| < 1} and Riemannian metric:

gDc
x = (λcx)

2gE =
2

1− c||x||2
In, (1)

where gE = In denotes the Euclidean metric tensor and c
is a hyperparameter governing the curvature and radius of
the ball. Segmentation networks operate in Euclidean space
and to be able to operate on the Poincaré ball, a mapping
from the Euclidean tangent space to the hyperbolic space is
required. The projection of a Euclidean vector x onto the
Poincaré ball is given by the exponential map with anchor
v:

expcv(x) = v ⊕c

(
tanh

(√
c
λcv||x||

2

)
x√
c||x||

)
, (2)

with ⊕c the Möbius addition:

v ⊕c w =
(1 + 2c〈v, w〉+ c||w||2)v + (1− c||v||2)w

1 + 2c〈v, w〉+ c2||v||2||w||2
.

(3)
In practice, v is commonly set to the origin, simplifying the
exponential map to

exp0(x) = tanh(
√
c||x||)(x/(

√
c||x||)). (4)

3.2. Tractable pixel-level hyperbolic classification

For the problem of image segmentation, we are given an
input image X ∈ Rw×h×3, with w and h the width and
height of the image respectively. For each pixel x ∈ X ,
we need to assign a label y ∈ Y , where Y denotes a set
of C class labels. Let f(X) : Rw×h×3 7→ Rw×h×n de-
note an arbitrary function that transforms each pixel to a
n-dimensional representation, e.g. an image-to-image net-
work. Common amongst current approaches is to feed all
pixels in parallel to a linear layer followed by a softmax, re-
sulting in a C-dimensional probability distribution over all
C classes per pixel, optimized with cross-entropy.

This paper advocates the use of the hyperbolic space
to perform the per-pixel classification for image segmen-
tation. We start from the geometric interpretation of the
hyperbolic multinomial logistic regression given by Ganea
et al. [18], which defines the gyroplane, i.e. the hyperplane
in the Poincaré ball, as:

Hc = {zij ∈ Dn
c , 〈−p⊕c zij , w〉 = 0}, (5)

Figure 2. Visualization of the hyperbolic gyroplane (py, wy) and
distance to output zij on a two-dimensional manifold. In the con-
text of this work, zij denotes the output representation at pixel
location (i, j) and Hc

y denotes the hyperplane for class y.

where zij = exp0(f(X)ij) denotes the exponential map of
the network output at pixel location (i, j) and with p ∈ Dn

c

the offset and w ∈ TpDn
c the orientation of the gyroplane.

The hyperbolic distance of zij to the gyroplane of class y is
given as:

dc(zij , H
c
y) =

1√
c
sinh−1

(
2
√
c〈−py ⊕c zij , wy〉

(1−c|| − py⊕czij ||2)||wy||

)
.

(6)
Figure 2 illustrates a gyroplane on the hyperbole defined by
its offset and orientation, along with the geodesic from pixel
output zij to the gyroplane. Based on this distance, the logit
of class y for pixel output zij using the metric of Equation 1
is given as:

ζy(zij) =
λcpy
||wy||√
c

sinh−1
(

2
√
c〈−py ⊕c zij , wy〉

(1−c|| − py⊕czij ||2)||wy||

)
.

(7)
Consequently, the likelihood is given as:

p(ŷ = y|zij) ∝ exp(ζy(zij)), (8)

which can be optimized with the cross-entropy loss and gra-
dient descent.

The geometric interpretation of Ganea et al. [18] pro-
vides a framework for classifying output vectors in hy-
perbolic space. In contrast to standard classification, im-
age segmentation requires per-pixel classification in paral-
lel. This setup is however intractable for the current im-
plementation of hyperbolic multinomial logistic regression.
The bottleneck is formed by the explicit computation of the
Möbius addition. In a standard example segmentation set-
ting (W = H = 513, K = 100 classes, n = 256, and batch
size 5), this would induce a memory footprint of roughly
132 GB in 32-bit float precision, compared to roughly 0.5
GB in Euclidean space. Here, we propose an equivalent
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computation of the margin likelihood by factoring out the
explicit computation of the Möbius addition, resulting in a
memory footprint of 1.1 GB. The key to our approach is the
observation that we do not need the actual result of the ad-
dition, only its inner product in the numerator of Equation 7
〈−py ⊕c zij , wy〉 and its squared norm in the denominator
|| − py ⊕c zij ||2.

