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Abstract

LiDAR and camera are two important sensors for 3D ob-
ject detection in autonomous driving. Despite the increas-
ing popularity of sensor fusion in this field, the robustness
against inferior image conditions, e.g., bad illumination
and sensor misalignment, is under-explored. Existing fu-
sion methods are easily affected by such conditions, mainly
due to a hard association of LiDAR points and image pixels,
established by calibration matrices.

We propose TransFusion, a robust solution to LiDAR-
camera fusion with a soft-association mechanism to han-
dle inferior image conditions. Specifically, our TransFu-
sion consists of convolutional backbones and a detection
head based on a transformer decoder. The first layer of the
decoder predicts initial bounding boxes from a LiDAR point
cloud using a sparse set of object queries, and its second
decoder layer adaptively fuses the object queries with use-
ful image features, leveraging both spatial and contextual
relationships. The attention mechanism of the transformer
enables our model to adaptively determine where and what
information should be taken from the image, leading to a
robust and effective fusion strategy. We additionally design
an image-guided query initialization strategy to deal with
objects that are difficult to detect in point clouds. TransFu-
sion achieves state-of-the-art performance on large-scale
datasets. We provide extensive experiments to demonstrate
its robustness against degenerated image quality and cali-
bration errors. We also extend the proposed method to the
3D tracking task and achieve the 1st place in the leader-
board of nuScenes tracking, showing its effectiveness and
generalization capability. [code release]

1. Introduction
As one of the fundamental tasks in self-driving, 3D ob-

ject detection aims to localize a set of objects in 3D space
and recognize their categories. Thanks to the accurate
depth information provided by LiDAR, early works such
as VoxelNet [67] and PointPillar [14] achieve reasonably
good results using only point clouds as input. However,
these LiDAR-only methods are generally surpassed by the
methods using both LiDAR and camera data on large-scale

datasets with sparser point clouds, such as nuScenes [1] and
Waymo [42]. LiDAR-only methods are surely insufficient
for robust 3D detection due to the sparsity of point clouds.
For example, small or distant objects are difficult to detect
in LiDAR modality. In contrast, such objects are still clearly
visible and distinguishable in high-resolution images. The
complementary roles of point clouds and images motivate
researchers to design detectors utilizing the best of the two
worlds, i.e., multi-modal detectors.

Existing LiDAR-camera fusion methods roughly fall
into three categories: result-level, proposal-level, and point-
level. The result-level methods, including FPointNet [29]
and RoarNet [39], use off-the-shelf 2D detectors to seed
3D proposals, followed by a PointNet [30] for object lo-
calization. The proposal-level fusion methods, including
MV3D [5] and AVOD [12], perform fusion at the region
proposal level by applying RoIPool [31] in each modality
for shared proposals. These coarse-grained fusion meth-
ods show unsatisfactory results since rectangular regions
of interest (RoI) usually contain lots of background noise.
Recently, a majority of approaches have tried to do point-
level fusion and achieved promising results. They first find
a hard association between LiDAR points and image pix-
els based on calibration matrices, and then augment LiDAR
features with the segmentation scores [46, 51] or CNN fea-
tures [10, 22, 40, 47, 62] of the associated pixels through
point-wise concatenation. Similarly, [16, 17, 50, 59] first
project a point cloud onto the bird’s eye view (BEV) plane
and then fuse the image features with the BEV pixels.

Despite the impressive improvements, these point-level
fusion methods suffer from two major problems, as shown
in Fig. 1. First, they simply fuse the LiDAR features and
image features through element-wise addition or concate-
nation, and thus their performance degrades seriously with
low-quality image features, e.g., images in bad illumina-
tion conditions. Second, finding the hard association be-
tween sparse LiDAR points and dense image pixels not only
wastes many image features with rich semantic information,
but also heavily relies on high-quality calibration between
two sensors, which is usually hard to acquire due to the in-
herent spatial-temporal misalignment [63].

To address the shortcomings of the previous fusion ap-
proaches, we introduce an effective and robust multi-modal
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Figure 1. Left: An example of bad illumination conditions. Right:
Due to the sparsity of point clouds, the hard-association based fu-
sion methods waste many image features and are sensitive to sen-
sor calibration, since the projected points may fall outside objects
due to a small calibration error.

detection framework in this paper. Our key idea is to repo-
sition the focus of the fusion process, from hard-association
to soft-association, leading to the robustness against degen-
erated image quality and sensor misalignment.

