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Abstract

Differentiable rendering is an essential operation in

modern vision, allowing inverse graphics approaches to 3D

understanding to be utilized in modern machine learning

frameworks. Explicit shape representations (voxels, point

clouds, or meshes), while relatively easily rendered, often

suffer from limited geometric fidelity or topological con-

straints. On the other hand, implicit representations (occu-

pancy, distance, or radiance fields) preserve greater fidelity,

but suffer from complex or inefficient rendering processes,

limiting scalability. In this work, we endeavour to address

both shortcomings with a novel shape representation that

allows fast differentiable rendering within an implicit ar-

chitecture. Building on implicit distance representations,

we define Directed Distance Fields (DDFs), which map an

oriented point (position and direction) to surface visibility

and depth. Such a field can render a depth map with a single

forward pass per pixel, enable differential surface geometry

extraction (e.g., surface normals and curvatures) via net-

work derivatives, be easily composed, and permit extraction

of classical unsigned distance fields. Using probabilistic

DDFs (PDDFs), we show how to model inherent disconti-

nuities in the underlying field. Finally, we apply our method

to fitting single shapes, unpaired 3D-aware generative im-

age modelling, and single-image 3D reconstruction tasks,

showcasing strong performance with simple architectural

components via the versatility of our representation.

1. Introduction
Three-dimensional shapes are represented in a variety of

ways in modern computer vision and machine learning sys-
tems, with differing utilities depending on the task to which
they are applied. Recent advances in representation learn-
ing, however, capitalize on the inherent 3D structure of the
world, and its link to generating the 2D images seen by
our eyes and algorithms, via differentiable rendering pro-
cedures compatible with neural network architectures. This
enables an analysis-by-synthesis paradigm [90] that treats
vision as “inverse graphics” [35, 63], wherein the model at-

tempts to infer the 3D factors (e.g., shape, pose, texture,
lighting) that gave rise to its 2D perceptions.

This can permit learning more powerful representations
with weaker supervision. Neural radiance fields (NeRFs)
[47], for instance, can be used for 3D inference [89] and
3D-aware generative image modelling [4, 51, 67], trained
entirely on 2D data. Similarly, implicit geometric fields,
such as occupancy fields [46] and signed distance fields
(SDFs) [55], have recently been used in conjunction with
differentiable renderering as well [25, 41, 52]. Other works
have learned textured mesh inference and/or generation via
rendering-based approaches (e.g., [1, 13, 19, 57, 76]).

Nevertheless, it is still not always clear which representa-
tion is best for a given task. Voxels and point clouds tend to
have reduced geometric fidelity, while meshes suffer from
the difficulties inherent in discrete structure generation, of-
ten leading to topological and textural fidelity constraints,
or dependence of rendering efficiency on shape complex-
ity [39]. While implicit shapes can have superior fidelity,
they struggle with complex or inefficient rendering proce-
dures, requiring multiple network forward passes and/or
complex calculations per pixel [41, 47, 72], and may be dif-
ficult to use for certain tasks (e.g., deformation, segmenta-
tion, or correspondence). Thus, a natural question is how
to design a method capable of fast differentiable rendering,
yet still retaining high-fidelity geometric information that is
useful for a variety of downstream applications.

In this work, we explore directed distance fields (DDFs),
a representation that (i) captures the detailed geometry of
a scene or object, including higher-order differential quan-
tities and internal geometry, (ii) can be differentiably ren-
dered efficiently, compared to common implicit shape or
radiance-based approaches, (iii) is trainable with (point-
wise) depth data, (iv) can be easily composed, and (v) al-
lows extraction of classical unsigned distance fields. The
definition is simple: for a given shape, we learn a field that
maps any position and orientation to visibility (i.e., whether
the surface exists from that position along that direction)
and distance (i.e., how far the surface is along that ray, if
it is visible). Fig. 1 illustrates how DDFs can be viewed
as implicitly storing all possible depth images of a given
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Figure 1. Illustrative example of a directed distance field, fit to the Stanford bunny. Left: depiction of visible oriented points (blue points,
turquoise directions) that intersect the shape and those that miss the shape (black points, red directions) with ⇠ = 0. Middle: per row,
illustrations of one slice plane (from two different views) and the fixed v vector per slice plane (pink arrows), corresponding to the insets
on the right (i.e., v is the same across all p for each row). Right: resulting depth field evaluated across positions p at fixed orientations
v (rows: top, middle, and bottom show different v values, parallel to (1, 0, 0), (0, 0,�1), and (1, 1, 1), respectively; columns: different
slices in 3D with each having fixed z, effectively sliding the turquoise plane from the middle inset in z). Each pixel value is coloured with
the distance value d(p, v) obtained for that position p and direction v (red to blue meaning further to closer). Non-visible oriented points
(⇠ = 0) are shown as white. Notice the depth changes at intersections between the slice plane and shape (i.e., when p moves through S).