To that end, we first rewrite the Möbius addition as:

p̂y ⊕c zij = αp̂y + βzij ,

α =
1 + 2c〈p̂y, zij〉+ c||zij ||2

1 + 2c〈p̂y, zij〉+ c2||p̂y||2||zij ||2
,

β =
1− c||p̂y||2

1 + 2c〈p̂y, zij〉+ c2||p̂y||2||zij ||2
.

(9)

with p̂y = −py for clarity. The formulation above allows
us to precompute α and β for reuse. Then, we rewrite the
inner product with wy as:

〈p̂y ⊕c zij , wy〉 = 〈αp̂y + βzij , wy〉,
= α〈p̂y, w〉+ β〈zij , w〉.

(10)

Where an explicit computation of the Möbius addition re-
quires evaluating a tensor in RW×H×C×n for a single im-
age, this is reduced to adding two tensors in RW×H×C .
The squared norm of the Möbius addition can be efficiently
computed as follows:

||p̂y ⊕c zij ||2 =

n∑
m=1

(αp̂my + βzmij )
2,

=

n∑
m=1

(αp̂my )2 + αp̂my βz
m
ij + (βzmij )

2,

= α2
n∑

m=1

(p̂my )2 + 2αβ

n∑
m=1

p̂my z
m
ij + β2

n∑
m=1

(zmij )
2,

= α2||p̂y||2 + 2αβ〈p̂y, zij〉+ β2||zij ||2,
(11)

which is a summation of three tensors in RW×H×C . More-
over, all terms have already been computed when precom-
puting α and β. By the reformulation of the inner prod-
uct and squared norm when computing the class logits, we
make hyperbolic classification feasible at the pixel level.

3.3. Hierarchical hyperbolic class embedding

It has been repeatedly shown that the hyperbolic space is
able to embed hierarchical structures with minimal distor-
tion [33, 36, 38]. To that end, we investigate the potential
of incorporating hierarchical relations between classes for
image segmentation on hyperbolic manifolds. Let Y denote
the set of all classes, which form the leaf nodes of hierar-
chy N . For class y ∈ Y , let Ay denote the ancestors of y.

c 0.1 c 0.5 c 1.0 c 2.0

Figure 3. Visualizing class embeddings in hyperbolic space for
the 20 classes of Pascal VOC. The colors outline the hierarchical
structure of the classes. The higher the curvature, the more the
gyroplanes are positioned towards the edge of the Poincaré disk.
In the analyses, we investigate the quantitative effect of hyperbolic
curvature for segmentation performance.

The probability of class y for output zij is then given by a
hierarchical softmax:

p(ŷ = y|zij) =
∏

h∈Hy

p(h|Ah, zij)

=
∏

h∈Hy

exp(ζh(zij))∑
s∈Sh

exp(ζs(zij))
,

(12)

with Hy = {y} ∪ Ay and with Sh the siblings of h. The
above formulation calculates the joint probability from root
to leaf node, where the probability at each node is given as
the softmax normalized by the siblings in the same subtree.
Given this probability function, training can be performed
with cross-entropy and the most likely class is selected dur-
ing inference based on Equation 12. In Figure 3, we visu-
alize how incorporating such knowledge results in a hierar-
chically consistent embedding of class gyroplanes.

4. Analyses
4.1. Setup

Datasets. We evaluate Hyperbolic Image Segmentation on
three datasets, COCO-Stuff-10K [6], Pascal VOC [14], and
ADE20K [54]. COCO-Stuff-10K contains 10,000 images
from 171 classes consisting of 80 countable thing classes
such as umbrella or car, and 91 uncountable stuff classes
such as sky or water. The dataset is split into 9,000 images
in the training set and 1,000 images in the test set. Pascal
VOC contains 12,031 images from 21 classes consisting of
20 object classes like person and sheep and a background
class. The dataset is split into 10,582 images in the train set
and 1,449 images in the test set. ADE20K contains 22,210
images from 150 classes, such as car and water. The dataset
is split into 20,210 in the train set and 2000 images in the
test set. For all datasets, we have made the full hierarchies
and they are shown in the supplementary materials.