Specifically, we design a sequential fusion method that
uses two transformer decoder layers as the detection head.
To our best knowledge, we are the first to use transformer
for LiDAR-camera 3D detection. Our first decoder layer
leverages a sparse set of object queries to produce ini-
tial bounding boxes from LiDAR features. Unlike input-
independent object queries in 2D [2, 44], we make the ob-
ject queries input-dependent and category-aware so that the
queries are enriched with better position and category infor-
mation. Next, the second transformer decoder layer adap-
tively fuses object queries with useful image features as-
sociated by spatial and contextual relationships. We lever-
age a locality inductive bias by spatially constraining the
cross attention around the initial bounding boxes to help the
network better visit the related positions. Our fusion mod-
ule not only provides rich semantic information to object
queries, but also is more robust to inferior image conditions
since the association between LiDAR points and image pix-
els are established in a soft and adaptive way. Finally, to
handle objects that are difficult to detect in point clouds,
we introduce an image-guided query initialization module
to involve image guidance on the query initialization stage.
Overall, the corporation of these components significantly
improves the effectiveness and robustness of our LiDAR-
camera 3D detector. To summarize, our contributions are
fourfold:

1. Our studies investigate the inherent difficulties of
LiDAR-camera fusion and reveal a crucial aspect to
robust fusion, namely, the soft-association mechanism.

2. We propose a novel transformer-based LiDAR-camera
fusion model for 3D detection, which performs fine-
grained fusion in an attentive manner and shows supe-
rior robustness against degenerated image quality and
sensor misalignment.

3. We introduce several simple yet effective adjustments
for object queries to boost the quality of initial bound-
ing box predictions for image fusion. An image-
guided query initialization module is also designed to
handle objects that are hard to detect in point clouds.

4. We achieve the state-of-the-art 3D detection per-
formance on nuScenes and competitive results on
Waymo. We also extend our model to the 3D track-
ing task and achieve the 1st place in the leaderboard
of the nuScenes tracking challenge.

2. Related Work

LiDAR-only 3D Detection aims to predict 3D bounding
boxes of objects in given point clouds [3, 4, 27, 28, 38, 46,
53, 66, 68, 69]. Due to the unordered, irregular nature of
point clouds, many 3D detectors first project them onto a
regular grid such as 3D voxels [52,67], pillars [14] or range
images [8, 43]. After that, standard 2D or 3D convolutions
are used to compute the features in the BEV plane, where
objects are naturally separated, with their physical sizes pre-
served. Other works [36, 37, 54, 55] directly operate on raw
point clouds without quantization. The mainstream of 3D
detection head is based on anchor boxes [14, 67] follow-
ing the 2D counterparts, while [48,57] adopt a center-based
representation for 3D objects, largely simplifying the 3D
detection pipeline. Despite the popularity of adopting the
transformer architecture as a detection head in 2D [2], 3D
detection models for outdoor scenarios mostly utilize the
transformer for feature extraction [21, 24, 35]. However,
the attention operation in each transformer layer requires
a computation complexity of O(N2) for N points, requir-
ing a carefully designed memory reduction operation when
handling LiDAR point clouds with millions of points per
frame. In contrast, our model retains an efficient convolu-
tion backbone for feature extraction and leverages a trans-
former decoder with a small set of object queries as the
detection head, making the computation cost manageable.
The concurrent works [19, 20, 23] adopt transformer as a
detection head but focus on indoor scenarios and extending
these methods to outdoor scenes is non-trivial.

LiDAR-Camera 3D Detection has gained increasing atten-
tion due to the complementary roles of point clouds and im-
ages. Early works [5, 29, 39] adopt result-level or proposal-
level fusion, where the fusion granularity is too coarse to
release the full potential of two modalities. Since Point-
Painting [46] was proposed, the point-level fusion meth-
ods [10,40,47] have shown great advantages and promising
results. However, such methods are easily affected by the
sensor misalignment due to the hard association between
points and pixels established by calibration matrices. More-
over, the simple point-wise concatenation ignores the qual-
ity of real data and contextual relationships between two
modalities, and thus leads to degraded performance when
the image features are defective. In our work, we explore
a more robust and effective fusion mechanism to mitigate
these limitations during LiDAR-camera fusion.
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Figure 2. Overall pipeline of TransFusion. Our model relies on standard 3D and 2D backbones to extract LiDAR BEV feature map and
image feature map. Our detection head consists of two transformer decoder layers sequentially: (1) The first layer produces initial 3D
bounding boxes using a sparse set of object queries, initialized in a input-dependent and category-aware manner. (2) The second layer
attentively associates and fuses the object queries (with initial predictions) from the first stage with the image features, producing rich
texture and color cues for better detection results. A spatially modulated cross attention (SMCA) mechanism is introduced to involve a
locality inductive bias and help the network better attend to the related image regions. We additionally propose an image-guided query
initialization strategy to involve image guidance on LiDAR BEV. This strategy helps produce object queries that are difficult to detect in
the sparse LiDAR point clouds.

