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Abstract

Video highlight detection can greatly simplify video
browsing, potentially paving the way for a wide range of ap-
plications. Existing efforts are mostly fully-supervised, re-
quiring humans to manually identify and label the interest-
ing moments (called highlights) in a video. Recent weakly
supervised methods forgo the use of highlight annotations,
but typically require extensive efforts in collecting external
data such as web-crawled videos for model learning. This
observation has inspired us to consider unsupervised high-
light detection where neither frame-level nor video-level an-
notations are available in training. We propose a simple
contrastive learning framework for unsupervised highlight
detection. Our framework encodes a video into a vector rep-
resentation by learning to pick video clips that help to dis-
tinguish it from other videos via a contrastive objective us-
ing dropout noise. This inherently allows our framework to
identify video clips corresponding to highlight of the video.
Extensive empirical evaluations on three highlight detec-
tion benchmarks demonstrate the superior performance of
our approach.

1. Introduction
Video highlight detection aims to automatically find the

interesting moments (called “highlights”) within videos.
With the explosion of video content in the past decade, it
has become even more important due to its broad range
of applications, such as video retrieval, recommendation,
browsing, and editing. In recent years, there has been
significant progress in video highlight detection. Existing
efforts predominantly focus on the fully-supervised sce-
nario [9, 14, 19, 31, 36, 42, 47, 48], which requires manual
annotation of the highlight moments in the training videos.
Since manual annotations are expensive to obtain, recent
weakly supervised methods [3,6,18,28,29,43] make use of

Code: https://github.com/tkbadamdorj/CHD.
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Figure 1. Highlight detection using contrastive learning. Our
model identifies highlight clips in a video because they form bet-
ter clusters for contrastive learning. We use t-SNE [39] to visual-
ize a video and its nearest neighbors using non-highlight clips and
highlight clips. Each point represents a video clip, and each color
represents a video. We see that poor clusters in the non-highlight
clip embedding space (left) are clearer in the highlight clip embed-
ding space (right). Ellipses are drawn around the clusters to show
that video clusters that are not separable in the non-highlight clip
embedding space (red and dark blue, yellow and light blue) are
separated in the highlight clip embedding space. The green, yel-
low, and pink videos also form tighter clusters. Thus, our model
learns to pick highlight clips to do well on the contrastive learning
task. See text for detailed explanation.

video-level labels such as video category as a weak super-
vision signal. However, the state-of-the-art methods often
rely on large-scale external data. For example, LM [43]
employs 10 million Instagram videos to train their model.

Recent advances in contrastive learning have helped
close the gap between unsupervised models and their super-
vised counterparts [5,8]. The goal of contrastive learning is
to learn an unsupervised representation of some data that is
useful for downstream tasks. For images, the task is usu-
ally classification. In this domain, a model is trained to map
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two randomly transformed versions of the same image (e.g.
random cropping, color distortion) close together in an em-
bedding space, while mapping the same image farther from
other images that are also randomly transformed [5]. Thus,
we can view contrastive learning as a clustering task: we
want to form a cluster for each image where the samples
within each cluster are randomly transformed versions of
the original image.

While visual transformations are straightforward, it is
unclear what kinds of transformations to apply in discrete
domains such as language. Recent work [8] has found that
dropout [35] can be used as a random transformation to
learn superior unsupervised sentence embeddings through
contrastive learning. Dropout is a general transformation
that can be applied to any network.

Inspired by this idea, we propose a novel and simple un-
supervised1 framework for video highlight detection. In the
highlight detection task, we break down each video into
fixed length clips (e.g. 100 frames). Then we use a pre-
trained feature extractor such as a C3D action recognition
model [38] to obtain a vector representation of each clip.
Thus, we represent an input video by a sequence of vectors.
We interchangeably use “clip” to refer to the vector repre-
sentation of a clip. Our unsupervised framework picks clips
to produce a single vector embedding for the entire video.
We apply dropout within the network as our transformation,
and learn to map two embeddings of the same video with a
different series of dropouts close together, while mapping
the video farther from other videos.

