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Abstract

Recent advances of deep learning-based approaches
have achieved remarkable performance on appearance-
based gaze estimation. However, due to the shortage of
target domain data and absence of target labels, general-
izing gaze estimation algorithm to unseen environments is
still challenging. In this paper, we discover the rotation-
consistency property in gaze estimation and introduce the
‘sub-label’ for unsupervised domain adaptation. Conse-
quently, we propose the Rotation-enhanced Unsupervised
Domain Adaptation (RUDA) for gaze estimation. First, we
rotate the original images with different angles for train-
ing. Then we conduct domain adaptation under the con-
straint of rotation consistency. The target domain images
are assigned with sub-labels, derived from relative rotation
angles rather than untouchable real labels. With such sub-
labels, we propose a novel distribution loss that facilitates
the domain adaptation. We evaluate the RUDA framework
on four cross-domain gaze estimation tasks. Experimental
results demonstrate that it improves the performance over
the baselines with gains ranging from 12.2% to 30.5%. Our
framework has the potential to be used in other computer
vision tasks with physical constraints.

1. Introduction
Gaze is one of the most important cues for human inten-

tion prediction. It has been used in a variety of applications

such as virtual/augmented reality [21,30], human-computer

interaction [18,35,37], and medical analysis [3,20]. To ob-

tain accurate gaze estimations, various systems have been

developed. Appearance-based gaze estimation is one of the

most promising approaches, since it has the lowest hard-

ware requirements.

With the advancement of deep learning techniques, Con-

volutional Neural Networks (CNN) have achieved signif-

icant performance improvement in many computer vision
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Figure 1. The overall structure of the proposed rotation-enhanced

unsupervised domain adaptation (RUDA) framework for gaze es-

timation. RUDA adapts the pre-trained model to target domain

without requiring any gaze labels in target domain.

tasks. Gaze estimation task is no exception, various CNN-

based gaze estimation methods have been proposed over the

last decades [8]. These systems usually have different in-

puts: eye images [9,24,29,39,42], face images [19,22,43] or

both face/eye images [1, 7, 23]. However, existing methods

suffer from severe performance degradation when adapting

to new domains, which is mainly caused by the difference

between the domains, e.g., subject appearance, image qual-

ity, shooting angle and illumination.

One of the major challenge of gaze domain adaptation is

that we usually do not have access to target domain labels in

real world scenarios, and we cannot directly train the gaze

estimator in target domain. To address this problem, unsu-

pervised domain adaptation approaches aim to find a gaze-

relevant constraint generalizing the model to target domain

without label. Kellnhofer et al. propose to supervise gaze

estimation model with an domain discriminator by adver-

sarial learning [19]. Similarly, Wang et al. employ an ap-

pearance discriminator and a head pose classifier for adap-

tation [39]. More recently, Liu et al. propose to guide the

model with outliers [25]. Although some unsupervised do-

main adaptation approaches for gaze estimation have been

proposed, it is still a challenging task.
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To build a gaze-relevant constraint to supervise the

model without requiring ground truth labels, we dive into

the physical nature of gaze. We find that the human gaze,

as a 3D direction vector, is rotation-consistent. Rotating the

face image results in the same rotation angle of the gaze

direction, we call this rotation-consistency property. And

we define the relative rotation angle as the sub-label, mean-

ing that it is not an absolute angle, but the relative differ-

ence angle before and after the rotation. This rotation con-

sistency could serve as the desired gaze-relevant constraint

without ground truth. Although training with rotated im-

ages in source domain does not improve gaze estimation

accuracy because user faces are already aligned by normal-

ization [42], we argue that the rotation consistency property

provides a gaze-relevant optimization target for adaptation.

In light of this, we present the Rotation-enhanced Unsu-

pervised Domain Adaptation (RUDA) framework for gaze

estimation. Our approach creates sub-labels between origi-

nal and randomly rotated images. The estimator is general-

ized to target domain via rotation consistency of estimation

results with no target domain label required and low com-

putation cost. The contributions of this work are as follow:

• We propose the Rotation-enhanced Unsupervised Do-

main Adaptation (RUDA) framework for gaze estima-

tion. The RUDA first trains a rotation-augmented model

in source domain, then adapts the model to target domain

using the synthesized images with physically-constrained

gaze directions.