Implementation details. For all experiments, we use
DeeplabV3+ with a ResNet101 backbone [10]. We initial-
ize the learning rate to be 0.001, 0.001, and 0.01 for COCO-
stuff-10k, ADE20K, and Pascal VOC. We train the model
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(a) Hyperbolic uncertainty correlates with boundary distance.
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(b) Hyperbolic uncertainty is higher for boundaries than object interiors.
Figure 4. Is hyperbolic uncertainty semantically meaningful? We perform two quantitative experiments on Pascal VOC with 2 em-
bedding dimensions to uncover whether hyperbolic uncertainty provides meaningful insights. Left: we find that the per-pixel hyperbolic
uncertainty (here shown as its inverse, namely confidence) strongly correlates with semantic boundaries in the segmentation. Right: hyper-
bolic confidence is highest for foreground pixels denoting object interiors, followed by background pixels and finally semantic boundaries.

for 70, 140, and 40 epochs for COCO-stuff-10K, ADE20K,
and Pascal VOC with a batch size of 5. To optimize Eu-
clidean parameters, we use SGD with a momentum of 0.9
and polynomial learning rate decay with a power of 0.9 akin
to [10]. To optimize Hyperbolic parameters, we use RSGD,
similar to [18].

Evaluation metrics. We perform the evaluation on both
standard and hierarchical metrics. For the standard met-
rics, we use pixel accuracy (PA), class accuracy (CA), and
mean Intersection Over Union (mIOU). Pixel accuracy de-
notes the percentage of pixels in the image with the correct
label. Class accuracy first calculates the accuracy per class
and then averages over all classes. IOU denotes the spatial
overlap of ground truth and predicted segmentation. mIOU
denotes the mean IOU over all classes. To evaluate hier-
archical consistency and robustness, we also report sibling
and cousin variants of each metric, following [25]. In the
sibling variant of the metrics, a prediction is also counted
as correct if it shares a parent with the target class. In the
cousin variants, the predicted labels need to share a grand-
parent with the target class to count as correct.

4.2. Uncertainty and boundary information for free

The ability to interpret predictions is vital in many seg-
mentation scenarios, from medical imaging to autonomous
driving, to invoke trust and enable decision making with a
human in the loop [1]. For the first analysis, we investi-
gate the role of hyperbolic embeddings for interpretation in
segmentation. Specifically, we show how the distance to
the origin of each pixel in the hyperbolic embedding space
provides a natural measure of uncertainty prediction. We
draw comparisons to Bayesian uncertainty and investigate
whether hyperbolic uncertainty is semantically meaningful.

Hyperbolic vs Bayesian uncertainty. To obtain per-
pixel uncertainty in Hyperbolic Image Segmentation, we
simply measure the `2 norm to the origin in the Poincaré

Figure 5. Hyperbolic vs Euclidean uncertainty for examples
from Pascal VOC. Both measures of uncertainty are highly aligned
and focus on semantic boundaries. However, the Bayesian uncer-
tainty for Euclidean embeddings require 1,000 passes, whereas we
obtain uncertainty for free with hyperbolic embeddings.

ball, regardless of their positioning to the class-specific
gyroplanes. In conventional segmentation architectures,
such uncertainty measures are more commonly obtained
through Bayesian optimization, either by making the net-
work Bayesian from the start [43] or through Monte-Carlo
dropout during inference [28].

In Figure 5, we show the uncertainty maps for examples
from Pascal VOC for hyperbolic uncertainty with 2 embed-
ding dimensions and curvature 0.1. We draw a qualitative
comparison to its Bayesian counterpart in Euclidean space
by way of dropout during inference [16]. Both variants em-
ploy the same backbone. To create the Bayesian uncertainty
map, we add Mont-Carlo dropout after Resnet blocks with
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a drop ratio of 0.5 and pass each image 1,000 times through
the network, similar to [28]. Figure 5 shows three hyper-
bolic and Bayesian uncertainty example maps. Both uncer-
tainty maps are highly interpretable, focusing on semantic
boundaries and occluded areas of the image. A key differ-
ence however is the amount of network passes required to
obtain the maps: while Bayesian uncertainty requires many
passes due to the MC dropout, we obtain the uncertainty
maps for free, resulting in a 1,000-fold inference speed-up.