Our model learns to pick highlight clips (interesting mo-
ments) since they contain more information about the video
content. Let us motivate this claim through the example in
Fig. 1. We learn to cluster a video close to itself under ran-
dom dropout perturbations. We claim that highlight clips
contain more information about the video itself, thus better
clusters are formed if our model picks highlight clips to pro-
duce a video embedding. In this figure, we show the same
set of videos represented purely by non-highlight clips (left)
and highlight clips (right) using t-SNE [39]. Each video is
shown using a different color, and each point represents a
highlight/non-highlight clip after we apply a series of ran-
dom dropouts within the network. The non-highlight clips
do not form good clusters: the clusters often overlap, and
each cluster is also not compact. On the other hand, we can
clearly differentiate between the different videos when us-
ing highlight clips. This means that in order to do well on
the contrastive learning task, our model will learn to pick
highlight clips. We experimentally prove this claim in Sec-
tion 4.3.

1We use unsupervised to indicate that the method does not have ac-
cess to any manually annotated training data or video-level labels. Weakly
supervised methods typically utilize video-level label (category) or video
length information (short web videos) for supervision.

In short, our main contribution is a novel unsupervised
framework for video highlight detection based on con-
trastive learning. Empirical evaluation on three widely-used
highlight detection benchmarks demonstrate the superior
performance of our approach. In many cases, it performs
on par or better than the state-of-the-art methods that make
use of large amounts of external data.

2. Related Work
Video Highlight Detection: Early efforts in video high-
light detection mainly deal with sports videos [37, 41, 44].
Later works were proposed to tackle a broader range of
applications including social media [36] and first-person
videos [46].

Most methods typically consider a fully-supervised sce-
nario that requires dense frame-level annotations [9, 14, 19,
31, 36, 42, 47]. Weakly-supervised highlight detection has
been considered by several recent works [3,6,18,28,29,43],
where the training label is only available at the video-
level. They typically require access to large-scale external
datasets. For example, the work of [43] takes advantage of
the fact that clips from shorter videos are more likely to be
highlights to train a ranking network. MN [18], on the other
hand, proposes a multiple instance ranking framework that
learns to rank clips from a given category higher than clips
from other categories.
Video Summarization is a closely related task aimed at
producing a compact and cohesive summary of a given
video. Early works in video summarization are predomi-
nantly unsupervised [21, 22, 24–27, 29, 33, 34, 51, 53], and
as such, many rely on heuristics such as diversity and rep-
resentativeness to obtain a summary video. Weakly super-
vised methods [3,21,22,28,30,32,34] have also been devel-
oped to utilize video-level annotations. Benefiting from the
massive user tagging of online videos, research efforts in
supervised learning [7,10,12,13,33,49,50,52] are also pro-
gressing rapidly. Our work is influenced by the attention-
based model of [7] that operates on sequences of clips as
potential highlights.
Contrastive Learning: The idea of contrastive learning is
to make representations of a sample agree under small trans-
formations [2]. In the case of images, we can transform
an image by applying augmentations such as random crop-
ping, random jittering, or random flips. Then we train a
network to output a representation that is similar to a repre-
sentation of the same image with different random transfor-
mations [5]. In essence, we learn to form a cluster for each
sample where each member is a transformed version of the
sample. A neural network trained on such a task would then
output a useful representation for downstream tasks such as
image classification.