shape (i.e., from all possible cameras), reminiscent of a light
field, but with geometric distance instead of radiance (see
Fig. 1). Such a field is inherently discontinuous (see Fig.
2), presenting issues for differentiable neural networks, but
has a powerful advantage in rendering, since a depth image
can be computed with a single forward pass per pixel. Its
high input dimension (5D) incurs greater difficulty in learn-
ing, but the additional information increases its versatility
(e.g., higher-order local geometry, internal structure); fur-
thermore, several geometric properties define constraints on
the field and its derivatives, reducing the effective degrees
of freedom. We summarize our contributions as follows:

1. We define directed distance fields (DDFs), a 5D map-
ping from any position and viewpoint to depth and vis-
ibility (§3), and a probabilistic variant (PDDFs) that
can model surface and occlusion discontinuities (§3.3).

2. By construction, our representation allows differen-
tiable rendering via a single forward pass per pixel
(§3.2), without restrictions on the shape (topology,
water-tightness) or field queries (internal structure).

3. We prove several geometric properties of DDFs (§3.1),
and use them in our method.

4. We apply DDFs to fitting shapes (§4.1), single-image
reconstruction (§4.3), and generative modelling (§4.4).

2. Related Work

Implicit Shape Representations Our work falls un-
der distance field representations of shape, which have a
long history in computer vision [64], recently culminating
in signed/unsigned distance fields (S/UDFs) [6, 55, 80] and
related methods [3, 34, 79]. Compared to explicit ones, im-
plicit shapes can capture arbitrary topologies with high fi-
delity [40, 46, 55]. Several works examine differentiable
rendering of implicit fields [25, 40, 41, 52, 72, 74, 91] (or
combine it with neural volume rendering [29, 54, 83, 87]).
In contrast, by conditioning on both viewpoint and position,
DDFs can flexibly render depth, with a single field query per
pixel. Further, a UDF can actually be extracted from a DDF
(see §3.1 and §4.2).

The closest current model to ours is the Signed Direc-
tional Distance Field (SDDF), independently and concur-
rently developed by Zobeidi et al. [95], which also maps
position and direction to depth. However, the lack of a sign
in DDFs introduces a fundamental difference in structure
modelling: starting from a point p, consider a ray that in-
tersects with a wall; evaluating a DDF at a point after the
intersection provides the distance to the next object, while
the SDDF continues to measure the signed distance to the
wall. This reduces complexity and dimensionality, but may
limit representational utility for some tasks and/or shapes.

Neural Radiance Fields NeRFs [47] are powerful 3D
representations, capable of novel view synthesis for recon-
struction [89] and image generation [4] with very high fi-
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Figure 2. Inherent discontinuities with DDFs. Left: surface dis-

continuities, where p passes through S. Right: occlusion disconti-

nuities, where v or p is moved over an occluding boundary edge.

delity. However, the standard differentiable volume render-
ing formulation of NeRFs is computationally expensive, re-
quiring many forward passes per pixel, though recent work
has improved on this (e.g., [2,11,18,29,38,60,61,88]). Fur-
thermore, the distributed nature of the density makes ex-
tracting explicit geometric details (including higher-order
surface information) more difficult (e.g., [54, 87]).

Most similar to DDFs are Light Field Networks (LFNs)
[71], which enable rendering with a single forward pass per
pixel, and permit sparse depth map extraction (assuming
a Lambertian scene). Unlike LFNs, DDFs model geome-
try rather than radiance as the primary quantity, comput-
ing depth with a single forward pass, and surface normals
with a single backward pass, while LFNs predict RGB and
sparse depth from such a forward-backward operation. Fi-
nally, the 4D parameterization of LFNs does not permit ren-
dering from viewpoints between occluded objects.

3. Directed Distance Fields
Definition Let S ⇢ B be a 3D shape, where B ⇢ R3 is

a bounding volume that will act as the domain of the field.
Consider a position p 2 B and view direction v 2 S2. We
define S to be visible from an oriented point (p, v) if the line
`p,v(t) = p + tv intersects S for some t � 0. We write the
binary visibility field for S as ⇠(p, v) = 1[(p, v) is visible].
For convenience, we refer to an oriented point (p, v) as vis-
ible if ⇠(p, v) = 1.

We then define a directed distance field (DDF) as a non-
negative scalar field d : B ⇥ S2 ! R+, which maps from
any visible position and orientation in space to the minimum
distance from p to S along v (i.e., the first intersection of
`p,v(t) with S). In other words, q(p, v) = d(p, v)v + p is a
map to the shape, and thus satisfies q(p, v) 2 S for visible
(p, v) (meaning ⇠(p, v) = 1). See Fig. 1 for an illustration.