Is hyperbolic uncertainty semantically meaningful?
The qualitative results suggest that the hyperbolic uncer-
tainty measure is semantically meaningful, as it relates to
the semantic boundaries between objects. To test this hy-
pothesis, we have outlined a quantitative experiment: for
each pixel in the ground truth segmentation map, we com-
pute the Euclidean distance to the nearest pixel with another
class label. Intuitively, this distance correlates with pre-
diction confidence; the closer to the boundary, the smaller
the hyperbolic norm. We perform a correlation analysis be-
tween confidence and boundary distance for all pixels in an
image. We then aggregate the correlations over all images.

In Figure 4a, we show a histogram of the correlations
over all images in Pascal VOC with the same embedding di-
mensionality and curvature as above. The histogram shows
that the confidence (inverse of uncertainty) from our hyper-
bolic approach clearly correlates with the distance to the
nearest boundary. This result highlights that hyperbolic un-
certainty provides a direct clue about which regions in the
image contain boundaries between images, which can, in
turn, be used to determine whether to ignore such regions
or to pinpoint where to optimize further as boundary areas
commonly contain many errors [37]. We provide the same
experiment for 256 embedding dimensions in the supple-
mentary materials, which follows the same distribution.

To further highlight the relation between hyperbolic un-
certainty and semantic boundaries, we have performed a
second quantitative experiment, where we classify each
pixel into one of three classes: boundary pixel if it is within
10 distances from the nearest other class, background pixel,
or foreground pixel (i.e. one of the other objects). In Fig-
ure 4b, we plot the mean confidence per pixel on Pascal
VOC over all three classes, showing that hyperbolic confi-
dence is highest for foreground pixels and lowest for bound-
ary pixels, with background pixels in between. All informa-
tion about boundaries and pixel classes comes for free with
hyperboles as the embedding space in segmentation.

4.3. Zero-label generalization

In the second analysis, we demonstrate the potential of
hyperbolic embeddings to generalize to unseen classes for
image segmentation. We perform zero-label experiments
on COCO-Stuff-10k and Pascal VOC and follow the zero-
label semantic segmentation setup from Xian et al. [45].

COCO-Stuff-10k
Manifold Hierarchical Class Acc Pixel Acc mIOU

R 0.44 0.33 0.23
R X 3.29 48.65 18.53
D X 3.46 51.70 21.15

Pascal VOC
Manifold Hierarchical Class Acc Pixel Acc mIOU

R 4.88 10.84 2.59
R X 7.80 31.04 16.15
D X 12.15 47.92 34.87

Table 1. Zero-label generalization on Coco-Stuff-10k and Pascal
VOC. On both datasets, combining hierarchical knowledge with
hyperbolic embeddings provides a more suitable foundation for
generalizing to unseen classes than its Euclidean counterpart.

For COCO-Stuff-10k we use a set of 15 unseen classes
for inference, corresponding to all classes in the dataset
that do not occur in the 2014 ImageNet Large Scale Visual
Recognition Challenge [35], on which the backbone was
pre-trained. This assures that the model has never seen any
of the classes during training. For Pascal VOC, we follow
the 15/5 seen/unseen split of [45]. We draw a comparison
to two baselines: the standard DeepLabV3+, which oper-
ates in Euclidean space and does not employ hierarchical
relations, and a variant of DeepLabV3+ that employs a Eu-
clidean hierarchical softmax.

More formally, given a set of unseen classesCU and a set
of seen classes CS , we remove all k ∈ CU from the dataset
by replacing them with an ignore label. This effectively
means that these pixels are not used during optimization
and the model is therefore not optimized on these classes.
As such, in images containing concepts from CU , the pix-
els containing the concepts from CS are still used in train-
ing. Different from the more widely known zero-shot image
classification task, images containing unseen concepts are
not removed from the training set. Removing these images
would result in a significantly reduced training set, which is
impractical for the purposes of the evaluation. After training
on CS , we perform inference by choosing only between un-
seen concepts for each pixel. We note that we do not adapt
our approach to the zero-label setting, we employ the same
network and loss as for supervised segmentation, the only
difference lies in the used classes for training and inference.