In other words, we aim to learn effective representations
by learning to pull semantically close neighbors together

14043



soft highlight selection via
attention scores

random dropout for
each forward pass

Highlight Selector

positive pairs are same video
with different random dropout

D

D

D

input videos

positive pair negative pair highlight clip D dropout

Figure 2. Unsupervised learning framework. The highlight se-
lector picks clips that help increase the similarity between a pos-
itive video pair, while decreasing the similarity between negative
video pairs. We construct a positive video pair by applying two
different hidden dropout masks to the same input video. We form
negative pairs by sampling other videos. We show that our model
picks highlight clips because they form better clusters for con-
trastive learning in Sec. 4.3.

while pushing apart non-neighbors [15]. Recent work has
suggested using dropout [35] within the model as a form
of data augmentation to learn unsupervised sentence em-
beddings [8]. This allows us to obtain different representa-
tions for the same input by using different random dropout
masks. We use dropout to obtain different representations
of a video in our highlight selector model. We refer the
reader to the SimCLR paper [5] for more related efforts in
contrastive learning.

3. Our Approach

We split a video into fixed length clips and get N result-
ing clips. We represent each clip using a vector vi ∈ Rd

and represent the video using the sequence of clips V =
{v1, . . . ,vN}. We extract the raw features of dimension dv
with a pre-trained visual feature extractor, such as a C3D
action recognition model [38], which we then linearly pro-
jected to size d to obtain the features vi.

Our goal is then to produce highlight scores S =
{s1, . . . , sN} where si is the score of clip vi. We achieve
this through our contrastive learning framework shown in
Fig. 2, where we learn to map a transformed version of
a sample close to itself and farther away from other sam-
ples in an embedding space. For this, we use different
dropout masks in our network to produce a transformed
version of each video. The clip selector generates an at-
tention score αj for each clip vj to compute a weighted
sum of the clips. We use this weighted sum to represent

the entire video for contrastive learning. Our key hypoth-
esis is that our network will learn to pick highlight clips
in order to solve the task. We use the attention scores
α = {α1, . . . , αN} from the clip selector directly as our
highlight scores S = {s1, . . . , sN}.

3.1. Generic Attention Layer

We define a generic attention layer to simplify nota-
tion. The generic attention layer is a modified version
of the scaled dot product attention of [40] as illustrated
in Fig. 3. Consider two sequences of d-dimensional vec-
tors X = {x1, . . . ,xK} and Y = {y1, . . . ,yL}, where
xi ∈ Rd (i = 1, 2, ...,K) and yj ∈ Rd (j = 1, 2, ..., L). We
define an attention layer that queries Y using X . The atten-
tion layer returns an intermediate attention map α ∈ RK×L

that captures the degree of dependence between xi and yj ,
and computes the attended features Z = {z1, . . . zK}.
We define the following general form for notational con-
venience:

α,Z = Attn(X,Y ). (1)

The details of Eq. (1) are as follows. First, we define the
query, key, and value linear transformations:

qi = W qxi, kj = W kyj , vj = W vyj , (2)

where W q ∈ Rd×d,W k ∈ Rd×d,W v ∈ Rd×d are model
parameters of the linear transformations. We formulate the
attention map α using the dot product between the query
and key, and normalize over the keys (j) using the softmax
function.

αij = softmax(qi · kj). (3)

We define ẑi as a weighted sum of the values vj :

ẑi =

N∑
j=1

αijvj . (4)

We then use a feed-forward network sandwiched by
layer normalization layers on either side. The feed-forward
network is defined as FF(xi) = max(0,xiW 1+b1)W 2+
b2. W 1,W 2 ∈ Rd×d, b1, b2 ∈ Rd are the weights and bi-
ases, respectively, of the feed-forward network. In addition,
we include residual connections before the layer normaliza-
tion layers as shown in Fig. 3. Thus, we obtain our final
attended features zi.

The attention layer allows us to capture the interaction
between the two sequences. If our query and key sequences
have differing lengths (i.e. K ̸= L), we cannot use the
residual connections and remove them from the network.

