
ESCNet: Gaze Target Detection with the Understanding of 3D Scenes

Jun Bao1 Buyu Liu2 Jun Yu1*

1Hangzhou Dianzi University 2NEC Laboratories America

Abstract

This paper aims to address the single image gaze target
detection problem. Conventional methods either focus on
2D visual cues or exploit additional depth information in
a very coarse manner. In this work, we propose to explic-
itly and effectively model 3D geometry under challenging
scenario where only 2D annotations are available. We first
obtain 3D point clouds of given scene with estimated depth
and reference objects. Then we figure out the front-most
points in all possible 3D directions of given person. These
points are later leveraged in our ESCNet model. Specifi-
cally, ESCNet consists of geometry and scene parsing mod-
ules. The former produces an initial heatmap inferring the
probability that each front-most point has been looking at
according to estimated 3D gaze direction. And the latter
further explores scene contextual cues to regulate detec-
tion results. We validate our idea on two publicly available
dataset, GazeFollow and VideoAttentionTarget, and demon-
strate the state-of-the-art performance. Our method also
beats the human in terms of AUC on GazeFollow. Our code
can be found here https://github.com/bjj9/ESCNet.

1. Introduction

Gaze target detection is important to understand human’s
intention. Therefore, it plays an important role in appli-
cations such as human computer interface [26] and social
awareness tracking [27]. Though physical equipment such
as wearable eye trackers [10] is available to perform gaze
estimation, they are not desired due to location or calibra-
tion limitations. A more general setting takes third person
view image as well as a given person in this scene as input
and aims to locate where this person is looking in 2D image
space [31]. Conventional methods typically leverage 2D vi-
sual cues to regulate gaze predictions by not only salient
objects but also estimated gaze orientation [6,31]. More re-
cent approach [9] proposes to incorporate 3D gaze estima-
tion and depth cues. Though demonstrating advanced per-
formance,it requires additional human annotations [18] to
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Figure 1. We propose to explicitly model 3D geometry in 2D gaze
target detection task. We propose to reconstruct the scene with 3D
point cloud in single-image setting in (1) and demonstrate that our
ESCNet is able to effectively exploit such information in (2).

explicitly model 3D gaze and due to coarse depth represen-
tation, it lacks the ability to handle more general scenarios,
e.g. multiple salient objects lie in the same depth layer and
field of view. To this end, we propose to perform gaze target
detection by complete understanding and explicit modelling
of 3D scenes, with 2D gaze annotations only.

Promising as it sounds, lacking of 3D information in ex-
isting dataset makes our task hard. Also, effectively repre-
senting such information remains a vital problem.

We address these challenges through two key insights.
Firstly, 3D geometry can be reconstructed by absolute depth
and camera parameters, which can be estimated with rel-
ative depth and certain assumptions of reference objects.
Specifically, we use ”person” as our reference category as
humans occur most frequently in images collected for gaze
estimation task and their sizes are of certain distributions.
With the assumption of human sizes, we can estimate the
absolute depth and focal length of each image, leading to
3D point clouds (See (1) in Fig. 1). Second, occlusion plays
an important role in gaze estimation given the fact that one
cannot see through occluders. Such fact provides strong pri-
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ors to regulate where one person may look at. Inspired by
this, we propose to represent the 3D geometry with front-
most points, or occluders. This is achieved by modelling
points in all possible 3D directions of a given person, and
then leaving only the front-most one in each direction.

Further, we propose a novel model ESCNet that consists
of gEometry and SCene parsing modules. The former lever-
ages geometric cues, e.g. 3D gaze direction and 3D geom-
etry, and outputs an initial heatmap as an intermediate rep-
resentation, inferring the probability that each front-most
point being looking at (See (2) in Fig. 1). The latter further
incorporates scene contextual cues such as saliency in RGB
image and generates final heatmap predictions.

We test on GazeFollow [31] and VideoAttentionTar-
get [6], and obtain state-of-the-art (SOTA) performance.
Our intermediate representation is not only visually and
conceptually meaningful, but also allows deep supervision,
leading to performance boost. Finally, our method even out-
performs human performance on AUC metric.