3. Methodology

In this section, we present the proposed method TransFu-
sion for LiDAR-camera 3D object detection. As shown in
Fig. 2, given a LiDAR BEV feature map and an image fea-
ture map from convolutional backbones, our transformer-
based detection head first decodes object queries into ini-
tial bounding box predictions using the LiDAR information,
and then performs LiDAR-camera fusion by attentively fus-
ing object queries with useful image features. Below we
will first provide the preliminary knowledge about a trans-
former architecture for detection and then present the detail
of TransFusion.

3.1. Preliminary: Transformer for 2D Detection

Transformer [45] has been widely used for 2D object de-
tection [9, 44, 56, 70] since DETR [2] was proposed. DETR
uses a CNN backbone to extract image features and a trans-
former architecture to convert a small set of learned embed-
dings (called object queries) into a set of predictions. The
follow-up works [44,56,70] further equip the object queries
with positional information 1. The final predictions of boxes
are the relative offsets w.r.t. the query positions to reduce
optimization difficulty. We refer readers to the original pa-
pers [2,70] for more details. In our work, each object query
contains a query position providing the localization of the
object and a query feature encoding instance information,
such as the box’s size, orientation, etc.

1Slightly different concepts might be introduced, e.g., reference points
in Deformable-DETR [70] and proposal boxes in Sparse-RCNN [44].

3.2. Query Initialization

Input-dependent. The query positions in the seminal
works [2, 44, 70] are randomly generated or learned as net-
work parameters, regardless of the input data. Such input-
independent query positions will take extra stages (decoder
layers) for their models [2, 70] to learn the moving process
towards the real object centers. Recently, it has been ob-
served in 2D object detection [56] that with a better ini-
tialization of object queries, the gap between 1-layer struc-
ture and 6-layer structure could be bridged. Inspired by this
observation, we propose an input-dependent initialization
strategy based on a center heatmap to achieve competitive
performance using only one decoder layer.

Specifically, given a d dimensional LiDAR BEV fea-
ture map FL ∈ RX×Y×d, we first predict a class-specific
heatmap Ŝ ∈ RX×Y×K , where X × Y describes the size
of the BEV feature map and K is the number of categories.
Then we regard the heatmap as X × Y × K object candi-
dates and select the top-N candidates for all the categories
as our initial object queries. To avoid spatially too closed
queries, following [65], we select the local maximum ele-
ments as our object queries, whose values are greater than
or equal to their 8-connected neighbors. Otherwise, a large
number of queries are needed to cover the BEV plane. The
positions and features of the selected candidates are used to
initialize the query positions and query features. In this way,
our initial object queries will locate at or close to the poten-
tial object centers, eliminating the need of multiple decoder
layers [20, 23, 49] to refine the locations.
Category-aware. Unlike their 2D projections on the image
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plane, the objects on the BEV plane are all in absolute scale
and has small scale variance among the same categories. To
leverage such properties for better multi-class detection, we
make the object queries category-aware by equipping each
query with a category embedding. Specifically, using the
category of each selected candidate (e.g. Ŝijk belonging to
the k-th category), we element-wisely sum the query feature
with a category embedding produced by linearly projecting
the one-hot category vector into a Rd vector. The category
embedding brings benefits in two aspects: on the one hand,
it serves as a useful side information when modelling the
object-object relations in the self-attention modules and the
object-context relations in the cross-attention modules. On
the other hand, during prediction, it could deliver valuable
prior knowledge of the object, making the network focus
on intra-category variance and thus benefiting the property
prediction.

3.3. Transformer Decoder and FFN

The decoder layer follows the design of DETR [23] and
the detailed architecture is provided in the supplementary
Sec. ??. The cross attention between object queries and
the feature maps (either from point clouds or images) ag-
gregates relevant context onto the object candidates, while
the self attention between object queries reasons pairwise
relations between different object candidates. The query
positions are embedded into d-dimensional positional en-
coding with a Multilayer Perceptron (MLP), and element-
wisely summed with the query features. This enables the
network to reason about both context and position jointly.

The N object queries containing rich instance informa-
tion are then independently decoded into boxes and class
labels by a feed-forward network (FFN). Following Center-
Point [57], our FFN predicts the center offset from the query
position as δx, δy, bounding box height as z, size l, w, h as
log(l), log(w), log(h), yaw angle α as sin(α), cos(α) and
the velocity (if available) as vx, vy . We also predict a per-
class probability p̂ ∈ [0, 1]K for K semantic classes. Each
attribute is computed by a separate two-layer 1×1 convolu-
tion. By decoding each object query into prediction in par-
allel, we get a set of predictions {b̂t, p̂t}Nt as output, where
b̂t is the predicted bounding box for the i-th query. Fol-
lowing [23], we adopt the auxiliary decoding mechanism,
which adds FFN and supervision after each decoder layer.
Hence, we can have initial bounding box predictions from
the first decoder layer. We leverage such initial predictions
in the LiDAR-camera fusion module to constrain the cross
attention, as explained in the next section.