3.2. Highlight Selector

We show our highlight selector architecture in Fig. 4.
The highlight selector takes in N fixed-length clips that rep-
resent the content of the video, and outputs a single vector
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Figure 3. Generic attention layer. The generic attention layer takes in a query sequence xi, i = 1, ...,K, and a key/value sequence
yj , j = 1, ..., L. It then produces an attended feature zi for each query xi. We apply dropout to both input sequences, and apply dropout
after computing the attention between the two sequences. This is then followed by a residual connection and a layer normalization layer.
Finally, we have a feed-forward layer with a residual connection, before applying another layer normalization layer at the end. We use
residual connections when L = K.

embedding h that represents the entire video. It achieves
this by learning to produce an attention score αj for each
clip vj that decides the importance of clip vj in represent-
ing the video. We use the attention score αj directly as our
highlight score sj .

In video highlight detection, it is important to capture
the relationship between different clips in a video, as it is
difficult to reason whether a clip is a highlight without any
context. In order to capture this relationship, we first use
an attention layer. First, we denote the raw video features
obtained from a pre-trained feature extractor as v̂i ∈ Rdv ,
where dv is the size of the vector. We linearly project these
features to size d:

vi = W V v̂i, (5)

where W V ∈ Rd×dv . We use V to denote the set of fea-
tures of a video, i.e. V = {v1,v2, ...,vN}. Then we use a
generic attention layer to perform self-attention:

Zv = {zv
1, z

v
2, ...,z

v
N} = Attn(V ,V ). (6)

Note that the self-attention is a specific case of our
generic attention layer from Sec. 3.1, where the sequences
X and Y are identical.

We use another attention layer to directly pick highlight
clips. We define the query as the average of the features ob-
tained from the feature extractor, and attend to the features
Zv . This will return a single embedding as the output of

our attention layer since the number of queries K is 1:

v̄ =
1

N

N∑
i=1

zv
i , (7)

α, {h} = Attn({v̄},Zv). (8)

This gives us our final video embedding h ∈ Rd, and
the attention scores α that denote the contribution of each
clip to the video embedding. Through this mechanism, our
model learns to pick highlight clips in order to distinguish
the video from other videos within the dataset. We denote
our highlight selector as h = F (V ), and use the attention
score αj directly as our highlight score sj for clip vj .

3.3. Contrastive Learning

We illustrate our contrastive learning framework in
Fig. 2. We learn to map a transformed version of a sam-
ple close to itself relative to other samples in an embedding
space. In this regard, we adopt the SimCSE framework, and
use dropout as our transformation [8] to facilitate different
embeddings of the same video input.
Dropout: In our model, we apply dropout in two places for
each generic attention layer. First, we apply it to the inputs.
Then we apply it to the output of the dot-product attention
ẑi before the layer-normalization and feed-forward layer.
We show this in Fig. 3.

We use m to denote the entire sequence of dropout
masks applied within the network for an input video. Given
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Figure 4. Highlight selector architecture. We break a video into clips of some fixed number of frames (e.g. 100 frames) and obtain N
clips. For each clip we obtain features from a pre-trained feature extractor and project it to to size d to get vj . We use a generic attention
layer to model the relationship between the clips. We then use another generic attention layer using the average-pooled features as the
query v̄. This produces a final set of attention scores αj and a video embedding h. We use the attention scores αj directly as our highlight
scores sj . These scores are indirectly unsupervised through the video embedding h which we use for the contrastive learning task.

this mask, we denote the embedding produced by our high-
light selector as hm.
Contrastive Loss: We adopt the common softmax formu-
lation of the contrastive loss [5, 8]. For a video l, we apply
two different dropout masks ml and m′

l to produce the pos-

itive pair {hml

l ,h
m′

l

l }. We randomly sample other videos as
negative samples. Our task is then to increase the similar-
ity between the positive pair while decreasing the similarity
between negative pairs. Concretely, we formulate the loss
for video l as follows:

Ll = − log
exp(sim(hml

l ,h
m′

l

l )/τ)∑B
k=1 exp(sim(hml

l ,h
m′

k

k )/τ)
. (9)

Here, B is the batch size, τ is a temperature parameter, and
sim(h1,h2) denotes the cosine similarity h⊺

1h2

||h1||·||h2|| .