To summarize, our key contributions are:

• A novel method that explicitly models full 3D geome-
try, especially occlusion, in 2D gaze target detection.

• An end-to-end deeply supervised model ESCNet that
explores 3D geometry, 2D/3D gaze and scene contex-
tual cues, with gaze annotations only available in 2D.

• State-of-the-art results on publicly available datasets
and superior performance over human.

2. Related Work
We organize our related work into three areas: gaze tar-

get prediction, 3D gaze estimation and 3D scene under-
standing from single image.
Gaze Target Detection Gaze target detection initially aims
to locate gaze target of a given person in an image [4, 6,
9, 21, 31, 44]. The pioneer work [31] takes the first step
towards gaze target detection and publishes a large-scale
image dataset with annotations of head position and corre-
sponding gaze targets. Following their design, most of the
proceeding gaze target detection approaches [4,6,9,21] con-
sider gaze and object saliency estimation in 2D image space
when addressing this problem. Out of frame cases are first
considered in [4, 6] where the person may look somewhere
out of the image. One of the main limitations of existing
work is that they rely on 2D visual cues and lacks the abil-
ity to reason in 3D. More recent method [9] proposes to in-
corporate depth cues to distinguish fore/background points.
Impressive as it is, it requires additional 3D gaze labels [18]
to specifically train its 3D gaze estimator. Without such 3D
gaze labels, the core depth re-basing part of [9] will not
work due to the lack of predictions in depth channel. In con-
trast, our work explicitly models 3D geometry with point

clouds and effectively represents the 3D geometry by mod-
elling only occluders from all 3D directions of given person,
with gaze annotations only available in 2D. We further in-
troduce an intermediate representation about the probability
of the given person looking at each occluer. Such represen-
tation not only offers meaningful understanding of 3D scene
and gaze, but also allows deep supervision.
3D Gaze Estimation 3D gaze estimation focuses on more
basic gaze estimation problem where eye/face image of a
single person is provided and its goal is to predict 3D gaze
direction of this person. Existing methods can generally be
categorized into model-based [2, 7, 15, 35] or appearance-
based [25, 28, 33]. With the benefits of large scale datasets,
e.g. MPIIGaze [43], CNN-based methods [1, 42, 43] fur-
ther push gaze estimation field fast forward. Various tech-
niques related to model design, including model structures,
input and intermediate representations [29] have been ex-
plored. For instance, [11,43] propose complex or ensembles
of CNNs to exploit their representation power and [3] mod-
els the two-eye asymmetry in face images. As for model in-
put, multi-modal input [19, 39] and data normalization [41]
have been proposed. 3D gaze also plays an important role
in [9] to explicitly distinguish depth layers. In contrast to [9]
that requires additional 3D gaze labels [18] to train its 3D
gaze prediction module, we rely on gaze annotations in 2D
only. Moreover, we explicitly model 3D geometry with
front-most points and implicitly leverage 3D gaze cues in
our model to regulate our predictions.
3D Understanding from Single Image Understanding 3D
with only single image is an ill-posed problem as one sin-
gle image can be generated from an infinite number of re-
alistic scenarios [13]. Researchers have propose various
representations for geometry, e.g., depth and normal [37],
layer [16, 38] and layout [20, 23], semantics, e.g. 2D and
3D object [34], and combination of both [24, 40]. In this
work, we choose point cloud as our representation as it is
fine enough to model pixel-level occlusions. Specifically,
we rely on predictions of relative depth from monocular
method and that of reference objects to estimate the abso-
lute depth and focal length. In order to model pixel-level
occlusions, we represent each scene with occluders, or the
front-most points in all 3D directions w.r.t. a given person.