3.4. LiDAR-Camera Fusion

Image Feature Fetching. Although impressive improve-
ment has been brought by point-level fusion methods [46,
47], their fusion quality is largely limited by the sparsity of

object query with predicted bounding box.object query with predicted bounding box.

Figure 3. The first row shows the input images and the predic-
tions of object queries projected on the images, and the second
row shows the cross-attention maps. Our fusion strategy is able
to dynamically choose relevant image pixels and is not limited by
the number of LiDAR points. The two images are picked from
nuScenes and Waymo, respectively.

LiDAR points. When an object only contains a small num-
ber of LiDAR points, it can fetch only the same number
of image features, wasting the rich semantic information of
high-resolution images. To mitigate this issue, we do not
fetch the multiview image features based on the hard asso-
ciation between LiDAR points and image pixels. Instead,
we retain all the image features FC ∈ RNv×H×W×d as our
memory bank, and use the cross-attention mechanism in the
transformer decoder to perform feature fusion in a sparse-
to-dense and adaptive manner, as shown in Fig. 2.
SMCA for Image Feature Fusion. Multi-head attention is
a popular mechanism to perform information exchange and
build a soft association between two sets of inputs, and it has
been widely used for the feature matching task [34, 41]. To
mitigate the sensitivity towards sensor calibration and infe-
rior image features brought by the hard-association strategy,
we leverage the cross-attention mechanism to build the soft
association between LiDAR and images, enabling the net-
work to adaptively determine where and what information
should be taken from the images.

Specifically, we first identify the specific image in which
the object queries are located using previous predictions as
well as the calibration matrices, and then perform cross at-
tention between the object queries and the corresponding
image feature map. However, as the LiDAR features and
image features are from completely different domains, the
object queries might attend to visual regions unrelated to
the bounding box to be predicted, leading to a long train-
ing time for the network to accurately identify the proper
regions on images. Inspired by [9], we design a spatially
modulated cross attention (SMCA) module, which weighs
the cross attention by a 2D circular Gaussian mask around
the projected 2D center of each query. The 2D Gaussian
weight mask M is generated in a similar way as Center-
Net [65], Mij = exp(− (i−cx)

2+(j−cy)
2

σr2 ), where (i, j) is
the spatial indices of the weight mask M, (cx, cy) is the 2D
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center computed by projecting the query prediction onto the
image plane, r is the radius of the minimum circumscribed
circle of the projected corners of the 3D bounding box, and
σ is the hyper-parameter to modulate the bandwidth of the
Gaussian distribution. Then this weight map is element-
wisely multiplied with the cross-attention map among all
the attention heads. In this way, each object query only at-
tends to the related region around the projected 2D box, so
that the network can learn where to select image features
based on the input LiDAR features better and faster. The
visualization of the attention map is shown in Fig. 3. The
network typically tends to focus on the foreground pixels
close to the object center and ignore the irrelevant pixels,
providing valuable semantic information for object classifi-
cation and bounding box regression. After SMCA, we use
another FFN to produce the final bound box predictions us-
ing the object queries containing both LiDAR and image
information.

3.5. Label Assignment and Losses

Following DETR [23], we find the bipartite matching be-
tween the predictions and ground truth objects through the
Hungarian algorithm [13], where the matching cost is de-
fined by a weighted sum of classification, regression, and
IoU cost:

Cmatch = λ1Lcls(p, p̂)+λ2Lreg(b, b̂)+λ3Liou(b, b̂), (1)

where Lcls is the binary cross entropy loss, Lreg is the L1
loss between the predicted BEV centers and the ground-
truth centers (both normalized in [0, 1]), and Liou is the
IoU loss [64] between the predicted boxes and ground-truth
boxes. λ1, λ2, λ3 are the coefficients of the individual cost
terms. We provide sensitivity analysis of these terms in the
supplementary Sec. ??. Since the number of predictions is
usually larger than that of GT boxes, the unmatched predic-
tions are considered as negative samples. Given all matched
pairs, we compute a focal loss [18] for the classification
branch. The bounding box regression is supervised by an
L1 loss for only positive pairs. For the heatmap predic-
tion, we adopt a penalty-reduced focal loss following Cen-
terPoint [57]. The total loss is the weighted sum of losses
for each component. We adopt the same label assignment
strategy and loss formulation for both decoder layers.

3.6. Image-Guided Query Initialization

Since our object queries are currently selected using only
LiDAR features, it potentially leads to sub-optimality in
terms of the detection recall. Empirically, our model al-
ready achieves high recall and shows superior performance
over the baselines (Sec. 5). Nevertheless, to further lever-
age the ability of high-resolution images in detecting small
objects and make our algorithm more robust against sparse
LiDAR point clouds, we propose an image-guided query
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Figure 4. We first condense the image features along the vertical
dimension, and then project the features onto the BEV plane us-
ing cross attention with the LiDAR BEV features. Each image is
processed by a separate multi-head attention layer, which captures
the relation between image column and BEV locations.

initialization strategy, which selects object queries leverag-
ing both the LiDAR and camera information.