3.1. Geometric Properties
DDFs satisfy several useful geometric properties. We

provide proofs in Appendix A.
Property I: Directed Eikonal Equation. Similar to

SDFs, which satisfy the eikonal equation ||rpSDF(p)||2 =
1, a DDF enforces a directed version of this property. In
particular, for any visible (p, v), we haverpd(p, v)v = �1,
withrpd(p, v) 2 R1⇥3. Note this implies ||rpd(p, v)||2 �
1 as well. There is also a directed eikonal property for the
visibility field, as locally moving along the viewing line
cannot change visibility: rp⇠(p, v)v = 0.

Property II: Surface Normals. The derivatives of im-
plicit fields are closely related to the surface normals n 2 S2
of S; e.g., rqSDF(q)T = n(q) for any q 2 S. For
DDFs, a similar relation holds (without requiring p 2 S):
rpd(p, v) = �n(p, v)T /(n(p, v)T v), for any visible (p, v)
such that n(p, v) := n(q(p, v)) are the normals at q(p, v) =
d(p, v)v+p 2 S and n(p, v) 6? v (i.e., the change in d mov-
ing off the surface is undefined). This allows recovering
the surface normals of any point q 2 S, simply by query-
ing any (p, v) on the line that “looks at” q, and computing
n(p, v) = &rpd(p, v)T /||rpd(p, v)||2, where we choose
& 2 {�1, 1} such that nT v < 0 (so that n always points
back to the query oriented point)1. In this sense, n(p, v) is
the visible surface normal on S, as seen from (p, v).

Property III: Gradient Consistency. Consider a visi-
ble (p, v). Notice that changing the viewpoint by some in-
finitesimal �v would seem to have a similar effect as pushing
the position p in the direction �v . In fact, it can be shown
that rvd(p, v)�v = d(p, v)rpd(p, v)�v , where �v = ! ⇥ v
for any ! 2 R3. This relates the directional derivatives of
d, along a rotational perturbation �v , with respect to both
viewpoint and position (see also Appendix A.3 for alterna-
tive expressions). As with Property I, any d must satisfy
gradient consistency to be a true DDF.

Property IV: Deriving Unsigned Distance Fields. We
remark that an unsigned distance field (UDF) can be ex-
tracted from a DDF via the following optimization prob-
lem: UDF(p) = minv2S2 d(p, v), constrained such that
⇠(p, v) = 1, allowing them to be procured if needed (see
§4.2). UDFs remove the discontinuities from DDFs (see
§3.3 and Fig. 2), but are not rendered as easily nor can they
be queried for distances in arbitrary directions.

Property V: Local Differential Geometry. For any vis-
ible (p, v), the geometry of a 2D manifold S near q(p, v)
is completely characterized by d(p, v) and its derivatives.
In particular, we can estimate the first and second funda-
mental forms using the gradient and Hessian of d(p, v) (see
Appendix A.4). This allows computing surface properties,
such as curvatures, from any visible oriented position, sim-
ply by querying the network; see Fig. 5 for an example.

Neural Geometry Rendering. Many methods utilize
differentiable rendering of geometric quantities, such as
depth and surface normals (e.g., [50, 77, 84, 85]). Often,
such methods can be written as parallelized DDFs (see Ap-
pendix A.6). Thus, the properties above hold, regardless of

1This defines the normal via v, even for non-orientable surfaces.
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Figure 3. PDDF renders of n1 and n2. Though not explicitly en-
forced, a “see-through effect” occurs when the lower-weight field
models the surface behind the currently visible one.

architecture; we believe this can improve such frameworks.

3.2. Rendering
A primary application of DDFs is rapid differentiable

rendering. In contrast to some differentiable mesh render-
ers (e.g., [39]), there is no dependence on the complexity
of the underlying shape, after training. Unlike classical
NeRFs [47] or other standard implicit shape fields [41, 72],
DDFs only require a single forward pass per pixel.

The process itself is a straightforward ray casting proce-
dure. Given a camera with position p0 2 B, for a pixel with
3D position ⇢, we effectively cast a ray r(t) = p0 + tv⇢
with v⇢ = (⇢ � p0)/||⇢ � p0||2 into the scene with a sin-
gle query d(p0, v⇢), which provides the depth image pixel
value. Note that ⇢, and thus d(p0, v⇢), depend on the camera
parameters. Finally, consider p /2 B. In this case, we first
compute the intersection point pr 2 @B between the ray r
and the boundary @B. We then use d(pr, v) + ||p � pr||2
as the output depth (or set ⇠(pr, v) = 0 if no intersection
exists). This allows querying the network from arbitrary
positions and directions, including those unseen in training.

3.3. Discontinuity Handling: Probabilistic DDFs
DDFs are inherently discontinuous functions of p and v.

As shown in Fig. 2, whenever (i) p passes through the sur-
face S or (ii) p or v is moved across an occlusion boundary,
a discontinuity in d(p, v) will occur. We therefore modify
the DDF formulation, to allow a C1 network to represent the
discontinuous field. In particular, we alter d to output proba-
bility distributions over rays, rather than a single value. Let
P` be the set of probability distributions with support on
some ray `p,v(t) = p+ tv, t � 0. Then d : B⇥ S2 ! P` is
a probabilistic DDF (PDDF). The visibility field, ⇠(p, v), is
unchanged in the PDDF.