3. Our Framework
As described above, our method consists of two stages

and is illustrated in Fig. 2. The stage one explicitly models
3D geometry by reconstructing the entire scene from sin-
gle RGB image, leading to 3D point clouds. At the sec-
ond stage, our ESCNet effectively leverages the obtained
3D geometry to perform gaze estimation task. ESCNet
consists of two sub-modules, the geometry and the scene
parsing module. Specifically, the geometry parsing module
(Sec. 3.1) estimates the probability of where a given person
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Figure 2. Our method takes a single RGB image and one given person as input and outputs the target gaze position in 2D. The stage (1)
reconstructs the 3D scene with point clouds and in stage (2) ESCNet effectively represents the scene geometry with front-most points w.r.t.
this person and makes predictions by further incorporating 3D gaze and scene contextual cues. Our ESCNet is deeply supervised and
end-to-end trainable, with initial heatmap as an meaningful intermediate representation. We highlight our novelties in pink.

might look at by considering 3D geometric cues. The scene
parsing module (Sec. 3.2) later incorporates both the scene
contextual cues and the predicted probabilities to refine the
target fixation prediction in 2D image space. For clarity, we
first assume that 3D point clouds are available when intro-
ducing each sub-module and then describe how to obtain
them from single RGB in Sec. 3.3.

Assuming that we have a dataset D = {Ii, ti}Ni=1 con-
sists of N images as well as their annotations, where Ii ∈
RHi×Wi×3 denotes the i-th image, with height Hi and
width Wi. ti = [txi , t

y
i ] denotes the x, y locations of ground

truth gaze fixation in 2D image space. We can automati-
cally generate 3D point clouds of all images P = {Pi}i =
{{pm

i }m}i and pm
i = [pm,x

i , pm,y
i , pm,z

i ] is a 3-dimensional
vector representing the 3D position of m-th pixel in the i-th
image, with m = [1, ...,Hi × Wi]. xy denote the image
plane, and z is for depth direction. We further denote the
gaze fixation and the head center in 3D space as pt

i and ph
i .

Equivalently, we can represent 3D points/vectors in angular
space, or by its angle α, β and norm. Taking pm

i as an exam-
ple, pm

i can be represented by [fα(pm
i ), fβ(pm

i ), fn(pm
i )],

where fα(pm
i ) = arctan 2(

pm,y
i

pm,x
i

) ∈ [−π, π], fβ(pm
i ) =

arccos(
pm,z
i

∥pm
i ∥ ) ∈ [−π/2, π/2] and fn(pm

i ) = ∥pm
i ∥ denote

the angle in coronal and sagittal plane, and norm of vector

pm
i , respectively. The definition of angular space can be

found in the bottom right of Fig. 2.

3.1. Geometry Parsing Module

The geometry parsing module fgp aims to predict where
a given person might view in 3D w.r.t. geometric cues.

The design of fgp follows three main intuitions. Firstly,
head image contains important information such as 3D head
pose [46], which gives strong prior about gaze direction.
Secondly, there exists strong correlations between where
the head is located in 2D image and this person’s fixa-
tion [31]. Lastly and most importantly, if there are multi-
ple objects/points lie in one visual ray of one person, he/she
can only focus on the closest object/point. Inspired by these
three assumptions, fgp takes head image Ihi ∈ RHh

i ×Wh
i ×3,

head position in 2D image Mh
i ∈ RHi×Wi and the 3D ge-

ometric cues Ri ∈ RHi×Wi×4 as inputs. The output of fgp
is an initial heatmap Ai ∈ RHi×Wi = {ami }m where ami
represents the probability of the given person in image Ii
focusing on the m-th point in 3D space. We provide more
details of fgp in Fig. 3 and it is defined as:

Ai = fgp(I
h
i ,M

h
i , Ri) (1)

Though it seems that our fgp provides a probability map
about where a given person might look at in the scene and is
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Figure 3. We provide more details of fgp. Input, output and mod-
ules are visualized in pink, green and yellow, respectively.

similar to existing work [6, 9, 31], there are three main dif-
ferences. Firstly, fgp exploits the full 3D information while
these existing methods either leverage only 2D cues [6, 31]
or incorporate depth information at very coarse level [9].
Due to the 3D modelling, our intermediate representation
Ai actually reflects probability of 3D points rather than
pixels in 2D image space. Secondly, we explicitly rep-
resent front-most points in Ri and the intuition of Ri, or
one cannot see through occluers so that only front-most
points/objects are visible to given person, is lacking in ex-
isting methods. Finally, due to the explainable design of Ai,
fgp allows deep supervision for this intermediate represen-
tation during training while existing methods only receive
heatmap-wise losses at the final prediction step. We will ex-
plain in below about how to obtain geometric cues Ri and
ground truth A∗

i , and leave details of Ihi and Mh
i to Sec. 3.3.