• We found the rotation consistency property, which can be

used to generate sub-labels for unsupervised gaze adap-

tation tasks. To facilitate adaptation, we design a novel

distribution loss which supervise the model with rotation

consistency and sub-labels.

• Experimental results demonstrate that the RUDA frame-

work achieves consistent improvement over the baseline

model on four cross-domain gaze estimation tasks, rang-

ing from 12.2% to 30.5%. It achieves surprisingly good

results, even outperforms some state-of-the-art methods

trained on target domain with labels.

2. Related work

Gaze Estimation. Early studies estimate gaze by recon-

structing a 3D eyeball model and calculate gaze from the

anatomical eye structure. These methods usually offer ac-

curate gaze estimates, while they require personal calibra-

tion and dedicated devices such as depth camera [34,38,40],

infrared camera [28] and infrared lights [15].

Calibration-free appearance-based gaze estimation with

single web camera received favor of researchers in the last

decades. In 2015, Zhang et al. first propose to estimate

gaze from eye images using CNN [42]. Following this

work, a number of gaze estimation dataset have been re-

leased [10, 19, 23, 31, 33, 41, 43]. Based on them, various

deep learning-based approaches using different inputs have

been proposed: using eye images [9, 24, 29, 39, 42], using

face images [19, 22, 43] or using both [1, 7, 23].

More recently, cross domain gaze estimation task at-

tracted more and more attention. Park et al. proposed to

learn a person-specific gaze estimation network with few

samples by meta-learning [29]. Guo et al. eliminated the

inter-personal diversity by ensuring prediction consistency

[16]. Cheng et al. proposed to improve cross dataset ac-

curacy without target domain data by eliminating gaze-

irrelevant feature [6]. Liu et al. [25] proposed a plug-

and-play cross-domain gaze estimation framework with the

guidance of outliers. Although it significantly outperforms

the existing methods, their method requires as many as 20
models for collaborative learning. Zheng et al. [45] propose

to redirect head and gaze in a self-supervised manner by

embedding transformation including rotation, which helps

down stream tasks like gaze estimation. In other tasks like

3D hand pose estimation, rotation has also been used as a

constrain for self-supervised learning [32].

Unsupervised Domain Adaptation. Unsupervised domain

adaptation (UDA) is one of the common tasks in computer

vision, which has been extensively studied for a long time.

Early UDA methods use geodesic distance as the subspace

distance to learn domain-invariant representations [12, 14].

Inspired by this, some researchers proposed to reduce do-

main gap by matching the statistics of source and target

domain [2, 26]. Chen et al. propose a representation sub-

space distance (RSD) that aligns features from two domains

specifically for regression tasks [4].

Inspired by the generative adversarial net [13], adversar-

ial learning have been adopted for UDA tasks. For example,

a min-max game between feature extractor and domain dis-

criminator is built to close the domain gap [27, 36, 44].

Although the above-mentioned methods achieve consid-

erable improvement, most of them are designed for clas-

sification tasks, instead of regression task. The RSD pro-

posed by Chen et al. [4] is specifically designed for regres-

sion tasks, however, we found that their approach dose not

perform well on gaze estimation task. Therefore, the UDA

for gaze estimation still remains to be explored.

3. Rotation Consistency in Gaze Estimation
There are two main challenges in unsupervised gaze

adaptation tasks: 1) the shortage of target domain samples

for adaptation, and 2) the absence of ground-truth labels

in target domain. Various data augmentation approaches

have been proposed to generate training data in source do-

main, e.g., color jittering, introducing noise, flipping, trans-

lation and rotation. However, existing data augmentation
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Figure 2. Illustration of the rotation consistency property in gaze

estimation. When we rotate the face image with an angle of θ, the

gaze direction is rotated with Rθ correspondingly, where Rθ is the

3D rotation matrix with angle θ.

approaches only bring limited performance improvement if

directly adopted in unsupervised gaze adaptation tasks.

To cope with the absence of ground-truth labels in UDA

tasks, we define a sub-label, which is a relative angle and

can be used as constraints in gaze adaptation tasks. Due

to the nature of the gaze estimation task, here we rotate the

raw images with different angles to synthesize more images.

Since the ground-truth labels are usually absent, we rotate

the image with different angles and assign a sub-label to

each image based on the rotation consistency property.