For simplicity, herein we restrict P` to be the set of mix-
tures of Dirac delta functions with K components. Thus,
the network output is a density field Pp,v(d) =

P
i wi�(d�

di) over depths, where wi’s are the mixture weights, withP
i wi = 1, and di’s are the delta locations. Our output

depth is then di⇤ , where i⇤ = argmaxi wi; i.e., the high-
est weight delta function marks the final output location.
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(a) Weight field transitions in DDF renders. In row three, white vs
black mark high vs low w1 values, and thus which surface (d1 vs d2)
is active, when ⇠ is high. Light and dark grey demarcate the non-
visible (low ⇠) counterparts of white and black. The change in domi-
nant weight (w1 vs 1�w1) at occlusion edges permits discontinuities.
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(b) Weight field transitions using 3D slices in z. Rows 1 and 3 depict
(discontinuous) distance values, with fixed v ((0, 0,�1) and (1, 0, 0),
respectively) and varying p across image pixels. Rows 2 and 4 show
weight values for w1 and ⇠, as in (a) above. Notice the field switching
upon p transitioning through a surface discontinuity.

Figure 4. Illustration of probabilistic DDFs for discontinuous
depth modelling, on a simple two-sphere scene with renders (a)
and spatial slices (b). Here, K = 2, so w1 = 1� w2 (see §3.3).

As wi changes continuously, wi⇤ will switch from one di
to another dj , which may be arbitrarily far apart, resulting
in a discontinuous jump. Thus, by having the weight field
w(p, v) smoothly transition from one index i⇤ to another,
at the site of a surface or occlusion discontinuity, we can
obtain a discontinuity in d as desired. In this work, we
use K = 2, to represent discontinuities without sacrific-
ing efficiency. Fig. 4 showcases example transitions, with
respect to (a) occlusion discontinuities and (b) surface col-
lision; Fig. 3 visualizes the difference in the normals fields.
Notationally, we may treat a PDDF as a DDF, by setting
d(p, v) := di⇤(p, v).
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Figure 5. Renders of DDF fits to shapes. Rows: depth, normals, and mean curvature. Columns: different camera positions per object. Each
quantity is directly computed from the learned field, using network derivatives at the query oriented point (p, v) per pixel.

3.4. Learning DDFs
Mesh Data Extraction Given a mesh specifying S, we

can obtain visibility ⇠ and depth d by ray-casting from
any (p, v). In total, we consider six types of data sam-
ples (visualized in Appendix B): uniform (U) random (p, v);
at-surface (A), where ⇠(p, v) = 1; bounding (B), where
p 2 @B and v points to the interior of B; surface (S), where
p 2 S and v ⇠ U [S2]; tangent (T), where v is in the tangent
space of q(p, v) 2 S; and offset (O), which offsets p from
T-samples along n(p, v) by a small value. See Appendix
C.2 for a data sample type ablation study.

Loss Functions Our optimization objectives are defined
per oriented point (p, v). We denote ⇠, n, and d as the
ground truth visibility, surface normal, and depth values,
and let b⇠, bdi, and wi denote the network predictions. Recall
i⇤ = argmaxj wj is the maximum likelihood PDDF index.

The minimum distance loss ensures that the correct depth
is output for the highest probability component: Ld =
⇠|bdi⇤ � d|2.The visibility objective, L⇠ = BCE(⇠, b⇠), is
the binary cross entropy between the visibility prediction
and the ground truth. A first-order normals loss (as in [12]),
Ln = �⇠|nT bni⇤(p, v)|, uses Property II to match surface
normals to the underlying shape, via rp

bdi⇤ . A Directed

Eikonal regularization, based on Property I, is given by

LDE = �E,d

X

i

⇠
h
rp

bdiv + 1
i2

+ �E,⇠[rp
b⇠v]2, (1)

applied on the visibility and each delta component of d,
analogous to prior SDF work (e.g., [15, 37, 86]).

Finally, we utilize two weight field regularizations,
which encourage (1) low entropy PDDF outputs (to pre-
vent i⇤ from switching unnecessarily), and (2) the maxi-
mum likelihood delta component to transition (i.e., change
i⇤) when a discontinuity is required: LW = �V LV +�TLT .
The first is a weight variance loss: LV =

Q
i wi. The

second is a weight transition loss: LT = max(0, "T �
|rpw1n|)2, where "T is a hyper-parameter controlling the
desired transition speed. Since K = 2, using w1 alone is

sufficient to enforce changes along the normal. Note that
LT is only applied to oriented points that we wish to un-
dergo a transition (i.e., where a discontinuity is desired, as
illustrated in Fig. 2 and 4), namely surface (S) and tangent
(T) data. The complete PDDF shape-fitting loss is then

LS = �dLd + �⇠L⇠ + �nLn + LDE + LW . (2)

Other regularizations could be applied (e.g., gradient and
view consistency; see Property III and Appendix A.5), but
for simplicity we leave them to future work.