Geometric cues Ri consist of both the full 3D informa-
tion of the current scene and the front-most point along
each visual ray from the head center of a given person.
Given the head center ph

i , the former can be easily ob-
tain by converting all vmi = pm

i − ph
i to angular space, or

[{fα(vmi )}m, {fβ(vmi )}m, {fn(vm
i )}m]. The latter is a bi-

nary map reflecting our intuition that when occlusion hap-
pens, only occluders are visible to human. In another word,
if there are multiple objects/points along a visual ray, only
the front-most one can be our focus. To achieve that, we
first define visual rays and then figure out 3D points that lie
in each visual ray. Lastly, we select out only the point with
the minimum distance to a given person along each ray.

Given the head center ph
i , we assume that all visual rays

must pass ph
i . Instead of working on the original continuous

space, we propose to discretize them for better efficiency.
Specifically, we discretize the coronal angle α into J = 180

Figure 4. We visualize RGB image with the given person high-
lighted with red bounding box. The binary map of front-most
points that this person can view is visualized on the right.

bins and sagittal angle β into K = 90 bins, leading to 16200
possible discretized visual rays in total.

Our next step is to figure out which bin each point be-
longs to based on its angle w.r.t. head center. Denoting
vmi = pm

i − ph
i ,∀m ̸= h, such angle can be represented

by [fα(vm
i ), fβ(vmi )]. Based on the angle values and our

discretization, we can further determine which bin each pm
i

falls into. When occlusion happens, there would be mul-
tiple points in one bin indicating more than one point oc-
curs in this visual ray. We denote the bm,α

i ∈ 1, ..., J and
bm,β
i ∈ 1, ...,K as the bins that m-th point belongs to, e.g.

it belongs to bin j, k if and only if bm,α
i = j and bm,β

i = k.
After determining the membership of each 3D point, we

then remove occluded points in each bin. Or in another
word, when multiple points belong to one bin, only the one
with the smallest norm will be kept. We define a set Vj,k

i

that consists of indexes of points that belong to the bin j, k.
Then we have:

m∗
j,k = argmin

m
fn(vm

i ),m ∈ Vj,k
i (2)

where m∗
j,k denotes the index of point that has the mini-

mal distance to head center in bin j, k. Grouping all such
indexes together, or {m∗

j,k}
J,K
j=1,k=1, provides us the infor-

mation about where the given person might look at in all
possible 3D directions based on only 3D geometry. Then
we generate a binary map of size Hi × Wi reflecting only
the front-most points. If m ∈ {m∗

j,k}j,k, we set its pixel
value in this binary map to 1. Otherwise we set it to 0.

We provide some visual examples of the above men-
tioned binary map and the paired Ii in Fig. 4. We highlight
the given person with red bounding box and show the gener-
ated binary map of front-most points. As can be seen in this
figure, the generated binary map gives a satisfactory estima-
tion about the front-most points in all possible 3D directions
that a given person can focus on with scene geometry only.
Ground Truth A∗

i starts with the generated Ri and further
incorporates gaze cues. Specifically, A∗

i aims to estimate
the probability of each 3D direction that a given person is
viewing. Intuitively, directions that are closer to ground
truth gaze direction should have higher probabilities. Oth-
erwise, their probabilities should be turned down.
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Figure 5. We show four pairs of examples. We show on the left
the RGB image, with the given person and the annotated ground
truth highlighted. And our generated A∗

i is shown on the right.