Note that the sub-label is not an absolute angle, instead,

it is a relative angle between the original image and the ro-

tated image. For example, the gaze direction is g in the

original image, we rotate the image with angles of θ1, θ2,

and θ3, the sub-label of the rotated image is Rθ1 , Rθ2 and

Rθ3 , respectively. The core idea of rotation-consistency can

be summarized in Eq. (1):

(Rg)−1 ∗ (F (RI)) = F (I), (1)

where I is the input face image, F is the gaze mapping func-

tion from the image to gaze direction, R is the rotation ma-

trix of the input image, and Rg is the rotation matrix of

the gaze direction. RI represents the rotated image, and

F (RI) indicates the estimated gaze direction of the rotated

image. In practice, image pixels cannot be rotated by ro-

tation matrix directly. We formulate them in this way for

simplicity. The rotation consistency formula suggests that

ideally, the rotation angle of the image is equal to the rota-

tion angle of the estimated gaze.

Why rotation consistency? Rotation is a commonly-used

data augmentation approach in computer vision. However,

in gaze estimation tasks, training with rotated images brings

little performance gain in both within- and cross-dataset

tasks. In fact, it is more often used for data normalization:

by rotating and scaling the virtual camera, the user’s face is

changed to the same size and location, while the x-axis of

the camera coordinate system and the user head coordinate

system are aligned and the z-axis of the camera coordinate

system is perpendicular to the image plane. As a result, ro-

tation operations help the camera look at different faces in

a unified way (top-left in Fig. 2).

On the other hand, our proposed rotation consistency-

based strategy plays a different role. It aims at solving the

shortage of target domain data and absence of target la-

bel problem in cross-domain gaze estimation, and it indeed

boosts the performance. Fig. 2 illustrates the idea of rota-

tion consistency. It bridges the relative rotation angles be-

tween the image and the 3D gaze. In this way, for unsuper-

vised domain adaptation, although the real gaze directions

are unknown, the relative rotation angles can serve as the

sub-labels to train the network. In addition, we can generate

as many target images as we want with different sub-labels

if we rotate the image with different angles.

Conversion between the image and gaze rotation angle.
Given a normalized image I , we use the center of image as

rotation center O, and rotate the image with θ (clockwise),

the rotation matrix R can be defined as follows:

R =

[
cos θ − sin θ
sin θ cos θ

]
. (2)

For each pixel location Ii ∈ I , the rotated pixel location

is RITi . Gaze is a 3D direction vector g defined in camera

coordinate system. Therefore, the corresponding rotation

matrix for gaze direction is

Rg =

[
R 0
0 1

]
. (3)

As a result, the rotated gaze direction is RggT . In actual

training, the gaze direction is denoted as a 2D Euler angles

g = [y, p], where y is the yaw angle and p is the pitch angle.

Thus, conversion between 2D Euler angles and 3D direction

vector is needed before and after rotation.

4. Method
4.1. Task Definition

For UDA tasks, we are given a fully labeled source do-

main and a small amount of unlabeled samples from target

domain. Let Ds = {Isi ,gs
i }Ns

i=1 represents Ns images with

gaze label gs in source domain, and Dt = {Iti}Nt
i=1 repre-

sents Nt images without gaze labels in target domain. Our

goal is to generalize a gaze estimation network Fθ with pa-

rameter θ that performs well in Dt. Only a small subset of

unlabeled target domain samples D′
t is used for adaptation.

Before that, Fθ is pretrained on Ds. In the following, we

will introduce the details of our proposed method.
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Figure 3. Overview of the proposed RUDA framework, which consists of two phases: 1) the Rotation-Augmented Training (RAT) phase

and 2) the Consistency-Guided Domain Adaptation (CGDA) phase. We first train a rotation-augmented model to predict gaze on rotated

images. Then, based on rotation consistency, sub-labels generated by image rotation are used to guide the SRM module and calculate the

proposed Distribution Loss for unsupervised domain adaptation.