Specifically, we generate a LiDAR-camera BEV feature
map FLC by projecting the image features FC onto the BEV
plane through cross attention with LiDAR BEV features
FL. Inspired by [32], we use the multiview image features
collapsed along the height axis as the key-value sequence of
the attention mechanism, as shown in Fig. 4. The collaps-
ing operation is based on the observation that the relation
between BEV locations and image columns can be estab-
lished easily using camera geometry, and usually there is
at most one object along each image column. Therefore,
collapsing along the height axis can significantly reduce the
computation without losing critical information. Although
some fine-grained image features might be lost during this
process, it already meets our need as only a hint on poten-
tial object positions is required. Afterward, similar to Sec.
3.2, we use FLC to predict the heatmap, which is averaged
with the LiDAR-only heatmap Ŝ as the final heatmap ŜLC .
Using ŜLC to select and initialize the object queries, our
model is able to detect objects that are difficult to detect in
LiDAR point clouds.

Note that proposing a novel method to project the image
features onto the BEV plane is beyond the scope of this pa-
per. We believe that our method could benefit from more
research progress [26, 32, 33] in this direction.

4. Implementation Details

Training. We implement our network in PyTorch [25] us-
ing the open-sourced MMDetection3D [6]. For nuScenes,
we use the DLA34 [60] of the pretrained CenterNet as our
2D backbone and keep its weights frozen during training,
following [47]. We set the image size to 448 × 800, which
performs comparably with full resolution (896 × 1600).
VoxelNet [52, 67] is chosen as our 3D backbone. Our train-
ing consists of two stages: 1) We first train the 3D backbone
with the first decoder layer and FFN for 20 epochs, which
only needs the LiDAR point clouds as input and produces
the initial 3D bounding box predictions. We adopt the same
data augmentation and training schedules as prior LiDAR-
only works [57, 68]. Note that we also find the copy-and-
paste augmentation strategy [52] benefits the convergence
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Method Modality Voxel Size (m) mAP NDS Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.
PointPillar [14] L (0.2, 0.2, 8) 40.1 55.0 76.0 31.0 11.3 32.1 36.6 56.4 34.2 14.0 64.0 45.6
CBGS [68] L (0.1, 0.1, 0.2) 52.8 63.3 81.1 48.5 10.5 54.9 42.9 65.7 51.5 22.3 80.1 70.9
CenterPoint [57] L (0.075, 0.075, 0.2) 60.3 67.3 85.2 53.5 20.0 63.6 56.0 71.1 59.5 30.7 84.6 78.4
PointPainting [46] LC (0.2, 0.2, 8) 46.4 58.1 77.9 35.8 15.8 36.2 37.3 60.2 41.5 24.1 73.3 62.4
3D-CVF [59] LC (0.05, 0.05, 0.2) 52.7 62.3 83.0 45.0 15.9 48.8 49.6 65.9 51.2 30.4 74.2 62.9
PointAugmenting [47] LC (0.075, 0.075, 0.2) 66.8 71.0 87.5 57.3 28.0 65.2 60.7 72.6 74.3 50.9 87.9 83.6
MVP [58] LC (0.075, 0.075, 0.2) 66.4 70.5 86.8 58.5 26.1 67.4 57.3 74.8 70.0 49.3 89.1 85.0
FusionPainting [51] LC (0.075, 0.075, 0.2) 68.1 71.6 87.1 60.8 30.0 68.5 61.7 71.8 74.7 53.5 88.3 85.0
TransFusion-L L (0.075, 0.075, 0.2) 65.5 70.2 86.2 56.7 28.2 66.3 58.8 78.2 68.3 44.2 86.1 82.0
TransFusion LC (0.075, 0.075, 0.2) 68.9 71.7 87.1 60.0 33.1 68.3 60.8 78.1 73.6 52.9 88.4 86.7