4. Experiments
4.1. Datasets and Setup

We carry out empirical evaluations on three benchmark
datasets, namely the YouTube Highlights dataset [36], TV-
Sum dataset [34], as well as the Video Titles in the Wild
(VTW) dataset [48]. The YouTube Highlights dataset [36]
contains videos of six different categories: dog, gymnas-
tics, parkour, skating, skiing, and surfing. We pool all the
videos together, and train a general model for all categories.
The YouTube dataset comes with a canonical training and
test split. The TVSum dataset contains 50 videos across
ten categories. Just like the YouTube dataset, we pool all
the videos together and train a general model for all cate-
gories. Following prior works, we use 80% of the dataset
for training, and 20% for testing [28, 29]. The Video Ti-
tles in the Wild (VTW) dataset [48] is a general dataset
containing unedited videos captured using mobile devices.
The videos are not constrained to specific categories, so that
this dataset can be considered “in-the-wild”. We follow the

work of [48] and adopt their split of 2,000 videos for train-
ing, and 2,000 for testing.
Features: On the YouTube Highlights and TVSum
datasets, we follow prior works [42, 43] and use a 3D
CNN [16] with ResNet-34 [17] backbone pre-trained on the
Kinetics-400 dataset [4] to obtain the visual frame-level fea-
tures. Since the 3D CNN performs temporal convolutions
over 16 consecutive frames, we consider a 3D feature to be a
part of a clip if it overlaps by at least 50% with the clip. We
average pool the frame-level features to obtain a clip-level
feature.

On the VTW dataset, we follow the original work of [48]
and use a C3D network [38] pre-trained on the Sports-1M
[20] dataset to obtain visual features. We divide each video
into clips of 100 frames following the original work [48].
Implementation Details: We train our model using the
Adam optimizer [23] with a learning rate of 1e-5 for 10
epochs on each dataset. We simply evaluate the model at
the last epoch for the given dataset. We set our contrastive
batch size B to 32 videos. Before the attention modules, we
set the embedding size d to 512. The key, query, and value
vectors all follow the same size. We set the temperature τ
to 0.1, and our dropout rate p to 0.1 for all datasets. We ini-
tially started with the code-base from the work of [7]2, but
ended up heavily modifying their code for our purposes.
Evaluation Metrics: We use mean Average Precision
(mAP) to evaluate our model. Following prior studies [14,
36,42], we compute the mean Average Precision separately
for every video, because a highlight in one video is not
necessarily more interesting than non-highlights in other
videos; we report the average mAP over all videos. On the
TVSum dataset, we report the mean Average Precision on
the top 5 predicted clips (top-5 mAP).
Comparison Methods: We compare our method to sev-
eral state-of-the art methods on the YouTube dataset: RRAE
[45], GIFs [14], LSVM [36], LM-A, LM-S [43], MN [18],

2https://github.com/ok1zjf/VASNet
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Trailers [42], and Attn [1]. Prior weakly supervised meth-
ods RRAE, LM-A, LM-S, and MN rely on the collection of
large external datasets, in contrast to our model.

On the TVSum dataset, we compare our method to prior
unsupervised and weakly supervised methods: MBF [6],
CVS [29], SG [26], VESD [3], LM-S [43], MN [18], LM-
A [43], and DSN [28]. Of these works VESD, LM-A, LM-
S, and MN make use of external data.

RRAE and VESD collect edited web videos (videos that
have been edited to only contain highlights) to weakly su-
pervise their network. RRAE trains an auto-encoder on
edited videos. Their intuition is that non-highlight clips
from unedited videos will have a higher reconstruction er-
ror at test-time. VESD uses edited web videos as a prior
and aim to make the distribution of the output highlights
match the distribution of the web videos. LM-A and LM-S
collect 10 million videos from Instagram. They posit that
clips from short videos are more likely to be highlight clips
since they are more likely to have been edited by users to
preserve the main content of the video. Then they train
a ranking network to rank clips from short videos higher
than clips from long videos. MN collects unedited videos
with category-level information; they use category-level in-
formation as their weak supervision signal.