4.2. Rotation-Enhanced Unsupervised Domain
Adaptation for Gaze Estimation

Fig. 3 shows the overview of the proposed RUDA frame-

work, which consists of two steps: 1) the Rotation-

Augmented Training (RAT) phase, and 2) the Consistency-

Guided Domain Adaptation (CGDA) phase. To estimate

gaze from rotated images, we train a model Fθ with rotated

images in source domain in RAT phase. We adapt Fθ to the

target domain with the guidance of sub-label (produced by

rotation) and pseudo label (produced by the temporal av-

erage model) in CGDA phase. We further propose a dis-

tribution loss (LD) to supervise the model with mean value

(gaze label or pseudo label) and standard deviation (rotation

consistency and sub-label) in both RAT and CGDA phase.

4.2.1 Rotation-Augmented Training

In order to adapt the model to target domain guided by ro-

tation consistency property, the model should be able to es-

timate the gaze on rotated images. Thus, in RAT, we train a

rotation augmented model in source domain.

Gaze estimators are usually trained with labeled source

domain data {Isi ,gs
i } with L1 loss function:

argmin
θ

L1(ĝ
s
i ,g

s
i ), (4)

where ĝs
i = Fθ(I

s
i ) is the estimation result. To predict gaze

from rotated images, we also train the model Fθ with rota-

tion augmented source domain samples. For each image Is

in the training set of source domain, we randomly rotate it

K times to obtain a new set Is:

Is = {RIs|k = 1, 2, . . . ,K}. (5)

Here we record the rotation matrix R as the sub-label for

the rotated image set Is. A group of estimation results of

rotated images Is is denoted as {ĝs} = Fθ(Is).
To maintain stable estimation across different rotation

angles, we train the model with our proposed distribution

loss function LD and L1 loss. In LD, the mean value of es-

timation results is supervised by gaze label g and the STD

of {ĝ} is supervised by sub-label. We explain the details of

LD in Sec. 4.2.3.

In a nutshell, the RAT phase can be formalized as:

argmin
θ

(L1(ĝ
s,gs) + LD({R}, {ĝs},gs)). (6)

4.2.2 Consistency-Guided Domain Adaptation

In RAT phase, we generalize the rotation-augmented model

Fθ to the target domain with the guidance of sub-label based

on the rotation consistency property. We also introduce a

temporal average model F̄θ̄, which produces pseudo labels

to prevent the estimation collapse.

First, we obtain the sub-label by randomly rotating the

unlabeled sample It ∈ Dt by K times:

It = {RIt|k = 1, 2, . . . ,K}. (7)

Ideally, the rotation angle between the estimations of It and

the estimation of original image It should be equal to sub-

labels {R} according to Eq. (1). Fθ is supervised by rota-

tion consistency with sub-label {R} instead of true label.
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If rotation consistency is the only constraint applied to

Fθ, the estimation results collapse to the z-axis of cam-

era coordinate system since it is the rotation axis. Inspired

by [11], we introduce a temporal average model F̄θ̄ that pro-

duces stable pseudo labels to avoid collapse.

At the beginning of CGDA phase, F̄θ̄ is initialized as a

copy of Fθ. After training with T iterations, parameters of

temporal average model θ̄ are updated from θ by Exponen-

tial Moving Average (EMA) algorithm:

θ̄T = αθ̄T−1 + (1− α)θT , (8)

where α is a momentum coefficient. F̄θ̄ first estimates the

gazes from a group of rotated images. Then, we design

a Sub-label-guided Rotate-back Module (SRM) to recover

the estimations that corresponds to the original image. Ac-

cording to the rotation consistency property, we rotate the

estimation results of rotated images with the inverse matrix

of sub-label. The pseudo label g′ is defined as the mean

direction of recovered gaze estimations:

g′t = Mean({(Rg)−1}F̄θ̄(It)). (9)

The estimation from F̄θ̄, i.e., pseudo label is much more

stable than Fθ during adaptation [11], while still being ca-

pable of fine adjustment. Fθ is punished if the estimation

deviates far from pseudo label because of collapse.