Table 1. Comparison with SOTA methods on the nuScenes test set. ‘C.V.’, ‘Ped.’, and ‘T.C.’ are short for construction vehicle, pedestrian,
and traffic cone, respectively. ‘L’ and ‘C’ represent LiDAR and Camera, respectively. The best results are in boldface (Best LiDAR-only
results are marked blue and best LC results are marked red). For FusionPainting [51], we report the results on the nuScenes website, which
are better than what they reported in their paper. Note that CenterPoint [57] and PointAugmenting [47] utilize double-flip testing while we
do not use any test time augmentation. Please find detailed results here.2

but could disturb the real data distribution, so we disable
this augmentation for the last 5 epochs following [47] (they
called a fade strategy). 2) We then train the LiDAR-camera
fusion and the image-guided query initialization module for
another 6 epochs. We find that this two-step training scheme
performs better than joint training, since we can adopt more
flexible augmentations for the first training stage. See sup-
plementary Sec. ?? for the detailed hyper-parameters and
settings on Waymo.
Testing. During inference, the final score is computed as the
geometric average of the heatmap score Ŝij and the classi-
fication score p̂t. We use all the outputs as our final predic-
tions without Non-maximum Suppression (NMS) (see the
effect of NMS in supplementary Sec. ??). It is noteworthy
that previous point-level fusion methods such as PointAug-
menting [47] rely on two different models for camera FOV
and LiDAR-only regions if the cameras are not 360-degree
cameras, because only points in the camera FOV could fetch
the corresponding image features. In contrast, we use a sin-
gle model to deal with both camera FOV and LiDAR-only
regions, since object queries located outside camera FOV
will directly ignore the fusion stage and the initial predic-
tions from the first decoder layer will be a safeguard.

5. Experiments
In this section, we first make comparisons with the state-

of-the-art methods on nuScenes and Waymo. Then we con-
duct extensive ablation studies to demonstrate the impor-
tance of each key component of TransFusion. Moreover, we
design two experiments to show the robustness of our Trans-
Fusion against inferior image conditions. Besides TransFu-
sion, we also include a model variant, which is based on
the first training stage, i.e., producing the initial bounding
box predictions using only point clouds. We denote it as
TransFusion-L and believe that it can serve as a strong base-
line for LiDAR-only detection. We provide the qualitative
results in supplementary Sec. ??.
nuScenes Dataset. The nuScenes dataset is a large-scale
autonomous-driving dataset for 3D detection and track-

2https://www.nuscenes.org/object-detection

ing, consisting of 700, 150, and 150 scenes for train-
ing, validation, and testing, respectively. Each frame con-
tains one point cloud and six calibrated images cover-
ing the 360-degree horizontal FOV. For 3D detection, the
main metrics are mean Average Precision (mAP) [7] and
nuScenes detection score (NDS). The mAP is defined by
the BEV center distance instead of the 3D IoU, and the fi-
nal mAP is computed by averaging over distance thresholds
of 0.5m, 1m, 2m, 4m across ten classes. NDS is a consol-
idated metric of mAP and other attribute metrics, includ-
ing translation, scale, orientation, velocity, and other box
attributes. Following CenterPoint [57], we set the voxel size
to (0.075m, 0.075m, 0.2m).
Waymo Open Dataset. This dataset consists of 798 scenes
for training and 202 scenes for validation. The official met-
rics are mAP and mAPH (mAP weighted by heading accu-
racy). The mAP and mAPH are defined based on the 3D
IoU threshold of 0.7 for vehicles and 0.5 for pedestrians
and cyclists. These metrics are further broken down into
two difficulty levels: LEVEL1 for boxes with more than
five LiDAR points and LEVEL2 for boxes with at least one
LiDAR point. Unlike the 360-degree cameras in nuScenes,
the cameras in Waymo only cover around 250 degrees hor-
izontally. The voxel size is set to (0.1m, 0.1m, 0.15m).

5.1. Main Results

nuScenes Results. We submitted our detection results to
the nuScenes evaluation server. Without any test time aug-
mentation or model ensemble, our TransFusion outperforms
all competing non-ensembled methods on the nuScenes
leaderboard at the time of submission. As shown in Table 1,
our TransFusion-L already outperforms the state-of-the-
art LiDAR-only methods by a significant margin (+5.2%
mAP, +2.9% NDS) and even surpasses some multi-modality
methods. We ascribe this performance gain to the rela-
tion modeling power of the transformer decoder as well as
the proposed query initialization strategies, which are ab-
lated in Sec. 5.3. Once enabling the proposed fusion com-
ponents, our TransFusion receives remarkable performance
boost (+3.4% mAP, +1.5% NDS) and outperforms all the
previous methods, including FusionPainting [51], which
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Vehicle Pedestrian Cyclist Overall
PointPillar [46] 62.5 50.2 59.9 57.6
PVRCNN [36] 64.8 46.7 - -
LiDAR-RCNN [15] 64.2 51.7 64.4 60.1
CenterPoint [57] 66.1 62.4 67.6 65.3
PointAugmenting [47] 62.2 64.6 73.3 66.7
TransFusion-L 65.1 63.7 65.9 64.9
TransFusion 65.1 64.0 67.4 65.5

Table 2. LEVEL 2 mAPH on Waymo validation set. For Center-
Point, we report the performance of single-frame one-stage model
trained in 36 epochs.