To start with, we first generate the ground truth gaze di-
rection, which can be obtained by [fα(vt

i), fβ(vti)], where
vti = pt

i − ph
i . We again discretize them into J and K bins

by convolving a dirac delta function centered at bt,αi , bt,βi

with a Gaussian of fixed variance, leading to the indepen-
dent probabilities Pr(αi) and Pr(βi). Pr(αi)

j and Pr(βi)
k

are the j-th and k-th value in vector Pr(αi) and Pr(βi), de-
noting the probability of looking at the j-th and k-th dis-
cretized direction. Finally, we generate our probability map
A∗

i = {âmi }m ∈ RHi×Wi such that if m ∈ {m∗
j,k}j,k, we

have âmi = Pr(αi)
j · Pr(βi)

k. Otherwise we set âmi to 0.
We visualize the generated A∗

i in Fig. 5. Again, we can
see that A∗

i not only narrows down the target areas, but
also provides meaningful probabilities w.r.t. ground truth
3D gaze directions compared to Ri. Our A∗

i takes into ac-
count the 3D cues thus it gives more diverse and meaningful
guesses about where the given person might look at. One
can expect that with contextual cues, we are able to refine
our predictions one step further. Another interesting obser-
vation is about the multi-modal estimations and the poten-
tial ambiguity in human annotations. For instance, given
only the single RGB image, it is hard to identify where the
the girl in top-left figure really looks like at in pixel-level.
She is more likely to focus on the left face or nose or mouth
area of the lady than the right face/ear/shoulder due to its
visibility. And we believe our A∗

i does reflect our observa-
tion. We will discuss this observation later in Sec. 4.

3.2. Scene Parsing Module

As discussed above, we have Ri that reflects where a
given person might view in 3D space regardless of the head
poses or contextual cues. We also obtain Ai that aims to
predict the probability of each point/direction being looked
at w.r.t. gaze related cues. Our next step is to incorporate
contextual cues to refine our target position estimation.

Therefore, we introduce a scene parsing module that
takes the current image Ii, the head position Mh

i , the proba-
bility map Ai and intermediate head features fhi from fgp as
input and outputs the final heatmap Gi ∈ RHi×Wi reflect-
ing the the confidence that a given person is fixating in each
pixel location. Details of fgp is shown in Fig. 6. Mathemat-

Figure 6. We provide more details of fsp. Similarly, input, output
and modules are visualized in pink, green and yellow, respectively.
The heat feature fhi is obtained from fgp.

ically, we have:

Gi = fsp(Ii, Ai,M
h
i , fhi ) (3)

To obtain the ground truth G∗
i , we first generate a binary

map where we set the value at ti to 1 and elsewhere to 0.
Then we convolve a dirac delta function centered at ti with
a 2D Gaussian of fixed variance.

Our overall loss function is then defined as:

L = Lmse(Ai, A
∗
i ) + λ · Lmse(Gi, G

∗
i ) (4)

where Lmse denotes the MSE loss.

3.3. Data Preparation

In this section, we provide more details about how to
obtain 3D point clouds Pi, head image Ihi and head position
Mh

i with single RGB image.
To generate Pi, we first estimate the relative depth of

Ii and reference objects, or ”persons”. We rely on the as-
sumption that human sizes are within certain distribution to
estimate hyper-parameters. Specifically, the relative depth
Di ∈ RHi×Wi is obtained by existing monocular depth es-
timator fd by Di = fd(Ii). Dr

i = 1
a(Di−b) is absolute depth

we desired. Our next step is to estimate Dr
i , or equivalently

a, b, and focal length c for each image with the help from
reference objects. Given the absolute depth map Dr

i as well
as the focal length c, all pixels in Ii can be mapped to 3D
with geometry [13], leading to our Pi.

As described above, we use humans in Ii as reference
objects. Specifically, we deploy pose estimator fdp on each
image and it gives masks of body parts of all persons. Ei =
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fdp(Ii) ∈ RHi×Wi×C×Ni , where C is the number of body
parts and Ni denotes the number of individuals in the i-
th image. We also exploit 2D/3D key point detectors, or
fkd2 and fkd3 to provide detailed locations of body joints.
Specifically, we have Ki = fkd2(Ii) ∈ RC′×2×Ni and Si =
fkd3(Ii), where Si ∈ RC′×3×Ni and C ′ denotes the number
of key point categories.