In CGDA phase, the model is also supervised by LD

while the gaze label is replaced by pseudo label. The adap-

tation process is summarized as:

argmin
θ

(LD({R}, {ĝt},g′t),

θ̄T = αθ̄T−1 + (1− α)θ.
(10)

4.2.3 Distribution Loss Function

To supervise the model with rotation consistency and sub-

label, we propose the Distribution Loss LD, which consists

of two terms Lmean and Lstd. Lmean constrains the estima-

tion to be accurate by gaze label in RAT phase and prevent

the estimation from collapse in CGDA phase. Lstd con-

strains the estimations to be consistent with each other by

the sub-label R. LD is defined as follow:

LD({R}, {ĝ},g) = Lmean + Lstd,

Lmean({R}, {ĝ},g) = 1

K

K∑
k=1

L1(g
′,g),

Lstd({R}, {ĝ}) =
√∑K

k=1(g
′ − {g′})2
K

,

{g′} = {(Rg)−1}{ĝ},

(11)

where {g′} stands for a group of recovered estimation re-

sults by SRM module based on rotation consistency, {g′}

Algorithm 1 Rotation-enhanced unsupervised domain

adaptation algorithm for gaze estimation.

Input: Ds, D′
t ⊂ Dt and Fθ

Output: Fθ

1: # Rotation augmented training

2: for i ← 1 to Ns do
3: Get Is, {R} by augmentation with Eq. (5)

4: {ĝs} ← Fθ(Is)
5: L1 ← ĝs,gs

6: LD ← {R}, {ĝs},gs with Eq. (11)

7: Train Fθ with Eq. (6)

8: end for
9: # Rotation consistent domain adaptation

10: F̄θ̄ ← Fθ

11: for i ← 1 to N ′
t do

12: Get It
1,It

2 by {R1}, {R2} with Eq. (7)

13: {ĝt} ← Fθ(It
1)

14: g′t ← Mean({(Rg
2 )

−1}F̄θ̄(It
2)) with Eq. (9)

15: LD ← {R1}, {ĝt},g′t with Eq. (11)

16: Train Fθ by LD with Eq. (10)

17: Update θ̄ with Eq. (8)

18: end for

stands for the average direction of {g′}. LD treats a group

of recovered gaze estimation as a distribution. Lmean su-

pervise the model by requiring every sample of the distribu-

tion to be equal to the desired mean value g. Lstd requires

the standard deviation of the distribution to be 0, which is

the proposed rotation consistency in Eq. (1). The whole pro-

cedure of RUDA framework is summarized in Algorithm 1.

4.3. Implementation Details

Our method is implemented using PyTorch framework.

ResNet18 is used as backbone. K is set to 5 in RAT phase

and is set to 20 in CGDA phase. Momentum coefficient α
in EMA algorithm is set to 0.99. Batch size is set to 80

and 10 during source domain training and domain adapta-

tion phase respectively. We randomly chose 100 unlabeled

images from target domain for adaptation. The model is

trained for 10 epochs in source domain and for adaptation.

We employed the Adam optimizer with a learning rate of

10−4 and β = (0.5, 0.95).

5. Experiments
5.1. Data Preparation

To verify the effectiveness of the RUDA framework, we

conducted experiments on four commonly used gaze esti-

mation datasets: ETH-XGaze (DE) [41], Gaze360 (DG)

[19], MPIIFaceGaze (DM ) [43] and EyeDiap (DD) [10].

• ETH-XGaze: ETH-XGaze dataset is collected under lab-

oratory environment with high-resolution cameras. We
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Table 1. Unsupervised domain adaptation results of our proposed

RUDA framework with different backbone models. The results

are angular error in degrees.

Method DE→DM DE→DD DG→DM DG→DD

ResNet18 8.20 7.16 7.74 7.64

ResNet18+RAT 7.92 7.44 7.60 7.10

ResNet18+RUDA 5.70 6.29 6.20 5.86
ResNet50 7.15 6.43 8.35 7.86

ResNet50+RAT 7.40 6.91 7.69 7.08

ResNet50+RUDA 5.78 5.10 6.88 6.73

follow the original paper and take 750,000 face crops

from 80 participants as training set.

• Gaze360: Gaze360 dataset is collected in arbitrary envi-

ronment by a 360◦camera. It has a wide distribution over

the horizontal axis of gaze. We only use 84900 images

with frontal faces.

• MPIIFaceGaze: MPIIFaceGaze is collected during daily

usage of laptops. We chose 3000 images for 15 subjects

respectively as the standard protocol suggests.

• EyeDiap: EyeDiap dataset is collected under laboratory

environment with screen and floating targets. Note that

due to the misalignment of timeline, some of the labels

are not reliable. We selected 6400 sample images that are

manually checked by original authors.

We perform gaze normalization proposed by [42] for all

datasets except DG, as it does not provide head pose labels.