AMOTA↑ TP↑ FP↓ FN↓ IDS↓
CenterPoint [57] 63.8 95877 18612 22928 760
EagerMOT [11] 67.7 93484 17705 24925 1156
AlphaTrack [61] 69.3 95851 18421 22996 718
TransFusion-L 68.6 95235 17851 23437 893
TransFusion 71.8 96775 16232 21846 944

Table 3. Comparison of the tracking results on nuScenes test set.
Please find detailed results here.3

uses extra data to train their segmentation sub-networks.
Moreover, thanks to our soft-association mechanism, Trans-
Fusion is robust to inferior image conditions including de-
generated image quality and sensor misalignment, as shown
in the next section.
Waymo Results. We report the performance of our model
over all three classes on Waymo validation set in Table 2.
Our fusion strategy improves the mAPH of pedestrian and
cyclist classes by 0.3 and 1.5x, respectively. We suspect two
reasons for the relatively small improvement brought by the
image components. First, the semantic information of im-
ages might have less impact on the coarse-grained catego-
rization of Waymo. Second, the initial bounding boxes from
the first decoder layer are already with accurate locations
since the point clouds in Waymo are denser than those in
nuScenes (see more discussions in supplementary Sec. ??).
Note that CenterPoint achieves a better performance with
a multi-frame input and a second-stage refinement mod-
ule. Such components are orthogonal to our method and we
leave a more powerful TransFusion for Waymo as the future
work. PointAugmenting achieves better performance than
ours but relies on CenterPoint to get the predictions outside
camera FOV for a full-region detection, making their sys-
tem less flexible.
Extend to Tracking. To further demonstrate the general-
ization capability, we evaluate our model in a 3D multi-
object tracking (MOT) task by performing tracking-by-
detection with the same tracking algorithms adopted by
CenterPoint. We refer readers to the original paper [57]
for details. As shown in Table 3, our model significantly
outperforms CenterPoint and sets the new state-of-the-art
results on the leaderboard of nuScenes tracking.

5.2. Robustness against Inferior Image Conditions

We design three experiments to demonstrate the robust-
ness of our proposed fusion module. Since the nuScenes

3https://www.nuscenes.org/tracking

Nighttime Daytime
TransFusion-L 49.2 60.3
CC 49.4 (+0.2) 63.4 (+3.1)
PA 51.0 (+1.8) 64.3 (+4.0)
TransFusion 55.2 (+6.0) 65.7 (+5.4)

Table 4. mAP breakdown over daytime and nighttime. We exclude
categories that do no have any labeled samples.

test set only allows at most three submissions, all the ex-
periments are conducted on the validation set. For fast it-
eration, we reduce the first stage training to 12 epochs and
remove the fade strategy. All the other parameters are the
same as the main experiments. To avoid overstatement, we
additionally build two baseline LiDAR-camera detectors by
equipping our TransFusion-L with two representative fu-
sion methods on nuScenes: fusing LiDAR and image fea-
tures by point-wise concatenation (denoted as CC) and the
fusion strategy of PointAugmenting (denoted as PA).
Nighttime. We first split the validation set into daytime
and nighttime based on scene descriptions provided by
nuScenes and show the performance gain under different
situations in Table 4. Our method brings a much larger per-
formance gain during nighttime, where the worse lighting
negatively affects the hard-association based fusion strate-
gies CC and PA.
Degenerated Image Quality. In Table 5, we randomly drop
several images for each frame by setting the image features
of such images to zero during inference. Since both CC
and PA fuse LiDAR and image features in a tightly-coupled
way, their performance drops significantly when some im-
ages are not available during inference. In contrast, our
TransFusion is able to maintain a high mAP under all cases.
When all the six images are not available, CC and PA suf-
fer from 23.8% and 17.2% mAP degradation, respectively,
while TransFusion still keeps the mAP at a competitive level
of 61.7%. This advantage comes from the sequential design
and the attentive fusion strategy, which first generates ini-
tial predictions based on LiDAR data and then only gathers
useful information from image features adaptively. More-
over, we could even directly disable the fusion module if
the camera malfunctioning is known, such that the whole
system could still work seamlessly in a LiDAR-only mode.

# Dropped Images 0 1 3 6
CC 63.3 59.8 (-3.5) 50.9 (-12.4) 39.5 (-23.8)
PA 64.2 61.6 (-2.6) 55.4 (-8.8) 47.0 (-17.2)
TransFusion 65.6 65.1 (-0.5) 63.9 (-1.7) 61.7 (-3.9)

Table 5. mAP under different numbers of dropped images. The
number in each bracket is the mAP drop from the standard input.