4. Empirical Results
4.1. Single Field Fitting

We use the SIREN neural architecture [70] for all field
parameterizations, as it allows for higher order derivative
calculations and has shown powerful representational ca-
pabilities (e.g., [4, 26]). We use K = 2, an axis-aligned
bounding box for B, Adam [30] for optimization, and Py-
Torch [56] for all implementations. (See Appendix C for
details.) In Fig. 5, we show results for fitting single ob-
jects, via PDDF renderings with a single network evaluation
per pixel. Surface normals and curvatures are obtained us-
ing only additional backward passes for the same oriented
points used in the single forward pass. Note that our sim-
ple architecture does not guarantee view consistency (see
Appendix A.5) by construction.

We discuss two additional modelling capabilities of
DDFs: (i) internal structure representation and (ii) compo-
sitionality. The first refers to the ability of our model to
handle multi-layer surfaces: we are able to place a camera
inside a scene, within or between multiple surfaces, along
a given direction. This places our representation in con-
trast with recent work [71, 95], which does not model in-
ternal structure. The second lies in the ease with which
we can combine multiple DDFs, which is useful for ma-
nipulation without retraining and scaling to more com-
plex scenes. Our approach is inspired by prior work on
soft rendering [10, 39]. Formally, given a set of N DDFs
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Figure 6. Example of internal structure rendering and composi-
tional scene construction. Colours correspond to surface normals
(as in Fig. 5), estimated via the DDF (with Property II).

⇣ = {T (i), ⇠(i), d(i),B(i)
}
N
i=1, where T (i) is a transform on

oriented points converting world to object coordinates for
the ith DDF (e.g., scale, rotation, and translation), we can
aggregate the visibility and depth fields into a single com-
bined DDF. For visibility of the combination of objects, we
ask that at least one surface is visible, implemented as:

⇠⇣(p, v) = 1�
Y

k

(1� ⇠(k)(T (k)(p, v))). (3)

For depth, we want the closest visible surface to be the final
output. One way to perform this is via a linear combination

d⇣(p, v) =
X

i

a(k)⇣ (p, v) d(k)(T (k)(p, v)), (4)

where a(k)⇣ are computed via visibility and distance:

a⇣(p, v) = Softmax

✓⇢
⌘�1
T ⇠(k)(T (k)(p, v))

"s + d(k)(T (k)(p, v))

�

k

◆
, (5)

with temperature ⌘T and maximum inverse depth scale "s
as hyper-parameters. This upweights contributions when
distance is small, but visibility is high. We exhibit these
capabilities in Fig. 6, which consists of two independently
trained DDFs (one fit to five planes, forming a simple room,
and the other to the bunny mesh), where we simulate a cam-
era starting outside the scene and entering the room.

4.2. UDF Extraction
As noted in Property IV, one can extract a UDF from a

DDF. In particular, we optimize a field v⇤ : B ! S2, such
that UDF(p) = d(p, v⇤(p)). We solve this by gradient de-
scent on a loss that maximizes visibility while minimizing
depth for a given v⇤(p). Compared to directly fitting a UDF,
this requires handling local minima for v⇤ and non-visible
(low ⇠) directions. (See Fig. 7 for visualizations and Ap-
pendix D for optimization details.)

Figure 7. v⇤ fields (colours are 3D components, pointing to the
closest visible surface) and respective UDFs (blue to red means
near to far distances). Each image is a slice in z, with adjacent
pairs having the same z. The differing colours in v⇤ for the multi-
sphere in column 3 are due to the slice breaching the front versus
the back of the two spheres.

The vector field v⇤ points in the direction of the clos-
est point on S. Notice that discontinuities in v⇤ occur at
surfaces as before, but also on the medial surface of S in
B.2 When the surface normals exist, v⇤ is closely related
to them: v⇤(p) = �n(p, v⇤(p)), in the notation of Property
II. Recent work has highlighted the utility of UDFs over
SDFs [6, 80]; in the case of DDFs, extracting a UDF or v⇤
may provide useful auxiliary information for some tasks.