Rotations are performed after gaze normalization. Face im-

ages are cropped and resized to 224x224. We further nor-

malize the image pixels to [0, 1] as the final input. More

details can be found in [8].

5.2. Performance of RUDA Framework

To test the performance of RUDA framework, we im-

plement it based on two state-of-the-art backbone network:

ResNet18 and ResNet50 [17]. We train the backbone net-

work on source domain with L1 loss as baseline. As shown

in Tab. 1, RUDA framework improves the performance of

both backbone network by a big margin. For ResNet18,

RUDA framework improves the performance by 30.5%,

12.2%, 19.9% and 23.3% on four cross domain tasks, re-

spectively. For ResNet50, RUDA framework brings 19.2%,

20.7%, 17.6% and 14.4% performance gain. Thanks to

the reasonable design of RUDA framework and wide data

distribution of ETH-XGaze dataset, the performance of

ResNet50+RUDA model on DE → DD task even outper-

forms state-of-the-art within dataset gaze estimation meth-

ods, e.g., [5, 7]. The results show that RAT strategy alone

does not improve cross domain performance, as expected.

The ability to estimate gaze from rotated images does not

improve estimation accuracy on normalized face images

with upright orientation. After rotation consistency guided

Table 2. Comparison with state-of-the-art unsupervised domain

adaptation methods. Results are angular error in degrees.

Method DE→DM DE→ DD DG→DM DG→DD

ResNet18 8.20 7.16 7.74 7.64

Fine-tune 5.12 5.50 5.36 5.22

ADDA [36] 8.55 10.63 8.59 16.68

DAGEN [16] 7.53 8.46 9.31 12.05

GazeAdv [39] 8.48 7.70 9.15 11.15

Gaze360 [19] 7.15 6.87 7.45 9.73

RSD [4] 8.74 7.46 9.17 10.61

RUDA(ours) 5.70 6.29 6.20 5.86

Table 3. Ablation study for different loss function in source do-

main training, different pre-trained models in domain adaptation

phase and different loss functions in domain adaptation phase. Re-

sults are angular error in degrees.

Method DE→DM DE→DD DG→DM DG→ DD

1 ResNet18 8.20 7.16 7.74 7.64

2 ResNet18+RL1 7.46 7.17 9.11 7.60

3 ResNet18+RL2 8.10 8.09 7.69 7.08

4 ResNet18+RLD
7.92 7.44 7.60 7.10

5 ResNet18+DALD
5.73 6.58 7.55 7.27

6 ResNet18+RL1+DALD
6.01 6.03 8.67 5.93

7 ResNet18+RL2
+DALD

6.89 7.10 6.58 6.03

8 ResNet18+RLD
+DAL1

6.96 6.68 6.06 6.33

9 ResNet18+RLD
+DAL2

6.38 6.74 6.20 6.48

10 ResNet18+RLD
+DALD

5.70 6.29 6.20 5.86

adaptation, the performance improves significantly. This

proves our point in Sec. 3 that rotation consistency contain

much more significant relation with physical model of gaze

than data augmentation like rotation.

5.3. Comparison with SOTA UDA methods

To demonstrate the performance of RUDA framework,

we compare it with state-of-the-art unsupervised domain

adaptation methods on four cross domain tasks: DE→DM ,

DE→ DD, DG→ DM , DG→ DD. We choose four typical

methods for comparison:

• ADDA [36]: Reduce domain gap between source and tar-

get domain features by adversarial learning. A discrimi-

nator which classifies feature to source or target domain

is introduced. 500 target domain images are used in our

implementation for better performance.

• DAGEN [16]: A SOTA unsupervised domain adaptation

method for gaze estimation by embedding representation

design. 500 target domain images are used in our imple-

mentation for better performance.

• GazeAdv [39]: A SOTA unsupervised domain adapta-

tion method for gaze estimation by adversarial learning.

Appearance classification and head pose classification are

designed as adversarial tasks.

• Gaze360 [19]: A SOTA unsupervised domain adaptation
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Table 4. Gaze estimation error in degrees for different image rotation angles. For a given degree r, we randomly rotate the image in a range

of [−r, r]. Rotation angles in source domain training and target domain adaptation remain the same.