For each individual l in Ii, we can obtain the tightest
bounding box for head region from Ei. Then we denote
the reciprocal of longest edge of this bounding box as eh,li .
We can further obtain its average relative depth on its head
mask w.r.t. Ei and Di, which we denote as dh,li . Then b can
be obtained by:

b = −
∑

l(e
h,l
i − eh,li ) · (eh,li · dh,li − eh,li · dh,li )∑

l(e
h,l
i − eh,li )2

(5)

where ∗ =
∑

l(∗)
Ni

denotes the average function over ∗.
To compute a, we turn to the best represented person in

image Ii. Intuitively, an individual that 1) provides large
tightest mask 2) has majority of its key points detected in
fkd2 and 3) gives high confidence score as person would be
considered as our candidate. Denoting the index for the best
represented person as l∗, we can obtain the relative depth
Di over its detected full-body mask in Ei and denote it as
dl∗
i . We further get the maximum and minimum depth of

this person by max(dl∗
i ) and min(dl∗

i ). Given the 3D key
points of person l∗, we can compute depth gap as well as
width gap between any two key points. And we denote its
maximum depth and width gap as sd,l∗i and sw,l∗

i . Then we
can obtain a by:

a = (
1

min(dl∗
i ) + b

− 1

max(dl∗
i ) + b)

)/sd,l∗i (6)

With a and b, we can easily obtain absolute depth with
Dr

i = 1
a(Di−b) . Similarly, the average absolute depth of l∗-

th person is defined over its 2D mask and denoted as dr,l∗i .
By computing the tightest bounding box of this person in
Ei, we can further get the width of this person, which we
denote as 1/ew,l∗

i . Then the focal length c is defined as:

c = dr,l∗i /(sw,l∗
i · ew,l∗

i ) (7)

We refer the readers to supplementary materials for more
details to obtain a, b and c.

To obtain head image Ihi , we directly exploit Ei to get
the head mask. Then we crop image Ii w.r.t. the tightest
bounding box of this mask to get Ihi . Similarly, head posi-
tion mask Mh

i is obtained by generating a binary map and
set the values of only pixels that inside the above mentioned
tightest bounding box to 1. To obtain head center ph

i , we
use the key points of our target person detected in Ki, find
the center of the key points for left and right eye location in

2D image space and then map this center to 3D. Our ground
truth gaze target pt

i is also obtained by mapping ti to 3D. We
refer the readers to Sec. 4 for more details.

4. Experiments

In this section, we demonstrate the effectiveness of
our proposed method by conducting several experiments
on two publicly available datasets, GazeFollow [31] and
VideoAttentionTarget [6]. We demonstrate the state-of-the-
art (SOTA) performances on these datasets and perform ab-
lation study by validating the effectiveness of each module.
Datasets GazeFollow is a large scale gaze-folllowing
dataset where 130,339 people in 122,143 images are col-
lected from various existing datasets, e.g. ImageNet [8],
with diverse activities and annotated with Amazon’s Me-
chanical Turk (AMT). Following the split in [31], 4,782
people of GazeFollow are used for testing and the rest are
for training. To ensure the annotation quality, every in-
dividual in the same image belongs to the same split and
overall their fixations are uniformly distributed across the
image. More importantly, to evaluate the human perfor-
mance, 10 human annotations are collected per person on
test images. VideoAttentionTarget gathers videos from 50
different shows from YouTube. And short clips ranges from
1 to 80 seconds are extracted from these shows where dy-
namic gaze behaviors as well as a person of interest can
be continuously observed. During annotation process, both
head bounding box and gaze target point of this person are
annotated densely in clips, leading to 164,541 frame-level
bounding boxes and corresponding gaze targets. About
20% of annotations are held out for testing, or 31,978 gaze
annotations in 10 shows 1.
Evaluation Metrics We adopt four evaluation metrics [6,
9, 31] to evaluate the performance of gaze following meth-
ods. Area Under Curve (AUC) criteria [17] exploits the pre-
dicted heatmap as confidences to produce an ROC curve.
We follow [6] to have a fair comparison. Specifically,
ground truth is a binary map with the size of original RGB
image where target locations from 10 annotations are set
to 1 on GazeFollow dataset. While on VideoAttentionTar-
get dataset, the ground truth is obtained by thresholding a
Gaussian confidence mask centered at the human annota-
tor’s target location. And AUC is measured under 64 × 64
resized space. L2 Distance (Dist.) measures the Euclidean
distance between the averaged ground truth annotations and
predicted gaze location, or the averaged pixel location in
the predicted heatmap. Note that height and width of im-
ages are all normalized to 1. Angular error (Ang.) reports
the angular difference between the prediction and averaged