The results on COCO-Stuff-10k and Pascal VOC are
shown in Table 1 for 256 output dimensions and respective
curvatures 1 and 2. In the supplementary materials, we also
show the results using the sibling and cousin variants of the
three metrics. For both datasets, we first observe that using a
standard Euclidean architecture without hierarchical knowl-
edge results in near-random zero-label performance. When
using hierarchical knowledge and Euclidean embeddings, it
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Figure 6. Low-dimensional effectiveness of hyperbolic embeddings for image segmentation on COCO-Stuff-10k and ADE20k. Across
all three metrics, our approach obtains competitive performance in high-dimensional embedding spaces to the Euclidean counterpart. When
restricting the embedding space to a few dimensions, hyperbolic embeddings are preferred for segmentation.

Figure 7. Qualitative examples of Hyperbolic Image Segmentation with two embedding dimensions on COCO-Stuff-10k. For each
example, we show the projection of all pixels in the hyperbolic embedding (left) and the segmentation result (right). From left to right: the
lime color denotes cow (partial failure case), the red color denotes stop sign, and the purple color denotes train.

becomes possible to recognize unseen classes. To general-
ize towards unseen classes, however, it is best to combine
class hierarchies with hyperbolic embeddings. On COCO-
Stuff-10k, the mIOU increases from 18.53 to 20.76. On
Pascal VOC, the difference is even bigger; from 16.15 to
34.87. This experiment shows the strong affinity between
hierarchical knowledge and hyperbolic embeddings for im-
age segmentation and the potential for generalizing to un-
seen classes. We conclude that the hyperbolic space pro-
vides a more suitable foundation for generalizing to unseen
classes in the context of segmentation. Qualitative zero-
label results are provided in the supplementary materials.

4.4. Low-dimensional embedding effectiveness

In the third analysis, we demonstrate the effectiveness of
hyperbolic embeddings in a low-dimensional setting. Hy-
perboles have shown to be beneficial with few embedding
dimensions on various data types. In Figure 6, we compare
the default Euclidean embeddings to hyperbolic embed-
dings for DeepLabV3+ on COCO-Stuff-10k and ADE20K,
with a dimensionality ranging from 256 to 2. The standard
setting of classical segmentation for DeepLabV3+ is to op-
erate on a dimensionality of 256. Low dimensional em-
beddings are however preferred for explainability and on-
device segmentation [3], due to their reduced complexity
and smaller memory footprint.

Our results show a consistent pattern across both datasets

and the metrics, where hyperbolic embeddings obtain com-
parable performances for high (256) or medium (10) dimen-
sion settings. In low-dimensional settings (2 and 3), our ap-
proach outperforms DeepLabV3+. As expected, the perfor-
mance of both models drops when using lower dimensional
embeddings, but as is especially apparent on the COCO-
Stuff-10k dataset, the Euclidean default is affected most.
By using a structured embedding space we are able to ob-
tain better performance in low-dimensions, for as low as 2
dimensions. When using 3 dimensions, hyperbolic embed-
dings improve the mIOU by 4.32 percent point on COCO-
Stuff-10k and by 4.99 on ADE20k. The benefits of this low
dimensional embedding for explainability are demonstrated
with the hyperbolic disk visualisations in this paper, which
are based on models trained in 2 dimensions. We con-
clude that the low-dimensional effectiveness of hyperbolic
embeddings extends to the task of image segmentation. In
Figure 7 we provide qualitative examples in 2-dimensional
hyperbolic embedding spaces. Further explanation on the
colors is provided in the supplementary materials.

4.5. Further ablations

To complete the analyses, we ablate two design choices
in our approach, namely the hyperbolic curvature and the
use of hierarchical relations in the hyperbolic embedding
space. Both ablations are performed on COCO-Stuff-10k.