RAT RAT+CGDA

Rotation DE→ DM DE→ DD DG→ DM DG→DD DE→DM DE→DD DG→DM DG→DD

15◦ 8.44 7.31 8.45 8.11 8.18 6.65 8.24 8.18

40◦ 8.22 6.62 8.71 7.67 7.63 6.93 7.52 7.11

65◦ 7.93 8.59 8.09 7.73 6.68 6.81 6.72 7.62

90◦ 7.92 7.44 7.60 7.10 5.70 6.29 6.20 5.86

method for gaze estimation by combination of adversarial

learning, image flip and pinball loss.

• RSD [4]: A SOTA unsupervised domain adaptation

method specially designed for regression tasks. It closes

domain gap through orthogonal bases of the representa-

tion spaces without changing the feature scale.

For a fair comparison, we replace the backbone of all

methods with ResNet18. The result is shown in Tab. 2.

Our method outperforms SOTA methods by a big margin.

RUDA framework significantly improves the performance

on all tasks. Note that general unsupervised domain adap-

tation methods do not bring any performance improvement,

which shows the difficulty of cross domain gaze estimation

tasks. Methods designed for gaze estimation may bring per-

formance gain on certain cross domain tasks, while make

other tasks worse. Our RUDA framework performs stably

and improves the performance in all four tasks.

5.4. Ablation Study

To prove the effectiveness of each component in

RUDA framework, we conducted ablation study on all four

cross domain tasks. In Tab. 3, we show the results for differ-

ent combination of source domain training strategy, domain

adaptation strategy and loss function:

• RL1
, RL2

: Training with L1, L2 loss respectively on ro-

tation augmented source domain.

• RLD
: The proposed RAT strategy with LD loss function.

• DAL1
, DAL2

: The proposed CGDA strategy in which LD

loss is replaces by L1, L2 loss function respectively.

• DALD
: The proposed CGDA strategy with LD loss.

In Tab. 3, row 1-4 show that training with rotated im-

ages on source domain does not improve cross domain ac-

curacy. But training with proposed LD appears to be more

stable than L1, L2 thanks to the Lstd term. Results from

row 5-7 prove the effectiveness of DALD
, i.e., the proposed

CGDA strategy. CGDA improves accuracy when combined

with models from row 1 to 3 on all cross domain tasks. In

row 5 to 7, although some of the combination reaches com-

patible ([row 5, DE→ DM ], [row 6, DG→ DD]) or even

better ([row 6, DE→DD]) performance than RUDA in cer-

tain tasks, they performs similar or even worse than the

baseline ResNet18 in other tasks ([row 5, DG→DM ], [row

6, DG→ DM ], [row 7, DE→ DD]). Without LD loss in

source domain training, combinations from row 5 to row 7

suffer from obvious performance gap for different cross do-

main tasks. This is a fatal flow for unsupervised domain

adaptation tasks as we have no target domain label to verify

whether performance is improved or dropped. Compared

with row 8 to row 10, methods with RAT strategy shows

apparent stability and improves accuracy in all four tasks.

In row 8 and row 9, we test the combination of proposed

CGDA strategy with different loss function in domain adap-

tation. Compare to row 10, LD achieves better overall per-

formance gain than L1 and L2 loss function.

Above experiments validate the effectiveness of

RAT and CGDA strategy. With the help of RAT and

CGDA, the proposed RUDA framework achieves the most

stable and satisfactory improvement in all four tasks.

5.5. Hyper Parameters and Further Analysis

5.5.1 Hyper Parameters

In this section, we carried out experiments to investigate the

impact of hyper parameters. Rotation degree is the most im-

portant hyper parameter as we create sub-label by rotation.

In Tab. 4, we show the results of different rotation range.

For a given degree r, we randomly rotate the image in range

[−r, r]. In RAT phase, models perform similarly under dif-

ferent rotation degree. After adaptation by CGDA, the ac-

curacy increases with the rotation range. During adaptation,

the model is supervised by the rotation consistency of esti-

mation results from rotated images, which corresponds to

the Lstd term in distribution loss. Hence, we test models

without CGDA on the subset of target domain D′
t and count

STD. As shown in Fig. 4, STD drops as the range of rota-

tion shrinks. In consequence, smaller the range of rotation

is, smaller the LD is, less uncertainty signal for the model

to learn during adaptation.