1Though the authors mentioned that 2 annotators work on test set [6],
we only find one annotation available per test image in their released
dataset. Thus we omit the comparison with human performance.
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ground truth gaze vectors. Finally, Out of frame AP (AP)
utilizes the average precision (AP) to assess the accuracy of
out-of-frame identifying.
Implementation Details We use pre-trained MiDaS [30]
as our monocular depth estimator fd. As for pose estima-
tor fdp, we turn to Dense Pose [12] that pre-trained with
COCO [22]. Our 2D key point detector fkd2 is of the
same structure of X101-FPN [32, 36] that pre-trained on
COCO [22]. We adopt pre-trained SMAP [45] as fkd3.
Since the original SMAP does not perform well on general
gaze estimation dataset, we replace the 2D key points detec-
tion module in SMAP with the results obtained with fkd2,
or Ki, in practice. Note that we apply these pre-trained
models directly on two datasets without re-training or fine-
tuning. Our field view, head and scene feature extractors use
ResNet50 as backbone [14]. The encoder-decoder in fgp,
fsp, the in-out feature extractor and MLP share the same
structure with that of [6,9]. We implement our method with
PyTorch and use ADAM as optimizer and set the learning
rate to 0.00025. Please note our method does not depend on
the specific details of these sub-modules and we choose the
above mentioned structures mainly for re-production pur-
pose. We refer the readers to supplementary materials for
more details about model structure of each components.

4.1. Performance on GazeFollow

Quantitative Results We demonstrate our quantitative re-
sults on GazeFollow dataset in Tab. 1. We highlight the best
and second best number in bold and underline. To have a
fair comparison, Video* does not include the temporal part
of [6]. Ours+ replaces the head feature extractor in Ours
with a model pre-trained on [18], or Whenet [46], so that
the supervisions are the same w.r.t. [9]. AP is not reported
as all annotations are in frame.

As can be seen from this table, compared to SOTA
methods that require the same supervision, our method
can always achieve superior performance. Even compared
to method [9] that requires additional training data [18],
Ours is comparable as well. We would like to high-
light that our proposed method can beat the human perfor-
mance under AUC metric. Unlike Dist. or Ang. that fo-
cuses on the average location of human annotations, which
may be meaningless to some extend (See ground truth in
Fig. 9), AUC actually provides a way to the measure the
multi-modality property in predictions. Outperforming hu-
man performance shows that our method can indeed pro-
vides meaningful multi-modal and potentially more concen-
trated predictions on given images.
Visualization We visualize our results on GazeFollow
dataset in Fig. 7. We demonstrate our prediction in yellow
and the ground truth annotation in red. There are actually
10 annotations for each person during test time, we only vi-
sualize the average position of these 10 annotations in RGB

Supervision Evaluation Metric
Method [31] 3D gaze AUC↑ Dist.↓ Ang.(◦)↓
Random [31] ✓ .504 .484 69.0
Center [31] ✓ .633 .313 49.0
Fixed bias [31] ✓ .674 .306 48.0
Recasens [31] ✓ .878 .190 24.0
Chong [5] ✓ .896 .187 -
Lian [21] ✓ .906 .145 17.6
Video* [6] ✓ .921 .137 -
Fang [9] ✓ ✓ .922 .124 14.9
Human .924 .096 11.0
Ours ✓ .928 .126 15.3
Ours+ ✓ ✓ .928 .122 14.6

Table 1. Evaluation on the GazeFollow dataset [31] for single-
image gaze target detection. Numbers of baselines are from [6,9].