Sensor Misalignment. We evaluate different fusion meth-
ods under a setting where LiDAR and images are not well-
calibrated following RoarNet [39]. Specifically, we ran-
domly add a translation offset to the transformation matrix
from camera to LiDAR sensor. As shown in Fig. 5, Trans-
Fusion achieves better robustness against the calibration er-
ror compared with other fusion methods. When two sensors
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Figure 5. mAP under sensor misalignment cases. The X axis refers
to the translational discrepancy between two sensors.

are misaligned by 1m, the mAP of our model only drops by
0.49%, while the mAP of PA and CC degrades by 2.33%
and 2.85%, respectively. In our method, the calibration ma-
trix is only used for projecting the object queries onto im-
ages, and the fusion module is not strict with the projected
locations since the attention mechanism could adaptively
find the relevant image features around based on the con-
text information. The insensitivity towards sensor calibra-
tion also enables the possibility to pipelining the 2D and 3D
backbones such that the LiDAR features are fused with the
features from the previous images [46].

5.3. Ablation Studies

We conduct ablation studies on the nuScenes validation
set to study the effectiveness of the proposed components.

C.A. I.D. #Layers #Epochs mAP NDS
a) ✓ ✓ 1 12 60.0 66.8
b) ✓ 1 12 54.3 63.9
c) ✓ ✓ 3 12 59.9 67.1
d) ✓ 1 12 24.0 33.8
e) ✓ 3 12 28.3 43.4
f) ✓ 3 36 46.9 57.8

Table 6. Ablation of the query initialization module. C.A.:
category-aware; I.D.: input-dependent.

Query Initialization. In Table 6, we study how the query
initialization strategy affects the performance of the initial
bounding box prediction. a) the first row is TransFusion-L.
b) when the category-embedding is removed, NDS drops
to 63.9%. d)-f) shows the performance of the models
trained without the input-dependent strategy. Specifically,
we make the query positions as a set of learnable parame-
ters (N × 2) to capture the statistics of potential object lo-
cations in the dataset. The model under this setting only
achieves 33.8% NDS. Increasing the number of decoder
layers or the number of training epochs boosts the perfor-
mance, but TransFusion-L still outperforms the model in (f)
by 9.0% NDS. a), c): In contrast, with the proposed query
initialization strategy, our TransFusion-L does not require
more decoder layers.
Fusion Components. To study how the image informa-
tion benefits the detection results, we ablate the proposed
fusion components by removing the feature fusion mod-

mAP NDS Params (M) Latency (ms)
CenterPoint 57.4 65.2 8.54 117.2
TransFusion-L 60.0 66.8 7.96 114.9
CC 63.3 67.6 8.01 + 18.34 212.3
PA 64.2 68.7 13.9 + 18.34 288.2
w/o Fusion 61.6 67.4 9.08 + 18.34 215.0
w/o Guide 64.8 69.3 8.35 + 18.34 236.9
TransFusion 65.6 69.7 9.47 + 18.34 265.9

Table 7. Ablation of the proposed fusion components. 18.34 rep-
resents the parameter size of the 2D backbone. The latency is
measured on an Intel Core i7 CPU and a Titan V100 GPU. For
CenterPoint, we use re-implementations in MMDetection3D.

ule (denoted as w/o Fusion) and the image-guided query
initialization (denoted as w/o Guide). As shown in Table 7,
the image feature fusion and image-guided query initializa-
tion bring 4.8% and 1.6% mAP gain, respectively. The for-
mer provides more distinctive instance features, which are
particularly critical for classification on nuScenes, where
some categories are challenging to distinguish, such as
trailer and construction vehicle. The latter affects less, since
TransFusion-L already has enough recall. We believe the
latter will be more useful when point clouds are sparser.
Compared with other fusion methods, our fusion strategy
brings a larger performance gain with a modestly increas-
ing number of parameters and latency. To better understand
where the improvements are from, we show the mAP break-
down on different subsets based on the range in Table 8. Our
fusion method gives larger performance boost for distant re-
gions where 3D objects are difficult to detect or classify in
LiDAR modality.

<15m 15-30m >30m
TransFusion-L 70.4 59.5 35.3
TransFusion 75.5 (+5.1) 66.9 (+7.4) 43.7 (+8.4)

Table 8. mAP breakdown over BEV distance between object cen-
ter and ego vehicle in meters.

6. Conclusion
We have designed an effective and robust transformer-

based LiDAR-camera 3D detection framework with a soft-
association mechanism to adaptively determine where and
what information should be taken from images. Our Trans-
Fusion sets the new state-of-the-art results on the nuScenes
detection and tracking leaderboards, and shows competi-
tive results on Waymo detection benchmark. The exten-
sive ablative experiments demonstrate the robustness of our
method against inferior image conditions. We hope that our
work will inspire further investigation of LiDAR-camera fu-
sion for driving-scene perception, and the application of a
soft-association based fusion strategy to other tasks, such as
3D segmentation.
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based 3d object detection and tracking. CVPR, 2021. 2, 4, 5,
6, 7

[58] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Multi-
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