4.3. Single-Image 3D Reconstruction
We next utilize DDFs for single-image 3D reconstruc-

tion. Given a colour image I , we predict the underlying la-
tent shape zs and camera ⇧ that gave rise to the image, via
an encoder E(I) = (bzs, b⇧). For decoding, we use a con-

ditional PDDF (CPDDF), which computes depth bd(p, v|zs)
and visibility b⇠(p, v|zs). For evaluation, we use the extrin-
sics of a camera: either the predicted b⇧ or ground-truth ⇧g

(to separate shape and camera errors).
We use three loss terms: (a) shape DDF fitting in canoni-

cal pose LS (eq. 2), (b) camera prediction L⇧ = ||⇧g�
b⇧||

2
2,

and (c) mask matching LM = BCE(I↵,R⇠(zs|b⇧)), where
I↵ is the input alpha channel and R⇠ renders the DDF visi-
bility. The total objective, LSI3DR = �R,SLS + �R,⇧L⇧ +
�R,MLM , is optimized by AdamW [42]. We implement
E as two ResNet-18 networks [17], while the CPDDF is a
modulated SIREN [44]. See Appendix E for details.

Explicit Sampling. Evaluating 3D reconstruction often
involves metrics based on point clouds (PCs). We present a
simple approach to PC extraction from DDFs, though it can-
not guarantee uniform sampling over the shape. Analogous
to prior work [6], we recall that q(p, v) = p+d(p, v)v 2 S,
if ⇠(p, v) = 1. Thus, we sample p ⇠ U [B], and wish
to compute their projections q onto the shape. However,
we cannot choose an arbitrary v, as many will not be vis-
ible. Instead, for each p, we uniformly sample directions
V (p) = {vi(p) ⇠ U [S2]}nv

i=1 and utilize our composition

2At such positions, there are multiple valid values of v⇤.
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DDF PC-SIREN P2M 3DR
⇧g-L ⇧g-S b⇧r-S b⇧-L b⇧-S ⇧g-L ⇧g-S b⇧-L b⇧-S

DC # 0.459 0.512 0.823 0.855 0.919 0.431 0.465 0.876 0.915 0.610 1.432
Chairs F⌧ " 55.47 48.40 42.28 47.51 41.08 62.25 56.36 50.56 45.57 54.38 40.22

F2⌧ " 72.82 67.75 60.39 63.81 58.98 77.38 74.56 65.43 62.76 70.42 55.20
DC # 0.210 0.239 0.673 0.793 0.836 0.215 0.227 0.829 0.844 0.477 0.895

Planes F⌧ " 80.46 76.62 63.32 63.75 60.54 81.49 80.11 63.64 62.34 71.12 41.46
F2⌧ " 90.05 88.55 76.16 74.96 73.47 89.71 89.18 74.76 74.18 81.38 63.23
DC # 0.231 0.288 0.390 0.541 0.606 0.371 0.400 0.737 0.768 0.268 0.845

Cars F⌧ " 70.91 59.93 54.16 62.69 52.47 64.57 57.82 56.01 50.04 67.86 37.80
F2⌧ " 86.57 79.66 74.68 79.71 72.78 78.72 76.00 71.22 68.52 84.15 54.84

Table 1. Single-image 3D reconstruction results. Rows: ShapeNet categories and performance metrics. Columns: L/S refer to sampling
5000/2466 points for evaluation (2466 being the output size of P2M), ⇧g/b⇧ denote using the true versus predicted camera for evaluation
(the former case removing camera prediction error), and b⇧r test-time camera correction from the predicted position using gradient descent.
Metrics: DC is the Chamfer distance (⇥1000), F⌧ is the F-score (⇥100) at threshold ⌧ = 10�4. PC-SIREN is our matched-architecture
baseline; Pixel2Mesh (P2M) [81, 82] and 3D-R2N2 (3DR) [7] are baselines using different shape modalities (numbers from [82]). Note
that scenarios using ⇧g (effectively evaluating shapes in canonical object coordinates) are not directly comparable to P2M or 3DR. Overall,
DDF-derived PCs (1) perform similarly to directly learning to output a PC and (2) underperform P2M overall, but outperform it in terms
of shape quality when camera prediction error is excluded.

technique to estimate bv ⇤(p) by weighted average over V (p)
(as in §4.2, but without optimization), giving q(p, bv ⇤(p))
as a point on the shape. Repeating this process NH times
(starting from p q) can also help, if depths are less accu-
rate far from the shape. We set nv = 128 and NH = 3 (see
Appendix E.1 for ablation with NH = 1).

Baselines. Our primary baseline is designed to alter the
shape representation, while keeping the remaining architec-
ture and training setup as similar as possible. We do this by
using the same encoders as the DDF and an almost identical
network for the decoder (changing only the input and output
layer dimensionalities), but altered to output PCs directly
(denoted PC-SIREN). In particular, we treat the decoder as
an implicit shape mapping fb : R3

! R3, which takes
p ⇠ U [�1, 1]3 as input and directly returns q = fb(p) 2 S
as output. Training uses the Chamfer distance DC to the
ground truth in object coordinates and L⇧. We also consider
two other baselines: the mesh-based Pixel2Mesh (P2M)
[81, 82] and voxel-based 3D-R2N2 (3DR) [7].