MBF and CVS don’t use external data, but use videos
from the same category to collaboratively detect highlights.
DSN also uses category-level information as a weak super-
vision signal. They train a classification network that pre-
dicts the video category. They then compute the highlight
scores for each clip via back-propagation guided by the cat-
egory with the highest score in the forward pass. SG is the
only other work that is entirely unsupervised. They train a
generative adversarial network [11] to pick frames that pre-
serve the original video content while being different from
a network that outputs the same highlight score for all clips.

While we have fewer baselines on the VTW dataset, we
compare our unsupervised model to prior supervised works
[1, 48] and show competitive performance.

4.2. Unsupervised Highlight Detection

YouTube: We compare our model to other weakly super-
vised methods in Table 1. We outperform the prior state-of-
the-art in weakly supervised highlight detection by 4%. Our
performance is especially notable since we do not use any
external data, unlike the compared works which all collect
large amounts of external data to train their algorithms. To
our knowledge no prior weakly or unsupervised work exists
that does not collect external data to train their model on the
YouTube dataset.

We compare our model to prior supervised methods in
Table 2. We outperform two prior supervised works, and
achieve a performance only 5.1% below the supervised
state-of-the-art, Attn [1]. In addition, we achieve compa-

rable performance to Attn across most categories.

Method
RRAE

[45]
LM-A
[43]

LM-S
[43]

MN
[18] Ours

Ext. data ✓ ✓ ✓ ✓ ✗

dog 0.49 0.519 0.579 0.5368 0.6057
gym. 0.35 0.435 0.417 0.5281 0.7109
park. 0.50 0.650 0.670 0.6888 0.7422
ska. 0.25 0.484 0.578 0.7094 0.4976
ski. 0.22 0.410 0.486 0.5834 0.6820
surf. 0.49 0.531 0.651 0.6383 0.6852

Avg. 0.383 0.505 0.564 0.6138 0.6539

Table 1. Highlight detection results on the YouTube dataset.
We compare (in terms of mAP) with weakly supervised methods.
Our model outperforms all prior methods by a large margin. To our
knowledge, no prior unsupervised or weakly supervised work ex-
ists that does not make use of external data on the YouTube dataset.

Method
GIFs
[14]

LSVM
[36]

Trail.
[42]

Attn.
[1] Ours

Supervised ✓ ✓ ✓ ✓ ✗

dog 0.308 0.60 0.633 0.649 0.6057
gym. 0.335 0.41 0.825 0.715 0.7109
park. 0.540 0.61 0.623 0.766 0.7422
ska. 0.554 0.62 0.529 0.606 0.4976
ski. 0.328 0.36 0.745 0.712 0.6820
surf. 0.541 0.61 0.793 0.782 0.6852

Avg. 0.464 0.536 0.691 0.705 0.6539

Table 2. Comparison with supervised methods on the YouTube
dataset. Our model achieves competitive performance compared
to state-of-the-art supervised highlight detection methods, outper-
forming two prior supervised works, and achieving a mAP only
5.1% below the supervised state-of-the-art model Attn.

TVSum: We compare our model to other unsupervised and
weakly supervised models on the TVSum dataset that don’t
use external data in Table 3. Our model outperforms all
prior methods. In particular, we outperform the state-of-
the-art significantly by 6.5%.

We also compare our method to weakly supervised mod-
els that make use of external data in Table 4. Our model
achieves competitive performance. In particular, we out-
perform VESD and LM-A, and achieve a surprisingly com-
petitive performance to LM-S. LM-A and LM-S are trained
on 10 million Instagram videos, and LM-S is the category-
specific version of LM-A. Our model also achieves com-
petitive performance to LM-A and LM-S despite not using
external data. The TVSum dataset itself is quite small, with
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only fifty videos in total for training and testing, so the gap
in performance is to be expected.