Figure 7. We show our prediction and average human annotation
in yellow and red, respectively.

and leave the discussion of the annotation reliability to later
paragraphs. We show good examples on the left column
while visualize our results in the middle and right column
when human annotations are ambiguous. We can see that
we can almost always give reasonable predictions.
Ablation Studies To evaluate the effectiveness of our 3D
representation as well as intermediate representation, we
perform two ablation studies. Firstly, we remove Ri in fgp
and train our model with only Lmse(Gi, G

∗
i ). In our second

setting, we keep Ri but do not enforce losses in Ai. In both
settings, the model structure the same as the ESCNet. De-
noting the former as -geo-Aloss and the later as -Aloss, we
report the performance on test set of [31] in Tab. 2.

By comparing -Aloss to our full model, we find that the
absence of explicit modelling of Ai leads to inferior perfor-
mance, which demonstrates the effectiveness of our inter-
mediate representation and deep supervision. The perfor-
mance drop from -Aloss to -geo-Aloss further showcases
that Ri is truly effective and beneficial as 3D geometry rep-

14132



Evaluation Metric
Method AUC ↑ Dist. ↓ Ang. (◦)↓
Ours .928 .126 15.3
-Aloss .921 .139 17.6
-geo-Aloss .910 .161 21.1

Table 2. Evaluation on the GazeFollow dataset [31] for single-
image gaze target detection. We gradually remove the loss for
intermediate representation Ai and Ri to demonstrate the effec-
tiveness of intermediate and our 3D geometry representation.

Figure 8. We visualize the RGB with given person on the left and
our paired predicted Ai on the right. We can see that Ai reflects
the 3D geometry and probabilities well.

resentation. We further visualize our predicted Ai in Fig. 8.
We observe that our model can indeed generate meaning-
ful intermediate representation about where a given person
might look at w.r.t. 3D geometry. For instance, though
clearly exists as salient object, the lady on the top-left can-
not see the face of the kid in front of her due to occlusions.
Similarly, the given person on the top-right figure cannot
see the lady in red as she is occluded by the player in white.
Multi-modality in Human Annotation and Our Predic-
tions Fig. 9 provides more details about our step-wise pre-
dictions and overall human annotations. From left to right,
we visualize the input RGB image, our intermediate rep-
resentation Ai, 10-annotation ground truths and our fi-
nal prediction Gi. We can see that Ai and Gi share the
same multi-modality property with real-world human anno-
tations. Though missing in literature, we argue that such
property is desired for gaze estimation task.

4.2. Performance on VideoAttentionTarget

We demonstrate our quantitative results on VideoAtten-
tionTarget dataset in Tab. 3. Ours* shows the performance
of directly applying our model that trained in GazeFollow
to VideoAttentionTarget. To obtain AP, we just add addi-
tional BCELoss to Equ. 4. Again, we can always beat the
SOTA approaches [5, 6] that require the same gaze supervi-
sion. Our performance is even better than Video [6], which
is obtained with additional temporal cues. While ours is
slightly worse than [9] that requires additional gaze-related

Figure 9. From left to right, we show RGB with given person
highlighted, Ai, human annotation and Gi. We can see that human
annotations and our predictions share multi-modal property.

Supervision Evaluation Metric
Method [6] [18] Video AUC ↑ Dist. ↓ AP↑
Random [6] ✓ .505 .458 .621
Center [6] ✓ .728 .326 .624
Chong [5] ✓ .830 .193 .705
Video* [6] ✓ .854 .147 .848
Video [6] ✓ ✓ .860 .134 .853
Fang [9] ✓ ✓ .905 .108 .896
Ours* ✓ .872 .167 -
Ours ✓ .885 .120 .869

Table 3. Evaluation on the VideoAttentionTarget dataset [6]. Base-
line performances are from [6, 9].

dataset to train. It is also interesting to see that even without
training on VideoAttentionTarget, Ours* generalizes well
and achieves satisfactory results.

5. Conclusion
We propose a novel method for gaze target detection.

Our method explicitly models 3D geometry from single
RGB image by reconstructing a given scene with 3D point
clouds and effectively leverages such information later in
ESCNet. To achieve that, we introduce an intermediate rep-
resentation, or a probability map of front-most 3D points
being viewed, and incorporate 3D gaze and scene contex-
tual cues to further regulate the final gaze position. We show
that such representation not only offers meaningful under-
standing of 3D geometry but also allows deep supervision.
Our results on two datasets showcase our advantages over
existing methods and even human performance.
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