Results. We consider cars, planes, and chairs from
ShapeNet [5], using the data from [7] (as in [81]). In Table
1, we show DDFs perform comparably to the architecture-
matched PC-SIREN baseline. See Fig. 8 for visualiza-
tions, as well as Appendix Fig. 12. Generally, the inferred
DDF shapes correctly reconstruct most inputs, including
thin structures like chair legs, and regardless of topology.
The most obvious errors are in pose estimation, but the DDF
can also sometimes output “blurry” shape parts when it is
uncertain (e.g., for shapes far from the majority of training
examples). However, results can be improved by correct-
ing b⇧ to b⇧r = argmin⇧ LM , via gradient descent (start-
ing from b⇧) on the test image alpha channel. While ex-

plicit modalities, like PCs, can be differentiably rendered
(e.g., [23, 27, 77]), DDFs can do so by construction, with-
out additional heuristics or learning. Further, note that (i)
the DDF sampling procedure is not learned, (ii) our model
is not trained with DC (on which it is evaluated), and (iii)
DDFs are a richer representation than PCs, capable of repre-
senting higher-order geometry, built-in rendering, and even
PC extraction. Thus, for reconstruction, changing from PCs
to DDFs can enrich the representation without quality loss.

Compared to the other baselines, DDFs with predicted
b⇧ underperform P2M, but outperform 3DR. Results with
the ground-truth ⇧g indicate that much of this error is due
to (imperfect) camera prediction, though this case is not
directly comparable to P2M or 3DR. With ⇧g , the task
becomes prediction in object – rather than camera – co-
ordinates. While each frame has benefits and downsides
[69, 75], in our case it is useful to separate shape vs. cam-
era error. Our scores with ⇧g suggest DDFs can infer shape
at similar quality levels to existing work, despite the naive
architecture and sampling strategy. We remark that we do
not expect DDFs to directly compare to highly tuned, spe-
cialized models at the state-of-the-art. Instead, we show
that DDFs can achieve good performance (especially for
shape alone), even using simple off-the-shelf components
(ResNets and SIREN MLPs), without losing versatility.

4.4. Generative Modelling with Unpaired Data

Finally, we apply CPDDFs to 3D-aware generative mod-
elling, using 2D-3D unpaired data (see, e.g., [1,28,48,94]).
This takes advantage of 3D model data, yet avoids requiring
paired data. We utilize a two-stage approach: (i) a CPDDF-
based variational autoencoder (VAE) [21, 31, 62] on 3D
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Figure 8. Single-image 3D reconstruction visualizations on held-out test data. Per inset, columns represent (i) the input RGB image, (ii) the
visibility b⇠, (iii) the depth bd, (iv) the normals bn, (v) the sampled point cloud (PC) from the DDF, and (vi) a sample from the ground-truth
PC. Quantities (ii-v) are all differentiably computed directly from the CPDDF and b⇧, per point or pixel (i.e., no post-processing needed).
PC colours denote 3D coordinates. A high-error example is in the lower-right of each category. See Appendix E for more examples.

Figure 9. Upper inset: random ShapeVAE and image GAN sam-
ples. Left inset: views with fixed texture and shape. Right inset:
latent interpolations in shape (vertical) and texture (horizontal).

shapes, then (ii) a generative adversarial network (GAN)
[14], which convolutionally translates CPDDF-derived sur-
face normal renders into colour images. Briefly, the VAE
trains a PointNet encoder [58] and CPDDF decoder, while
the GAN performs cycle-consistent image-to-image transla-
tion [92] (from normals to RGB). Fig. 9 displays results on
ShapeNet cars [5, 7], including disentanglement of shape,
viewpoint, and appearance (see also, e.g., [19, 28, 67]).
While this underperforms a 2D image GAN (15 versus 27

FID [20,53]), it still outperforms samples from image VAEs
or GAN-based textured low-poly 3D mesh renders (>100
FID [1]) in image quality. See Appendix F for details.

5. Discussion
We have devised directed distance fields (DDFs), a novel

shape representation, which maps oriented points to depth
and visibility values. We have examined several useful the-
oretical properties (including a probabilistic extension for
handling discontinuities), illustrated the fitting process for
single objects (as well as composition and UDF extraction)
and applied it to single-image reconstruction and generative
modelling. DDFs are easily differentiably rendered to a sur-
face normal image, which is non-trivial for voxels, NeRFs,
or occupancy fields. Unlike meshes, DDFs are topologi-
cally unconstrained, and rendering is independent of shape
complexity. In contrast to NeRFs or SDFs, we require just a
single forward pass per pixel for depth (plus a single back-
ward pass to obtain normals). One limitation is greater dif-
ficulty fitting complex scenes, partly due to the higher in-
put dimensionality; architectural improvements (e.g., mul-
tiscale representations [43, 49, 66]) could mitigate this. Our
simplistic approaches to geometric property enforcement
and UDF/PC extraction can also be improved, which we
leave for future work, along with extending the represen-
tation to allow translucency, and using a better model of
materials, appearance, and lighting. We also hope to apply
DDFs to other tasks, such as haptics and navigation.
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[44] Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shecht-
man, Ravi Ramamoorthi, and Manmohan Chandraker. Mod-
ulated periodic activations for generalizable local functional
representations. arXiv preprint arXiv:2104.03960, 2021. 6,
18, 20, 21