Curvature. Since hyperbolic spaces are curved, there
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Figure 8. Comparison of curvature for high (256) and low (3) di-
mensional hyperbolic embeddings. Performance reported as Clas-
sification Accuracy (CA), Pixel Accuracy (PA), and Mean IOU
(MIOU). For high dimensions the model is robust to changes in
the curvature value, in a low dimensional setting similar robust-
ness can be observed for low curvature values, however the per-
formance drops when using a high curvature value (10).

is an additional hyperparameter compared to the Euclidean
space (i.e. c = 0) that governs the curvature and radius of
the Poincaré ball. In Figure 8 we show the effect of dif-
ferent curvatures for image segmentation on both 256- and
3-dimensional embeddings. For 256-dimensional embed-
dings, we can observe that the effect of the curvature value
is negligible, with only minor changes in performance even
for large curvature differences (e.g., 0.05 to 10). A simi-
lar observation can be made with 3 dimensions, except that
for this lower dimensionality we see a drop in performance
when the curvature is set to 10. We suspect that, because
the embedding space shrinks with increasing curvature, a
low dimensionality combined with a high curvature reduces
the size of the embedding space too far. In practice, we use
validation to determine the curvature in a range of 0.1 to 2.

Hierarchical versus flat hyperbolic softmax. Through-
out the analyses, we have combined hyperbolic embeddings
for image segmentation with hierarchical relations amongst
the target classes, due to the well-established match be-
tween hierarchies and hyperbolic space. In this ablation
study, we show the effect of incorporating such hierarchical
knowledge in the context of segmentation. We draw a com-
parison to the conventional flat setting with one-hot encod-
ings over all classes (i.e. omitting hierarchies). The results
shown in Table 2 clearly highlight the benefits of hierar-
chical softmax, outperforming the flat softmax in almost all
cases - on both the hierarchical and the standard metrics. In-
creasing the dimensionality reduces the difference between
the hierarchical and flat softmax, with the flat softmax even
slightly outperforming the hierarchical softmax on the stan-
dard metric in 256 dimensions. Nevertheless, across all di-
mensionalities the hierarchical softmax is preferred for the
hierarchical metrics, demonstrating the benefit of incorpo-
rating hierarchical knowledge for segmentation.

Mean IOU
Dimension Softmax ∼ S C

2 Flat 4.31 12.47 19.48
Hierarchical 8.74 22.67 33.05

3 Flat 11.11 26.19 34.41
Hierarchical 16.82 34.85 45.89

10 Flat 28.89 46.85 55.85
Hierarchical 28.99 47.35 56.74

256 Flat 31.77 48.59 57.27
Hierarchical 31.46 48.73 58.34

Table 2. Effect of embedding hierarchical knowledge in Hy-
perbolic Image Segmentation on COCO-Stuff-10k. In few dimen-
sions, employing a hierarchical softmax is preferred over a flat
softmax based on one-hot vectors. As dimensionality increases,
this preference diminishes for standard metrics, while hierarchical
softmax remains preferred for the hierarchical metrics.

5. Conclusions

This work investigates semantic image segmentation
from a hyperbolic perspective. Hyperbolic embeddings
have recently shown to be effective for various machine
learning tasks and data types, from trees and graphs to im-
ages and videos. Current hyperbolic approaches do how-
ever not scale to the pixel level, since the corresponding op-
erations are memory-wise intractable. We introduce Hyper-
bolic Image Segmentation, the first approach for image seg-
mentation in hyperbolic embedding spaces. We outline an
equivalent and tractable formulation of hyperbolic multino-
mial logistic regression to enable this step. Through several
analyses, we demonstrate that operating in hyperbolic em-
bedding spaces brings new possibilities to image segmen-
tation, including uncertainty and boundary information for
free, improved zero-label generalization, and better perfor-
mance in low-dimensional embedding spaces.

Limitations and negative impact. Throughout the ex-
periments, we have used DeepLabv3+ as backbone due to
the well-known and performant nature of the architecture.
Our analyses do not yet uncover the effect of hyperbolic em-
beddings in more shallow or deeper architectures, or their
effect beyond natural images such as the medical domain.
While we do not focus on specific applications, segmenta-
tion in general does have potentially negative societal ap-
plications that the reader needs to be aware of, such as seg-
mentation in surveillance and military settings.
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