Method
MBF
[6]

CVS
[29]

SG
[26]

DSN
[28] Ours

Ext. data ✗ ✗ ✗ ✗ ✗

mAP 0.345 0.372 0.462 0.424 0.5276

Table 3. Highlight detection results on the TVSum dataset. We
compare (top-5 mAP) with unsupervised and weakly supervised
methods that don’t use external data. Our method outperforms the
prior methods by a large margin.

Method
VESD

[3]
LM-A
[43]

LM-S
[43]

MN
[18] Ours

Ext. data ✓ ✓ ✓ ✓ ✗

mAP 0.423 0.524 0.563 0.6979 0.5276

Table 4. Highlight detection results on the TVSum dataset. We
compare (top-5 mAP) with weakly supervised methods that use
external data. Even without external data our model outperforms
two prior methods.

VTW: We present our unsupervised learning results for
VTW in Table 5. Note that even though our model is
unsupervised and does not require ground-truth highlights
on training videos, it performs better than a prior super-
vised work VTW [50], while maintaining reasonable perfor-
mance relative to the supervised state-of-the-art, Attn [1].
We outperform the prior supervised work by 2.6%, and
underperform relative to the supervised state-of-the-art by
11.3%. This is quite a strong performance from a model
trained only to distinguish between videos by directly pick-
ing clips.

VTW is an interesting dataset since it contains unedited
“in-the-wild” videos that are captured through personal
recording devices such as camcorders and smartphones.
Our model works well on this highly unconstrained dataset,
demonstrating the generalization ability of our model to “in-
the-wild” videos.

Method VTW [48] Attn. [1] Ours

Supervised ✓ ✓ ✗

mAP 0.583 0.722 0.6090

Table 5. Highlight detection results on the VTW dataset.
We achieve comparable performance (mAP) with a fully super-
vised state-of-the-art methods and outperform the other supervised
method.

4.3. Why Does It Work?

In essence, we learn to cluster a video embedding close
to itself under small dropout perturbations. If our model
learns to pick non-highlight moments, we posit that the
quality of the clusters will be worse, and thus our perfor-
mance on the contrastive learning task is also worse.

To see why this is the case, let us assume that we have
a hypothetical model that always picks non-highlight clips,
and another hypothetical model that always picks highlight
clips. Let us assume that each model picks a clip from the
output of our feature extractor exactly (the attention map α
of the clip selector is 1 at some index i and 0 everywhere
else). For this part, we operate directly on the clip represen-
tations zv

i at the output of the first generic attention layer.
We sample the same number of non-highlight and high-

light clips from each video, and run each model twenty
times with different dropout masks for the chosen non-
highlight/highlight clips. In order to perform well on the
contrastive learning task, the embeddings output by each
model should form a cluster for each video that has a small
intra-cluster distance (embeddings belonging to the same
video should be close together), and a large inter-cluster dis-
tance (embeddings belonging to different videos should be
far apart).

We use the cosine distance dist(h1,h2) = 1− h1·h2

||h1||·||h2||
as our distance measure. For a video k, we sample N high-
light or non-highlight clips to form a video cluster. We de-
note the i-th clip of video k by hik. The centroid is simply
the average of all the sampled clip embeddings from video
k: h̄k = 1

N

∑N
i=1 hik. The intra-cluster distance is then

defined as the mean of the cosine distance between the cen-
troid and the clip embeddings i.e. 1

N

∑N
i=1 dist(hik, h̄k).

The intra-cluster distance is a measure of how compact the
cluster is. Thus, a smaller number is better.