We also evaluate the impact of the number of rotation for

each image during CGDA phase. We set the number of ro-

tation to 10, 15, 20, 25 during adaptation respectively while

keeps rotation number in RAT phase at 5. The result jitters

when number of rotation changes. But the overall distur-

bance is relatively subtle compared to range of rotation.

4213



1

1.55

1.2

1.73
1.48

2.86

1.9

2.24

1.65

2.82

2.52
2.7

2.19

3.23

2.62
2.79

E → M E → D G → M G → D
0

5.0

1

5.1

2

5.2

3
15°
40°
65°
90°

Uncertainty w.r.t. different rotation range

Cross domain gaze estimation task

ST
D 

of
 g

az
e 

es
tim

at
io

n 
er

ro
r

D → D D → D D → DD → D

Figure 4. Standard deviation (STD) of gaze error obtained in the

RAT phase, for the 100 target domain images used for adaptation

later. Larger rotation ranges produce larger STDs, which provide

sufficient uncertainties for domain adaptation.

Table 5. Gaze estimation error in degrees for different image rota-

tion numbers in domain adaptation phase.

Number of Rotation DE→ DM DE→DD DG→DM DG→DD

10 6.18 6.71 6.31 5.78

15 6.40 6.23 6.24 5.60
20 5.70 6.29 6.20 5.86

25 6.21 6.49 6.24 5.98

5.5.2 Importance of Rotation Consistency

We design the RUDA framework around the rotation con-

sistency for it connects deeply with the physical nature of

gaze. To prove the importance of rotation consistency, we

replace rotation consistency with other data augmentation

methods in RUDA framework.

Specifically, we choose two commonly-used image aug-

mentations: 1) geometry augmentation, we apply random

scaling and random translating to the normalized face im-

ages, and 2) noise augmentation, we randomly apply four

kinds of different noise to the image including random

noise, Gaussian noise and Poisson noise. Examples of three

kinds of operation are shown in Fig. 5.

The results are shown in Tab. 6. Although geometry aug-

mentation and noise augmentation are proven to be effective

in other computer vision tasks such as classification and ob-

ject detection, they do not bring any improvement in cross-

domain gaze estimation tasks. We argue that it might be be-

cause that geometry consistency and noise consistency are

easier to achieve as these two augmentation only disturb the

appearance of images, do not touch the physical nature of

gaze. Rotation brings more uncertainty information, i.e., it

changes not only the appearance but also gaze direction.

5.5.3 System Limitations

The proposed RUDA framework have successfully ad-

dressed one of the critical problems in unsupervised domain

Original Augmented

Ge
om

et
ry

No
ise

Ro
ta
tio

n

Figure 5. Different image augmentations compared in Tab. 6.

Table 6. Comparison with other data augmentation methods. Re-

sults are angular error in degrees.

Method DE→DM DE→DD DG→DM DG→DD

ResNet18 8.20 7.16 7.74 7.64

Geometry+RAT 9.75 8.50 7.88 7.41

Geometry+RUDA 9.71 10.17 7.40 7.33

Noise+RAT 8.70 8.12 7.80 7.65

Noise+RUDA 9.02 7.43 6.94 8.40

Rotation+RAT 7.92 7.44 7.60 7.10

Rotation+RUDA(ours) 5.70 6.29 6.20 5.86

adaptation, i.e., the shortage of training data and the absence

of target labels. On the other hand, another common chal-

lenge of appearance-based gaze domain adaptation tasks is

that the data distribution of source domain and target do-

main can be different. When the range of source domain

is significantly smaller, the adaptation capability decreases.

Such a problem has not been well addressed by existing

methods. In the future, we can try to handle this problem

and combine the resulting technique into our RUDA frame-

work to further improve the system robustness.

6. Conclusions

In this paper, we present the rotation-enhanced unsu-

pervised domain adaptation framework for gaze estima-

tion tasks. Based on the rotation consistency property,

the proposed RUDA framework adapts the model to un-

labeled target domain. It first trains a rotation-augmented

model with RAT strategy in source domain, then gener-

alized to target domain via the guidance of sub-labels,

i.e., estimation consistency across different rotation an-

gles in CGDA phase. Experimental results show that the

RUDA framework achieves stable and significant improve-

ment in four different cross-domain tasks. The idea of ro-

tation consistency may be applied in other physical related

regression tasks such as pose estimation.
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