[45] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for GANs do actually converge? In
International conference on machine learning, pages 3481–
3490. PMLR, 2018. 21, 22

[46] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3D reconstruction in function space. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 4460–4470, 2019. 1, 2
[47] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In European conference on computer vision, pages
405–421. Springer, 2020. 1, 2, 4

[48] Yutaro Miyauchi, Yusuke Sugano, and Yasuyuki Matsushita.
Shape-conditioned image generation by learning latent ap-
pearance representation from unpaired data. In Asian Con-

ference on Computer Vision, pages 438–453. Springer, 2018.
7, 22

[49] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. arXiv preprint arXiv:2201.05989,
2022. 8

[50] Thu Nguyen-Phuoc, Chuan Li, Stephen Balaban, and Yong-
Liang Yang. RenderNet: a deep convolutional network for
differentiable rendering from 3D shapes. In Proceedings of

the 32nd International Conference on Neural Information

Processing Systems, pages 7902–7912, 2018. 3, 15
[51] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-

ing scenes as compositional generative neural feature fields.
In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 11453–11464, 2021.
1, 21

[52] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3D representations without 3D supervision. In

19352



Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 3504–3515, 2020. 1,
2

[53] Anton Obukhov, Maximilian Seitzer, Po-Wei Wu, Semen
Zhydenko, Jonathan Kyl, and Elvis Yu-Jing Lin. High-
fidelity performance metrics for generative models in Py-
Torch, 2020. Version: 0.3.0, DOI: 10.5281/zenodo.4957738
(Apache License). 8, 22

[54] Michael Oechsle, Songyou Peng, and Andreas Geiger.
Unisurf: Unifying neural implicit surfaces and radi-
ance fields for multi-view reconstruction. arXiv preprint

arXiv:2104.10078, 2021. 2, 3
[55] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. DeepSDF: Learning
continuous signed distance functions for shape representa-
tion. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 165–174, 2019.
1, 2

[56] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alch’e Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-

tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. 5

[57] Dario Pavllo, Graham Spinks, Thomas Hofmann, Marie-
Francine Moens, and Aurelien Lucchi. Convolutional
generation of textured 3D meshes. arXiv preprint

arXiv:2006.07660, 2020. 1
[58] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3D classification
and segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 652–660,
2017. 8, 20, 21

[59] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015. 22
[60] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,

Kwang Moo Yi, and Andrea Tagliasacchi. DeRF: Decom-
posed radiance fields. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
14153–14161, 2021. 3

[61] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. KiloNeRF: Speeding up neural radiance fields with
thousands of tiny mlps. arXiv preprint arXiv:2103.13744,
2021. 3

[62] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-
stra. Stochastic backpropagation and approximate inference
in deep generative models. In International conference on

machine learning, pages 1278–1286. PMLR, 2014. 7, 20
[63] Lukasz Romaszko, Christopher KI Williams, Pol Moreno,

and Pushmeet Kohli. Vision-as-inverse-graphics: Obtaining

a rich 3D explanation of a scene from a single image. In Pro-

ceedings of the IEEE International Conference on Computer

Vision Workshops, pages 851–859, 2017. 1
[64] Azriel Rosenfeld and John L Pfaltz. Distance functions on

digital pictures. Pattern recognition, 1(1):33–61, 1968. 2
[65] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and

Thomas Hofmann. Stabilizing training of generative ad-
versarial networks through regularization. arXiv preprint

arXiv:1705.09367, 2017. 21, 22
[66] Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan,

Richard G Baraniuk, and Ashok Veeraraghavan. Miner:
Multiscale implicit neural representations. arXiv preprint

arXiv:2202.03532, 2022. 8
[67] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas

Geiger. Graf: Generative radiance fields for 3D-aware image
synthesis. arXiv preprint arXiv:2007.02442, 2020. 1, 8

[68] Nicholas Sharp et al. Polyscope, 2019.
www.polyscope.run v1.2.0. (MIT License). 16

[69] Daeyun Shin, Charless C Fowlkes, and Derek Hoiem. Pix-
els, voxels, and views: A study of shape representations for
single view 3D object shape prediction. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 3061–3069, 2018. 7
[70] Vincent Sitzmann, Julien Martel, Alexander Bergman, David

Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in Neural

Information Processing Systems, 33, 2020. 5
[71] Vincent Sitzmann, Semon Rezchikov, William T Freeman,

Joshua B Tenenbaum, and Fredo Durand. Light field net-
works: Neural scene representations with single-evaluation
rendering. arXiv preprint arXiv:2106.02634, 2021. 3, 5

[72] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
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