The inter-cluster distance is a measure of how well video
clusters are separated from each other, thus a larger num-
ber is better. We define this as the mean distance be-
tween the centroid of a video cluster k to the centroid
of other clusters j. Concretely, we can write this out as
1
M

∑M
j=1,j ̸=k dist(h̄k, h̄j). M is the total number of videos.

We compute the intra-cluster and inter-cluster statistics for
each video, and report the average across all videos.

We show our results in Table 6. We can see that non-
highlight clips form poorer clusters. Highlight clips form
a tighter cluster in the embedding space: the intra-cluster
distance is high for non-highlight clips, and low for high-
light clips. In addition, highlight clips form clusters that are
well separated: the inter-cluster distance is high for using
highlight clips and low for non-highlight clips. This shows
that highlight clips are more informative about the video it-
self. Thus our model learns to pick highlight clips in order
to perform well on the contrastive learning task.
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YouTube TVSum VTW

Highlight clips ✗ ✓ ✗ ✓ ✗ ✓

Intra-cluster distance (↓) 0.0954 0.0888 0.1297 0.1225 0.1010 0.0901
Inter-cluster distance (↑) 0.2325 0.2597 0.0905 0.0981 0.8241 0.8284

Table 6. Non-highlight clips form poorer clusters. A model that learns to pick highlight clips achieves better clustering than a model
that learns to pick non-highlight clips. Highlight clips form compact clusters (small intra-cluster distance) that are farther away from other
clusters (large inter-cluster distance). (↓) indicates smaller is better, while (↑) indicates bigger is better.

4.4. Effect of Dropout on Performance

We investigate the effect of dropout in this section, and
show the results in Table. 7. We note that dropout improves
our performance by noticeable margins (2-4% mAP). With-
out dropout, the contrastive learning task is simpler: the co-
sine similarity between the positive pair would simply be 1
because they are identical. However, our model would still
have to learn to decrease the similarity between negative
pairs. In consequence, this boils down to a repelling loss
where our model tries to map different videos as far away
as possible in the embedding space. As such, our results are
still competitive to prior works for all three datasets.

Dropout YouTube TVSum VTW

✗ 0.6287 0.4887 0.5606
✓ 0.6539 0.5276 0.6090

Table 7. Effect of dropout on performance. We use a dropout
rate p of 0.1 for all three datasets.

4.5. Qualitative Results

We show qualitative results in Fig. 5 and see that our
model accurately identifies the highlight moments. In the
first video, a skateboarder does two tricks which are out-
lined in green. In the second video, a man who is paraglid-
ing skims the water and nearly crashes. The moment where
he skims the water is the highlight moment.

5. Conclusion and Limitations
In this paper, we presented a simple unsupervised

method for highlight detection. Our model works simply
by learning to distinguish between a dropout transformed
version of a video from other videos by picking highlight
clips within the video. We do not collect large external data,
unlike many prior works in unsupervised and weakly super-
vised highlight detection. Empirically, we showed state-of-
the-art performance on three benchmark highlight detection
datasets.

However, our unsupervised framework still has several
limitations. We have found empirically that non-highlight

Figure 5. Qualitative results. We show some qualitative exam-
ples. Ground truth highlights are marked in green. In the skate-
boarding video (top), there are two highlight segments. While our
model chooses to focus mostly on the second highlight segment,
we see that it detects the first as well. In the second video of some-
body crashing while paragliding, our model correctly identifies the
highlight segment.

clips are not as informative about the video on the three
datasets that we have used, but there is no guarantee that
this is always true. It could be the case that some videos
have sufficiently different content that there is no need
to select highlight clips to differentiate between different
videos. This could however be tackled through negative
hard-mining i.e. by picking videos that are closest to a given
video to form negative pairs. In this paper, we have simply
used random sampling to pick the videos.

Another limitation is in how we can best incorporate
available labeled data. It is usually the case that we have
at least some videos with the highlight clips labeled, so it
would be interesting to tackle a semi-supervised framework
that also incorporates labeled examples.
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